Reference Manual

A description of the software interface, including drawing tools and settings.

Chief Architect, Inc.
6500 N. Mineral Dr.
Coeur d’Alene, Idaho 83815
chiefarchitect.com
Chapter 1: Program Overview

Chief Architect Premier vs Interiors ... 23
Startup Options .. 23
The Chief Architect Environment ... 25
Using Input Devices .. 26
View and Side Windows ... 28
Toolbars and Hotkeys ... 29
Menus ... 30
Dialogs .. 30
The Status Bar ... 33
Message Boxes .. 33
Preferences and Default Settings ... 34
Drawing a Plan ... 35
Viewing Your Plan ... 36
Sharing Your Files with Clients ... 37
Getting Help .. 37
About Chief Architect .. 38
Chief Architect Trial Software ... 38

Chapter 2: File Management

Compatibility with Previous Versions ... 39
Organizing Your Files ... 40
Chief Architect Data .. 40
Creating a New Plan or Layout ... 41
Saving, Exporting, and Backing Up Files .. 43
Thumbnail Images ... 45
Auto Archive .. 45
Undo Files ... 47
Opening and Importing Files .. 47
Plan Databases .. 48
Searching for Plans .. 50
Referenced Files ... 52
Backup Entire Plan or Project ... 53
Exiting Chief Architect ... 54

Chapter 3: Project Management

Project Browser ... 56
Project Information ... 57
Time Tracker ... 57
Time Log Dialog ... 58
Space Planning .. 59
Room Box Specification Dialog ... 60
The Reference Display ... 61
Finding Objects .. 62
Plan Check .. 62
Loan Calculator .. 63

Chapter 4: Preferences and Default Settings

Default Settings vs Preferences ... 65
Dynamic Defaults ... 67
Set as Default ... 67
Multiple Saved Defaults .. 67
Active Defaults Dialog .. 69
Default Sets ... 71
Exporting and Importing Default Sets ... 73
Template Files ... 73
Importing Default Settings ... 75
Reset to Defaults .. 76
General Plan Defaults Dialog ... 77
Preferences Dialog ... 79
Dialog Number/Angle Style Dialog ... 105

Chapter 5: Toolbars and Hotkeys

Toolbar Arrangement .. 107
Customizing Toolbars .. 109
Creating Custom Toolbar Configurations .. 111
Toolbar Customization Dialog ... 111
Hotkeys .. 114
Exporting and Importing Hotkeys .. 116
Gamepad Settings Dialog .. 116
Chapter 6: Window and View Tools

- View Windows .. 119
- Plan Views .. 120
- Saved Plan View Specification Dialog 122
- Working in Multiple Views .. 124
- View Tools .. 125
- Zoom Tools .. 126
- Undo Zoom .. 126
- Fill Window .. 126
- Panning the Display .. 127
- Closing Views and Files ... 128

Chapter 7: Creating Objects

- Architectural vs CAD Objects .. 129
- Defaults and Preferences .. 129
- Snap Behaviors .. 130
- Object Snaps ... 131
- Angle Snaps ... 132
- Grid Snaps .. 133
- Creating Objects ... 134
- Copying and Pasting Objects ... 136

Chapter 8: Displaying Objects

- Displaying Objects .. 141
- Layers .. 142
- Layer Attributes ... 142
- Layer Display Options Dialog .. 144
- Layer Sets ... 147
- Layer Set Defaults ... 148
- Layer Set Management .. 148
- Active Layer Display Options .. 149
- Select Layer Dialog ... 149
- Layer Panel .. 149
- Object Layer Properties .. 150
- Layer Painter, Eyedropper, and Hider 151
- Layout Layer Sets ... 152
- Exporting and Importing Layer Sets 152
- Drawing Groups ... 153
Chapter 9: Editing Objects

Defaults, Preferences, and Edit Behaviors ... 163
Selecting Objects .. 167
Selecting Multiple Objects ... 169
Editing Line-Based Objects ... 171
Editing Arc-Based Objects ... 173
Editing Open Polyline-Based Objects ... 177
Editing Closed Polyline-Based Objects .. 180
Editing Box-Based Objects .. 184
Editing Spline-Based Objects .. 186
Editing Circles, Ovals and Ellipses .. 189
Editing Multiple Objects ... 191
Moving Objects .. 192
Aligning Objects .. 194
Resizing Objects .. 199
Reshaping Objects ... 199
Rotating Objects .. 203
Reflecting Objects ... 204
Converting Objects .. 205
Transform/Replicate Object Dialog .. 208
Edit Area Tools .. 209
Stretch CAD ... 211
Trim and Extend ... 212
Union, Intersection, and Subtraction ... 213
Eyedropper and Painter Tools .. 215
Style Palettes .. 217
Matching Properties .. 219
Deleting Objects ... 220
Delete Objects Dialog .. 221
Undo and Redo .. 223

Chapter 10: CAD Objects

CAD Defaults and Preferences .. 225
The CAD Drawing Tools... 228
Point Tools.. 229
Line Tools .. 231
Line Specification Dialog ... 234
Drawing Arcs - Arc Creation Modes 237
Arc Tools .. 239
Arc Specification Dialog ... 240
Circle Tools ... 242
Circle/Oval/Ellipse Specification Dialog............................. 243
Polylines .. 243
Polyline Specification Dialog ... 244
Box Tools .. 246
Box Specification Dialog .. 247
Revision Clouds .. 247
Revision Cloud Specification Dialog 248
Splines ... 249
Displaying CAD Objects ... 250
CAD Blocks ... 251
CAD Block Management .. 253
CAD Block Specification Dialog .. 254
CAD Details ... 255
CAD Detail Specification Dialog.. 256
Plot Plans and Plan Footprints .. 257
Plan Footprint Specification Dialog 258

Chapter 11: Walls, Railings, and Fencing

Wall, Railing, and Fencing Defaults ... 262
Wall Tools ... 265
Railing and Deck Tools ... 266
Fencing Tools ... 268
Exterior and Interior Walls ... 268
Foundation Walls ... 268
Pony Walls .. 270
Room Dividers and Invisible Walls 271
Polygon Shaped Rooms and Decks 272
Hatch Wall ... 272
Creating Walls .. 273
Connecting Walls .. 275
Displaying Walls ... 277
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Walls</td>
<td>279</td>
</tr>
<tr>
<td>Editing Walls</td>
<td>280</td>
</tr>
<tr>
<td>Edit Handles for Walls</td>
<td>283</td>
</tr>
<tr>
<td>Editing Straight/Curved Wall Combinations</td>
<td>284</td>
</tr>
<tr>
<td>Aligning Walls</td>
<td>285</td>
</tr>
<tr>
<td>Roof Directives in Walls</td>
<td>287</td>
</tr>
<tr>
<td>Attic Walls</td>
<td>289</td>
</tr>
<tr>
<td>Stepped and Raked Walls</td>
<td>289</td>
</tr>
<tr>
<td>Double Walls</td>
<td>291</td>
</tr>
<tr>
<td>CAD to Walls</td>
<td>291</td>
</tr>
<tr>
<td>Wall Type Definitions</td>
<td>292</td>
</tr>
<tr>
<td>Wall Type Definitions Dialog</td>
<td>294</td>
</tr>
<tr>
<td>Exporting and Importing Wall Types</td>
<td>297</td>
</tr>
<tr>
<td>Wall Specification Dialog</td>
<td>297</td>
</tr>
<tr>
<td>Railing and Fencing Specification Dialog</td>
<td>308</td>
</tr>
<tr>
<td>Wall Hatch Specification Dialog</td>
<td>311</td>
</tr>
<tr>
<td>Wall Schedules</td>
<td>312</td>
</tr>
</tbody>
</table>

Chapter 12: Rooms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Definition</td>
<td>313</td>
</tr>
<tr>
<td>Floor and Room Defaults</td>
<td>314</td>
</tr>
<tr>
<td>Room Types and Functions</td>
<td>315</td>
</tr>
<tr>
<td>Displaying Rooms</td>
<td>317</td>
</tr>
<tr>
<td>Selecting Rooms</td>
<td>317</td>
</tr>
<tr>
<td>Editing Rooms</td>
<td>318</td>
</tr>
<tr>
<td>Room Labels</td>
<td>320</td>
</tr>
<tr>
<td>Decks</td>
<td>323</td>
</tr>
<tr>
<td>Floor and Ceiling Heights</td>
<td>324</td>
</tr>
<tr>
<td>Floor and Ceiling Platforms</td>
<td>325</td>
</tr>
<tr>
<td>Trey and Cofferced Ceilings</td>
<td>327</td>
</tr>
<tr>
<td>Trey Ceiling Specification Dialog</td>
<td>327</td>
</tr>
<tr>
<td>Special Ceilings</td>
<td>329</td>
</tr>
<tr>
<td>Room Moldings</td>
<td>331</td>
</tr>
<tr>
<td>Room Polylines</td>
<td>331</td>
</tr>
<tr>
<td>Room Specification Dialog</td>
<td>332</td>
</tr>
<tr>
<td>Room Finish Schedules</td>
<td>340</td>
</tr>
</tbody>
</table>

Chapter 13: Dimensions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility With Previous Versions</td>
<td>341</td>
</tr>
</tbody>
</table>
Dimension Preferences and Defaults

Dimension Defaults Dialog

Auto Dimension Defaults Dialogs

Auto Elevation Dimension Defaults

Temporary Dimension Defaults Dialog

The Manually Drawn Dimension Tools

The Automatic Dimension Tools

Displaying Dimension Lines

Selecting Dimension Lines

Editing Dimension Lines

Editing Extension Lines

Add Additional Text

Moving Objects Using Dimensions

Dimension Line Specification Dialog

Chapter 14: Text, Callouts, and Markers

Text Defaults and Preferences

Fonts and Alphabets

The Text Tools

Creating Text, Callouts and Markers

Displaying Text, Arrows, Callouts and Markers

Rich Text Specification Dialog

Text Specification Dialog

Editing Text

Copying and Pasting Text

Find/Replace Text and Spell Check

Text Arrows

Callouts

Callout Specification Dialog

Editing Callouts

Markers

Marker Specification Dialog

Editing Markers

Notes, Note Types, and Note Schedules

Note Specification Dialog

Text Styles

Text Macros
Chapter 15: Doors

- Door Defaults .. 403
- Door Tools ... 404
- Displaying Doors ... 406
- Editing Doors .. 407
- Changing Door Swings ... 409
- Special Doors ... 411
- Door Specification Dialog .. 412
- Door Schedules .. 424

Chapter 16: Windows

- Window Defaults .. 427
- Window Tools ... 428
- Special Windows ... 429
- Grouped Windows ... 431
- Make Mulled Unit ... 431
- Window Levels .. 433
- Displaying Windows ... 434
- Editing Windows .. 436
- Custom Muntins ... 437
- Window Specification Dialog ... 438
- Bay, Box, and Bow Windows ... 451
- Bay, Box, Bow Windows and Roofs .. 453
- Bay/Box and Bow Window Specification Dialogs ... 454
- Window Schedules .. 457

Chapter 17: Cabinets

- Cabinet Defaults ... 459
- The Cabinet Tools ... 461
- Cabinet Fillers ... 463
- Placing Cabinets and Fillers .. 464
- Countertops ... 465
- Displaying Cabinets ... 466
- Cabinet Labels .. 468
- Editing Cabinets ... 469
- Editing Cabinet Styles ... 471
- Special Cabinets ... 472
- Cabinet Specification Dialog ... 475
Chapter 21: Multiple Floors

Floor Defaults Dialog ... 537
Floor Tools ... 538
Adding Floors... 538
Displaying Floors ... 540
Exchanging Floors ... 540
Copying Floors... 540
Deleting Floors ... 541
Rebuilding Walls, Floors and Ceilings ... 541
Split Levels ... 541
The Current Floor ... 542
The Attic Floor ... 543
The Reference Floor ... 543

Chapter 22: Stairs, Ramps, and Landings

Stair and Ramp Defaults ... 545
The Stair Tools ... 546
Anatomy of a Staircase ... 547
Drawing Stairs and Ramps ... 548
L- and U-Shaped Stairs ... 549
Displaying Stairs, Ramps, and Landings ... 550
Editing Stairs and Ramps ... 551
Stair and Ramp Sections and Subsections ... 552
Landings ... 554
Maintaining Tread Depth ... 555
Chapter 23: Roofs

Automatic vs. Manual Roofs ... 581
Roof Defaults.. 582
The Roof Tools.. 583
Automatic Roofs .. 584
Build Roof Dialog ... 586
Roof Planes... 591
Displaying Roofs.. 593
Editing Roof and Ceiling Planes... 594
Roof Plane Specification Dialog... 598
Roof Baseline Polylines .. 602
Roof Baseline Specification Dialog.. 603
Roof and Ceiling Framing ... 604
Curved Roof Planes... 604
Ceiling Planes... 606
Ceiling Plane Specification Dialog.. 607
Gable/Roof Lines... 610
Gable Line Specification Dialog... 612
Skylights and Roof Holes... 612
Roof Hole/Skylight Specification Dialog... 613
Dormers and Crickets... 615
Editing Auto Dormers... 616
Dormer Specification Dialog.. 617
Roof Returns and Other Details... 619

Chapter 24: Framing

Framing Defaults.. 625
Manual vs. Automatic Framing... 627
Chapter 25: Trusses

Truss Defaults ... 655
Floor and Ceiling Trusses .. 656
Roof Trusses ... 656
Drawing Trusses ... 657
Displaying Trusses ... 657
Editing Trusses ... 658
Editing Truss Envelopes .. 659
Truss Details ... 659
Truss Labels ... 660
Mixing Trusses with Stick Framing 660
Truss Bases .. 661
Truss Base Specification Dialog 663
Hip Trusses .. 664
Special Roof Trusses ... 665
Roof Truss Specification Dialog 667
Floor/Ceiling Truss Specification Dialog 669
Framing and Truss Schedules .. 670

Chapter 26: Trim and Moldings

Trim and Molding Defaults ... 673
Corner Boards .. 674
Corner Board Specification Dialog 674
Quoins .. 675
Quoin Specification Dialog ... 675
Chapter 29: Architectural Blocks

- Architectural vs CAD Blocks .. 725
- Creating Architectural Blocks .. 725
- Displaying Architectural Blocks ... 726
- Editing Architectural Blocks ... 726
- Architectural Block Specification Dialog ... 727
- Architectural Blocks, Sub-Objects, and Components.. 728

Chapter 30: Other Objects

- Primitive Tools .. 731
- Polyline Solids ... 732
- Creating Primitives ... 732
- Editing Primitives .. 733
- Solid Tools ... 734
- Creating Complex Structures with Primitives ... 735
- Polyline Solid Specification Dialog .. 736
- 3D Box Specification Dialog ... 738
- Sphere Specification Dialog .. 739
- Cylinder Specification Dialog ... 740
- Cone Specification Dialog ... 740
- Pyramid Specification Dialog ... 741
- Shape Specification Dialog .. 743
- General Shapes ... 744
- Soffits .. 744
- Special Applications for Soffits ... 744
- Soffit Specification Dialog ... 746
- Floor and Wall Material Regions ... 748
- Material Region Specification Dialog .. 749
- Material Layers Definition Dialogs ... 750
- Distributed Objects .. 752
- Distribution Region/Path Specification Dialogs .. 752

Chapter 31: Materials

- About Materials .. 758
- Material Defaults .. 758
- Material Painter Tools .. 759
- Materials Panel .. 761
- Select Material Dialog .. 762
Import GPS Data Assistant .. 924
Importing DWG/DXF Elevation Data .. 925
Converting CAD Objects to Terrain Data .. 926

Chapter 38: Roads, Driveways and Sidewalks
Road and Sidewalk Defaults .. 927
Road, Driveway and Sidewalk Tools .. 928
Displaying Road Objects ... 930
Editing Road Objects ... 930
Adding Road Objects to the Library ... 930
Road Specification Dialog ... 931
Median Specification Dialog .. 932
Driveway Specification Dialog ... 933
Road Marking Specification Dialog .. 933

Chapter 39: Plants and Sprinklers
Plant Tools .. 935
Plant Chooser Dialog ... 936
Hardiness Zones ... 937
Plant Image Specification Dialog .. 937
Plant Specification Dialog ... 941
Sprinkler Tools .. 941
Sprinkler Specification Dialogs .. 941
Plant Schedules .. 941

Chapter 40: Materials Lists
The Materials List Tools .. 943
Creating an Accurate Materials List ... 944
Structural Member Reporting ... 945
Organizing Materials Lists .. 947
Materials List Specification Dialog .. 949
Editing Materials Lists ... 950
Materials List Formulas .. 952
Materials List Polylines ... 953
Materials List Polyline Specification Dialog .. 953
Saving and Managing Materials Lists ... 955
Printing and Exporting the Materials List ... 955
Conditioned Area Totals .. 957
Chapter 41: Layout

Layout Preferences and Defaults ... 961
The Layout Tools ... 962
Creating a Layout File .. 963
CAD and Text in Layout ... 963
Pictures, Metafiles, and PDFs in Layout .. 964
Sending Views to Layout .. 965
Keeping Layout Views Current ... 967
Displaying Layout Views ... 969
Editing Layout Views .. 970
Editing Layout Lines .. 971
Layout Box Specification Dialog .. 973
Opening Layout Views .. 975
Managing Layout Links ... 975
Layout Page Management ... 978
Layout Page Information ... 980
Layout Page and Revision Tables ... 981
Printing Layout Files .. 982
Exporting Layout Files .. 982

Chapter 42: Printing and Plotting

Introduction to Printing .. 983
Printers and Plotters ... 984
Printing Defaults .. 985
The Printing Tools .. 985
Drawing Sheet Setup Dialog .. 986
Print Preview ... 989
Printing to Scale ... 990
Printing Across Multiple Pages ... 991
Printing to a PDF File .. 991
Line Weights ... 992
Watermarks ... 994
Print View Dialog .. 995
Print Image Dialog ... 998
Chapter 43: Ruby in Chief Architect

Creating User Defined Macros ... 1001
Working with NVPublishers ... 1002
Working with Name-Value Pairs .. 1003
Macros and Context .. 1004
Measurement and NumberFormatter Classes 1005
Text Macro Management Dialog ... 1008
The Ruby Console .. 1010
Viewing the Interactive Tutorial .. 1011
Migrating Legacy Ruby Code ... 1011

Appendix A: Resources and Support

Learning and Inspiration ... 1013
Training Services .. 1014
Contacting Technical Support ... 1014
Error Messages .. 1015
Program Paths Dialog .. 1015

Appendix B: What’s New in Chief Architect X12

Getting Started Checklist ... 1017
Considerations for Migrating Legacy Content 1018
Considerations for Migrating Legacy Settings 1019
Considerations for Migrating Legacy Templates 1019
Considerations for Legacy Files ... 1020
New and Improved Features by Chapter .. 1026
Chapter 1:

Program Overview

Chief Architect is specifically designed for the residential and light commercial design professional. It allows you to easily and efficiently produce 3D models and construction documents for your projects. We thank you for choosing Chief Architect and wish you the best in your design work.

Chief Architect Premier vs Interiors

Not all of the features described in this document are available in the Interiors version of Chief Architect.

Startup Options

When Chief Architect opens, the Startup Options dialog displays, allowing you to choose how you want to begin working in the program or access useful resources.

The Startup Options dialog can be opened at any time by selecting File> Startup Options.

Chapter Contents

• Chief Architect Premier vs Interiors
• Startup Options
• The Chief Architect Environment
• Using Input Devices
• View and Side Windows
• Toolbars and Hotkeys
• Menus
• Dialogs
• The Status Bar
• Message Boxes
• Preferences and Default Settings
• Drawing a Plan
• Viewing Your Plan
• Sharing Your Files with Clients
• Getting Help
• About Chief Architect
• Chief Architect Trial Software

For a list of the features in each program, visit our website, www.chiefarchitect.com.
Select a File command to open a .plan or .layout file.

- Click New Plan or New Layout to open a new, blank file. See “Creating a New Plan or Layout” on page 41.
- Click New from Template to open a new, blank plan based on a template that you select. See “Template Files” on page 73.
- Choose Open Plan or Open Layout to work on an existing plan or layout file. See “Opening and Importing Files” on page 47.

Recent Files lists the full pathnames of the most recently opened files. Click on a name to open the file. You set the number of files in this list in the Preferences dialog. See “General Panel” on page 85.

A selection of useful online Getting Started options and Resources are available here. Click on an option to launch your default internet browser to chiefarchitect.com.

- Click Getting Started to visit the Getting Started page on our web site with links to a variety of resources to help you begin using the program.
- Click Training Videos to access a searchable collection of videos focused on specific topics.
- Click Download Catalogs to access our 3D Library of downloadable bonus and manufacturer library catalogs. See “Library Content” on page 696.

When an internet connection is available, the Announcements section displays updated messages and news from Chief Architect.

Click My Account to launch your default internet browser to the Log In page on our web site.

Your software version’s Build number and the first five characters of your Product Key
display here for reference. If your software license has an expiration date, it will also display here.

To prevent the Startup Options dialog from displaying when you launch Chief Architect, uncheck Show Options on Startup in the Preferences dialog. See “General Panel” on page 85.

The Chief Architect Environment

Chief Architect is designed to be intuitive and efficient.

3D Drafting

In Chief Architect, the drawing area is laid out on a Cartesian grid, a three dimensional coordinate system described using the X, Y, and Z axes. The current position of your mouse pointer displays in the Status Bar at the bottom of the program window.

Architectural objects take up space in all three dimensions and their height, width and depth can be specified in Imperial or metric units. In addition, the location of objects can be precisely defined using coordinates, again specified in Imperial or metric units.

CAD objects such as lines and arcs take up space in two dimensions in the current view. Their dimensions can also be specified in Imperial or metric units and their locations precisely defined using coordinates.

Objects can be rotated relative to the Cartesian grid system, as well. When the program presents the option to rotate to an Absolute Angle, this angle will be measured relative to an imaginary horizontal line drawn in floor plan view from the origin in the positive X direction.

Easy Access to Tools

You can access Chief Architect’s features in various ways using the mouse and keyboard.

• Convenient toolbar buttons allow fast access to frequently-used tools and let you customize the interface.
• Menus provide access to most tools and settings.
• Keyboard shortcuts are available for most tools and can be customized.

• Contextual menus display with a right-click of the mouse.
• The Status Bar at the bottom of the screen provides tool descriptions and other information about the current task.

Object-Based Design

Chief Architect’s parametric, object-based design technology means you place and edit objects, rather than work with the many individual lines or surfaces used to represent them.
You can quickly select and edit the location, size, shape, style and other properties of objects as well as change the materials applied to their surfaces.

Use Chief Architect’s editing capabilities to make the objects you place in a plan match the objects they represent in real life. For example, you can set up your windows and doors to match those available from your supplier.

Interface Toggles

A number of useful drawing and editing behaviors, as well as the display of important elements in the interface, can be easily enabled and disabled using the menus and toolbars. For example:

- **Object Snaps, Angle Snaps, and Grid Snaps** can be toggled on or off as needed. Individual Object Snaps and Extension Snaps can be toggled as well. See “Snap Behaviors” on page 130.
- **Display Elements** like Print Preview, Show Line Weights, and the Reference Display can be turned on when needed and then toggled off.
- **Special Edit Behaviors** can be enabled for particular tasks, then replaced by the Default Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

When a setting is turned on, its icon will display a small checkmark at its lower right corner and have a border around it in both the toolbars and the menu.

Many of these interface elements are global Preferences while others are file-specific default settings. See “Default Settings vs Preferences” on page 65.

Using Input Devices

You can interact with Chief Architect using a variety of input devices.

Keyboard

A keyboard is necessary for entering text and size values. See “Dialogs” on page 30.

Your keyboard can also be used to navigate the dialog panels, as well as navigate the program menus. Many commands can also be invoked using keyboard hotkeys. See “Menus” on page 30 and “Hotkeys” on page 30.

In addition to the keyboard, a mouse or other device that can move a pointer is necessary in order to draw, select, and edit objects in your drawings.

Three Button Mice

The **left button** is the primary button used in Chief Architect. Unless specified otherwise, Chief Architect documentation refers to the left mouse button.

Many objects, such as doors and cabinets, are created by clicking the left mouse button. Others, such as walls, stairs and dimension lines, are created by dragging the pointer from one end of the object to the other.

The **right button** has several uses.

Right-click to select any object. If, for example, the **Straight Exterior Wall** tool is active, the left mouse button only allows you to select walls. You can, however, select other types of objects such as cabinets with the right mouse button.

Use the right mouse button to temporarily switch to the Alternate edit behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

You can also use the right mouse button to open a context sensitive menu with additional editing commands. See “Contextual Menus” on page 30.

The **middle button** can be used to pan in most view types or to temporarily use the Move edit behavior. To close a tabbed view window, click on its tab using the middle mouse button. You can also program it to work as a double-click.
If your mouse does not have a middle mouse button, in the Mac version of Chief Architect you can use the left button and the Command key to achieve the same results.

The **Mouse Wheel** can be used to zoom in and out in most view types. See “Zoom Tools” on page 126.

The Back, or X1, button on a 5-button mouse can be used to temporarily enable the Concentric edit behavior. See the documentation for your mouse.

The Forward, or X2, button on a 5-button mouse can be used to temporarily enable the Resize edit behavior. See the documentation for your mouse.

3D Mice

3Dconnexion®’s 3D mice can be used to navigate in Chief Architect. For information about navigating in camera views and overviews, see “3Dconnexion® 3D Mice” on page 794.

Trackpads

In addition to the standard trackpad gestures on your system, in Chief Architect you can pinch to zoom.

In macOS™, you can Command + click to pan. Panning with a trackpad is not supported in the Windows version of the software, however.

Touch Screens

Standard one-finger touch screen gestures are supported in both the Windows and Mac versions of the software. In the Windows version, touching with a second finger to cancel an action is also supported, as are two-finger pan and two-finger pinch to zoom.

Gamepads

In the Windows version of Chief Architect, gamepads can be used to navigate in camera views, overviews, as well as elevation views. See “Gamepads” on page 794.

Crosshairs

Crosshairs help you position the pointer relative to objects in a view while drawing and editing. They can be set to display in Plan and Cross Section/Elevation views and CAD Details, and in Perspective and Orthographic camera views. Select **View> Crosshairs** to toggle crosshairs on or off in the current view type.

You can customize the Crosshairs’ appearance and control their display in different view types in the **Preferences** dialog. See “Edit Panel” on page 95.

Edit Handles

A selected object has edit handles that can be used to modify its size, position, and orientation. When you move the pointer over an edit handle, information about what it does displays in the Status Bar and the pointer changes to suggest how you can use it.

- A two-headed arrow indicates that the object, corner or edge can be moved in the direction of the arrows.
- A four-headed arrow indicates that the selected object or edge may be moved in multiple directions.
- A circular arrow indicates that the selected object can be rotated.

Resize handles display along the edges of the object are used to change the size. See “Resizing Objects” on page 199.

The Move handle at the object’s center lets you move the object. Depending on the type of object(s) selected and how far you are zoomed in or out, the position of the Move handle may shift so that it remains on-screen. See “Moving Objects” on page 192.

The triangular Rotate handle lets you rotate the object. See “Rotating Objects” on page 203.

Object labels also have their own Move and Rotate handles. See “Object Labels” on page 515.
How each handle behaves when it is clicked and dragged may depend on which Edit Behavior is currently active. See “Defaults, Preferences, and Edit Behaviors” on page 163.

You can cancel any edit handle operation before it is completed by pressing the Esc key on your keyboard or by pressing any two mouse buttons at the same time.

The edit handles that display depend on the type of object selected, the current view, and how far you are zoomed out. Edit handles do not resize as you zoom in or out. If you are zoomed out far enough, some edit handles may be hidden so that they do not stack over one another. As you zoom in, these handles become visible again.

Pointer Icons

The appearance of the pointer in Chief Architect will vary, depending on which tool is active. For example, when the Select Objects tool is active, it will look like a white arrow, and when a Cabinet Tool is active, it will look like a base cabinet with a small cross.

View and Side Windows

Chief Architect’s main program window has a number of important features that let you interact with the program, such as toolbars and menus. It also features two different kinds of windows: view windows and side windows.

View Windows

View windows are sometimes referred to as “the drawing area” because most of them are windows in which you can draw or place architectural and/or CAD objects. There are a number of different types of view windows in Chief Architect:

- Plan views
- Camera views and overviews
- Cross section/elevation
- Ray trace views
- CAD Details
- Materials Lists
- Layout

View windows can be navigated by panning and zooming. You can also enable scroll bars on their right side and bottom. Select View>Scrollbars to toggle their display. See “View Tools” on page 125.

Although only one view window can be active at any given time, there is no limit to the number of view windows that can be open. View windows can be tiled or tabbed, and you can navigate between them in a number of different ways. See “Window and View Tools” on page 119.

You can also tear a view window out of the main program window. This creates a second, separate program window complete with toolbars and menus. Individual view windows can be torn out and transferred between program windows.

Side Windows

Side windows provide access to a variety of tools, content, and information that helps you organize and add detail your drawings.

Side windows are so-named because they are typically docked to either the left or right side of the program window - although, they can also be docked

<table>
<thead>
<tr>
<th>Icon</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle Snaps</td>
<td></td>
</tr>
<tr>
<td>Alternate Edit Behavior</td>
<td></td>
</tr>
<tr>
<td>Move Edit Behavior</td>
<td></td>
</tr>
<tr>
<td>Resize Edit Behavior</td>
<td></td>
</tr>
<tr>
<td>Concentric Edit Behavior</td>
<td></td>
</tr>
<tr>
<td>Fillet Edit Behavior</td>
<td></td>
</tr>
<tr>
<td>Disconnect Edges</td>
<td></td>
</tr>
<tr>
<td>Rotate/Resize About Current Point</td>
<td></td>
</tr>
<tr>
<td>Auto Rebuild Terrain</td>
<td></td>
</tr>
<tr>
<td>Rebuilding Walls, Floors and Ceilings</td>
<td></td>
</tr>
<tr>
<td>Fix Wall Connections</td>
<td></td>
</tr>
<tr>
<td>Irregular Wall Angles</td>
<td></td>
</tr>
</tbody>
</table>
Toolbars and Hotkeys

Using the toolbar buttons is the fastest, easiest way to access many program features. If a tool is active, a small checkmark will display at the lower left of its button icon. You can move the toolbars, customize them by adding or removing buttons, or create your own toolbars from scratch. See “Toolbar Customization Dialog” on page 111.

You can also turn off the display of toolbars entirely or turn them on again by selecting View> Toolbars.

When you pass the pointer over a toolbar button, a “tool tip” displays the name of the tool and a more detailed description displays in the Status Bar at the bottom of the program window. When you see one of these tool tips, press the F1 key to get more information about that item. See “Getting Help” on page 37.

Chief Architect’s tools are organized into families of related tools which can be accessed using either of two styles of toolbar interface: the Child Tool Palette or Drop Down tools. You can select the interface that you prefer in the Preferences dialog. See “Appearance Panel” on page 80.

Toolbar Configurations

Chief Architect installs with five Toolbar Configurations, which are sets of toolbars organized for working on specific tasks. Each can be accessed in the Toolbar Customization dialog, by right-clicking on a toolbar, or by clicking a Toolbar Configuration button. See “Toolbar Configurations” on page 108.

You can customize these configurations to suit your needs, or you can create your own custom configurations.

The Edit Toolbar

When you select an object, the edit toolbar appears. By default, it is located at the bottom of the program window, just above the Status Bar. The buttons on the edit toolbar can be used to edit the selected object(s). Which buttons display depends on the type of object selected, the current view, and how you selected the object.

The edit toolbar buttons are the same as the options in the contextual menu when you right-click on an object. See “Contextual Menus” on page 30.
Hotkeys

Many commands can be invoked from the keyboard. Press Alt on your keyboard and press the underlined letter in a menu name to access that menu, as well as items in the menus and submenus.

Menus

Chief Architect uses a standard Windows menu format. The menus are located below the title bar in the program window and can be used to access nearly all tools in the program. Click on a menu name to expand it, then click on a menu item to either activate that tool or access the item’s submenu. Items with a submenu have an arrow to the right of the name.

Menu items with an icon to their left have a toolbar button associated with them. Some buttons are not included on the toolbars but can easily be added. See “Toolbar Customization Dialog” on page 111.

The menus can be accessed using the keyboard. Press the Alt key once to enable this functionality - one letter in each menu will become underlined. Press the key associated with one of these underlined letters to expand its menu - one letter in each menu item’s name will be underlined. Press the key associated with one of these letters to activate that tool or access the item’s submenu. Press the Esc key to undo your last selection, or click with the mouse to exit out of this functionality.

Many tools in Chief Architect also have hotkeys associated with them. If a menu item has a hotkey, it will display to the right of the item’s name. See “Hotkeys” on page 114.

In the Chief Architect documentation, menu paths are written in this format: Build> Window> Box Window. An icon image after the menu path indicates that a toolbar button is also available.

Contextual Menus

Contextual menus are context-sensitive menus that display tools relevant to a selected object or view. To open a contextual menu, right-click on an object, in an empty space in a view window, or in a text field in a dialog box.

The options in an object’s contextual menu are usually the same as those on an object’s Edit toolbar. See “The Edit Toolbar” on page 29.

Contextual menus can be enabled or disabled in the Preferences dialog. When contextual menus are disabled, right-clicks perform generic object selection, much like when the Select Objects tool is active. See “Appearance Panel” on page 80.

Dialogs

Default and preference settings, object specifications, display settings, and many other functions are accessed through dialog boxes.

Many dialogs have multiple panels, which are listed in a tree list on the left side of the dialog. Click on a panel name in the list to make it active. In Windows, panels can also be navigated using the keyboard. Press:

- Ctrl + Tab or Ctrl + F6 to navigate forward;
- Ctrl + Shift + Tab or Ctrl + Shift + F6 to navigate backward.
When a panel name is active, you can also navigate the tree list using the Up and Down arrow keys.

By default, dialogs always open to the first panel in the list; if you prefer, you can choose to Open Dialogs to the Last Panel Visited. See “General Panel” on page 85.

Keyboard Navigation

Dialog panels and settings can be accessed using the mouse. You can also navigate the settings on a given dialog panel using the keyboard. For example:

- Line items in tree lists can be browsed using the arrow keys. Up and Down navigate the list, while Left and Right expand and contract categories.
- Press the Tab key to shift focus from the tree list to the first setting on the selected panel.
- Press the Tab key to shift focus from one setting to the next, or Shift + Tab to go in the reverse direction.
- A check box can be checked or cleared by pressing the Spacebar or the + or - keys, respectively, while it is in focus.
- Columns of radio buttons can be navigated using the Up and Down arrow keys; rows can be navigated using the Left and Right arrows. Select a radio button by pressing the Spacebar while it is in focus.
- Settings in list boxes can be navigated using the Up and Down arrow keys. When a check box is in focus, it can be checked or cleared by pressing the Spacebar.
- Drop-down lists can be browsed using the Up and Down arrow keys. When the mouse pointer is directly over the drop-down, the mouse scroll wheel can also be used; on a Mac, the list must also be expanded. In Windows only, you can press Tab to select the highlighted item in the list and proceed to the next setting.
- Settings with spin control arrows can be adjusted by typing in the text field or using the Up and Down arrow keys. When the mouse pointer is directly over the setting, the mouse scroll wheel can also be used.
- Slider bars can be adjusted by typing in the text field or using the Left and Right arrow keys. When the mouse pointer is directly over the slider bar, the mouse scroll wheel can also be used.
- Line items in tables can be group selected using the Ctrl or Shift keys, or by pressing Ctrl+A.
- Press Enter on your keyboard to close most dialogs and apply your changes.
- In the Mac version, Command + . closes dialogs.

Note: Keyboard navigation in dialogs may vary somewhat depending on your computer platform.

In the Mac version of the software, Dictation is supported in dialogs. Select **Edit > Start Dictation**, then open a dialog. Say the word “Numeral” before a number to enter it as a numeric value or immediately follow a number with a unit such as “foot” to enter it as a measurement.

The units of measurement used in dialogs are determined by your choice of template files. See “Creating a New Plan or Layout” on page 41.

The number format used in dialogs are set based on your operating system’s defaults. See “Region and Language Settings” on page 66. You can change the number format as well as the angle format in the Dialog Number Style/Angle Style dialog. See “Dialog Number/Angle Style Dialog” on page 105.

Math Operations in Dialogs

Basic addition, subtraction, multiplication, and division can be performed in the text boxes where numeric values are entered.

Note that settings for angle, pitch, or bearing do not support math, nor do those with spin controls or slider bars.

- To add, type the + character followed by the amount that you wish to add. Spaces are ignored and including a unit of measurement is optional.
- To subtract, type the - character followed by the amount you wish to subtract. As with adding, spaces are ignored and a unit of measurement is optional.
- To multiply, type the * character followed by the amount you wish to multiply by. Spaces are ignored, and only one of the values being multiplied can have a unit of measurement.
- To divide, type the / character followed by the amount you wish to divide by. To divide, there must be a space before the / - if there is not, the input may be treated as a fraction. The denominator, or value typed after the /, cannot have a unit of measurement.
Math expressions support a single operation only: more than one operation character (+, -, *, /) at a time is not allowed.

Basic math operations can also be used to move objects using dimensions. See “Moving Objects Using Dimensions” on page 365.

Dialog Size and Position

Dialog boxes can be both moved and resized to suit your needs. By default, the program will remember both the position and size that you specify for a dialog and use it the next time you open it. The size of dialog preview panes can also be changed, and are remembered as well. You can specify whether the program does this always, per session, or never in the Preferences dialog. See “General Panel” on page 85.

- To move a dialog, position your mouse pointer within its title bar and then simply click and drag.
- To resize a dialog, position your mouse pointer on any edge or corner and then click and drag outward or inward. If you drag an edge, only that edge will move; if you drag a corner, the two adjacent edges will move.
- To resize a preview pane, click and drag the vertical grab handle to its left. See “Dialog Panel Splitters” on page 33.

When a dialog is resized, some elements such as list boxes and text fields within it may resize in response.

All dialogs have a minimum size limitation but no maximum size. If a dialog opens on a monitor with resolution too low to display its full extents, it will have vertical and/or horizontal scroll bars.

You can reset the default sizes and positions of all dialogs in the Preferences dialog. See “Reset Options Panel” on page 104.

Specification Dialogs

Each object in Chief Architect has a unique specification dialog where you can enter size, style and other information specific to the selected object. To access it, select the object and click the Open Object edit button. You can also double-click on an object with the Select Objects tool active to open its specification dialog. See “Selecting Objects” on page 167.

You can also open the specification dialog for objects associated with a schedule row. See “Open Row Object(s)” on page 508.

Most objects also have a defaults dialog that lets you specify the initial values in the specification dialog. You can open the specification dialog for group-selected objects if they are of the same type, such as base cabinets.

- If a particular setting varies among the different objects, its check box will have a solid fill instead of a check mark. Click once to clear the box for all selected objects, or click a second time to place a check mark for all selected objects.
- In some dialogs, if a particular setting varies among the different objects, it will have a “No Change” radio button. Leave this button selected, or choose a different option to apply it to all objects in the selection set.
- If the setting has a text field or drop-down list, it will say “No Change”. Changes made to such a setting can be undone by replacing the value in the text field with the letter N before you click OK.

If you select multiple objects of different types, the Open Object edit button is usually not available. This button may be available if the objects have data in common, but you can only edit the common data.

Dialog Preview Panes

Many specification dialogs have a preview pane that shows how changes to settings affect the selected object. This preview updates when you click in a different field or press the Tab key on your keyboard.

If you switch to a panel with settings that affect the selected object’s appearance in a certain view, that view will be shown in the preview. For example, if you select the GENERAL panel, a 3D view will be shown; but if you select the FILL STYLE panel, floor plan view will be shown. When floor plan view is shown, the primary and all secondary layers associated with the object will display. See “Primary and Secondary Layers” on page 142.

When you click in the preview pane, your mouse pointer changes to a four-headed arrow and you can rotate around the object as well as zoom in and out using the mouse scroll wheel. Some objects, notably
walls, doors, and windows, have Interior and Exterior labels to indicate which side is visible in the preview. Click the Fill Window button above the preview pane to zoom in or out so that the object fills the extents of the pane, maintaining the current rotation.

In most dialogs, the Standard, Vector View, and Glass House Rendering Techniques can be applied to the preview. See “Rendering Techniques” on page 828. You can specify whether Standard or Vector View is used by default in the Preferences dialog. See “Appearance Panel” on page 80.

Click the Color button to turn color in the preview off or on. Some objects have additional tools that affect object previews. For example, the Cabinet Specification dialogs have a Select Cabinet Face Item button. Object specific tools like this are discussed in the documentation for that object type.

Dialog Panel Splitters

Many dialog panels are divided into up to three sections: a list of panels on the left, an object preview on the right, and a central area where settings are located. The vertical splitters separating these sections each have a pale grey, vertical grab handle.

To resize the panel list or preview, as well as the area in the middle, move your mouse pointer over the vertical grab handle: when the splitter cursor can be seen, click and drag to the left or right.

The Status Bar

The Status Bar at the bottom of the main program window displays information about the current state of the program.

This information depends on a variety of conditions such as settings in the Preferences dialog, the type of object selected, and the current position of the pointer. The information may include the following:

- The type of object currently selected or the total number of group-selected objects.
- A description of the edit handle that the pointer is over.
- A brief description of the toolbar button or menu item highlighted by the mouse.
- The name of the active tool, a brief description of that tool, and its hotkey, if it has one.
- The length and/or angle of an object as it is being drawn.

Message Boxes

As you work in Chief Architect, the program will occasionally prompt you to examine your settings, alert you if you command it to do something that could potentially cause a problem, or notify you if it encounters a problem that needs your attention.

Note: When multiple objects are selected, their shared specification dialog preview will typically only show one of the objects.

- Basic information about a selected library object, folder, or catalog.
- The current floor.
- The layer that the selected object is on.
- The selected object’s Drawing Group.
- The size of the active window in pixels.
- The screen redraw time.
- The current layout page.
- The Current CAD Layer.
- The current CAD coordinates of the mouse pointer.

The number format used in the Status Bar is set in the Dimension Defaults dialog, while the angle style can be specified in the Number Style/Angle Style dialog. See “Primary Format Panel” on page 344 and “Dialog Number/Angle Style Dialog” on page 105.

Situations where such message boxes may display include:
• Closing a file or view without saving;
• Modifying an object that is set to rebuild automatically;
• A file referenced outside the program, such as an image or texture, is missing;
• Creating an object in a space too small to contain it.

As with dialog boxes, you can access the options in a message box using the mouse or navigate them using the keyboard.

A few messages have a Send Report button. Click this button to send details regarding the issue that prompted the message to Chief Architect via the internet.

Some message boxes include a “Remember my choice” or a “Do not show this again” checkbox. Check this box to prevent messages of this specific type from displaying in the future. When this box is checked, some options in the message box may become inactive.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.

Preferences and Default Settings

Preferences and default settings control many aspects of the user interface and tool behavior in Chief Architect. You can use these settings to customize the program to suit your personal work style.

For more information about defaults and preferences, see “Preferences and Default Settings” on page 65.

Preferences

Preference settings let you change program behavior to suit your workflow. For example, you can:
• Turn certain display elements on or off.
• Choose background and editing feedback colors.
• Select a color theme for the dialog boxes, toolbars, and other elements of the program interface.
• Set frequency of autosaves, maximum number of “undos,” and file locking.
• Set default folders for various files.
• Control the editing behaviors of objects.
• Setup the materials list categories, sub-categories, and report style, as well as manufacturer and supplier information.

To allow all message boxes to display again, click the Reset Message Boxes button in the Preferences dialog. See “Reset Options Panel” on page 104.

Name Prompt

In dialogs throughout the program, there are opportunities to create new entities that require a name. Examples include:
• The Copy button in the Saved Defaults dialog.
• The Copy Set button in the Layer Display Options dialog.
• The Rename button in the Schedule Specification dialog.

When you click a New, Copy, or Rename button in a dialog, a Name Prompt dialog will open.

For best results, type a short, descriptive, and unique name and then click OK.
affected. A few defaults, however, are dynamic: they are tied to existing objects in the drawing and if you change the default, those objects may be affected. See “Dynamic Defaults” on page 67.

Drawing a Plan

When you draw a plan in Chief Architect, you are placing 3D objects that represent building components. Chief Architect comes with predefined default settings so you can start drawing plans immediately. You should review these default settings to be sure they match your drawing and building methods. See “Preferences and Default Settings” on page 65.

Set the Defaults

1. Open a new plan using the template of your choice. See “Template Files” on page 42.
2. Set the structural defaults:
 • Floor Defaults. Set the default ceiling height for Floor 1. See “Floor Defaults Dialog” on page 537.
 • Foundation Defaults. Set the foundation specifics such as type, footing size, and stem wall height. See “Foundation Defaults” on page 521.
 • Framing Defaults. Set the floor framing specifications, including type and dimensions. See “Framing Defaults” on page 625.
 • Default Wall Types. Specify the defaults for walls and railings. See “Wall, Railing, and Fencing Defaults” on page 262.
4. Set style defaults for doors, windows, molding, cabinets and other objects.

Draw the Floors

1. While the size of the drawing area in Chief Architect is limited only by the resources on your computer, it is best to begin your drawing near the origin, 0,0,0. See “3D Drafting” on page 25.
3. Adjust the perimeter shape and size as required. See “Using the Edit Handles” on page 281.

Template Plans

You can set up an otherwise empty plan with the default settings of your choice and use it as your template for new, blank plans. See “Template Files” on page 73.

4. Place any first floor bearing walls.
5. Define types for special rooms such as garages and decks in the plan. See “Room Types and Functions” on page 315.
6. Place perimeter doors and windows. See “Doors” on page 403 and “Windows” on page 427.
7. Build additional floors. See “Adding Floors” on page 538.
8. Specify the default ceiling height for each floor as soon as it is created. See “Floor Defaults Dialog” on page 537.
9. Adjust the perimeter shape of additional floors as needed. See “Editing Walls” on page 280.
10. Align edited or moved walls with those above or below where appropriate. See “Aligning Walls” on page 285.

Entering Dimensions

When using Imperial units, enter distances as inches or feet and inches, in fractional or decimal form. Millimeters are the default unit for all metric distances. See “Dimensions” on page 341.

• To enter feet, include the (’) marker or the program assumes inches.
• In most cases, the program allows precision to 1/128th of an inch. Fractions with denominators 2, 4, 8 and 16 are allowed.
• The program usually converts decimals to fractions.
• You can enter angles as decimal degrees, degrees, minutes, and seconds, quadrant bearings, or azimuth bearings. See “Dialog Number/Angle Style Dialog” on page 105.

Build the Foundation

1. Derive the foundation plan from the first floor. See “Building a Foundation” on page 524.
2. Adjust the foundation perimeter shape as needed.
3. Place interior foundation walls as needed for the first floor bearing walls.
4. Place any other foundation walls required.
5. Align with Above as needed. See “Aligning Walls” on page 285.

Add Structure and Details
1. Build non-structural interior walls. Begin on floor one and work up in multiple story structures.
2. Add walls where needed to create features such as chimney chases, plumbing walls, or Open Below areas.
3. Finish the relevant interior structure including interior doors, doorways, cabinets, fixtures, and fireplaces.
4. Build the roof planes. If you generate the roof automatically, remember to carry the roof directives in the walls from the first floor up to the top floor for multiple story structures. See “Roofs” on page 581.
5. Build the framing. See “Framing” on page 625.
7. Create the plot plan and plan footprint. See “Plot Plans and Plan Footprints” on page 900.
8. Create any necessary views and print the plan and use CAD Detail from View to create 2D elevations and plan details. Use and modify details from the Library, as well. See “CAD Details” on page 255.

Create the Layout
1. If one does not exist, create a Layout file with a title block, placing the border, title block, and other text on page 0. See “Layout” on page 961.
2. Send views to the layout, starting with layout page 1. See “Sending Views to Layout” on page 965.
3. Print the plan. See “Printing and Plotting” on page 983.

Viewing Your Plan
You can see your model in a variety of different 2D and 3D views. You can display more than one view at a time; and in any view, you can pan or zoom in or out. See “Window and View Tools” on page 119.
Plan view is a 2D view of the model most commonly used for drawing and editing. Each floor displays separately; however, you have extensive control over which objects display at any given time, can easily switch between floors, and can also display items other floors for reference. See “Multiple Floors” on page 537.

You can create interior and exterior 3D views of your model from any perspective. As in floor plan view, you can select and edit many objects in 3D views and control which objects are visible. See “3D Views” on page 779.

You can also create Floor Overviews that show only the current floor plus any floors beneath it. Ceilings on the current floor are omitted so you can see the interior, visualize the relationships between spaces, and plan traffic flow.

Framing Overviews display framing in 3D, provided that framing has been built. You can customize 3D views to serve special purposes such as this.
A variety of rendering techniques let you produce customized 3D views, from detail drawings to photorealistic Ray Trace views to artistic presentation views.

The Cross Section and Elevation camera tools create scaled 2D views of a model’s exterior and interior that can be dimensioned and annotated. Just as in other views, you can select and edit objects in a Cross Section/Elevation view as well as control which objects display.

Layout

All plan views can be sent to a layout where they can be arranged to produce full construction documentation. See “Sending Views to Layout” on page 965.

All views can also be exported as a graphic image. See “To export a picture” on page 859.

Sharing Your Files with Clients

Chief Architect users have the option of letting their clients review plan and layout files on their own computers, at their convenience, using the Chief Architect Viewer. The Chief Architect Viewer allows clients to open plan and layout files, create 3D views, and add text annotations without making any changes to the actual model.

To share files using the Chief Architect Viewer, first invite a client to request a copy of the viewer at www.chiefarchitect.com.

To ensure that all custom backdrops, images and material textures are included, use the Backup Entire Plan tool when preparing to send files to your client. See “Backup Entire Plan or Project” on page 53.

Getting Help

There are many forms of help available in Chief Architect including: Tool Tips, the Status Bar, and the online Help menu. See “Resources and Support” on page 1013.

All these forms of help assume you have a basic working knowledge of your operating system, including how to use a mouse, open, close and save files, copy, paste, and right-click to access contextual menus. Help also assumes you are familiar with basic computer terminology.

More information is available on Chief Architect’s web site, chiefarchitect.com.
Tool Tips

When you move the pointer over a toolbar button or menu item, a **Tool Tip** displays, offering a brief description of the tool. More information displays in the Status Bar at the bottom of the window.

Contextual Help

Online **Help** is a searchable menu that provides information about all of the tools in Chief Architect. Select **Help> Launch Help** to open the program’s Help and explore the table of contents, browse the Index, or Search for keywords.

The Help can also be used to provide instant information about toolbar buttons, menu items, and objects in your plan.

About Chief Architect

Select **Help> About Chief Architect** in Windows® or **Chief Architect> About Chief Architect** in macOS™ to view information about your software license, the program’s version number, and its release date. If your license has an expiration date, it will also display here.

Contact information for Chief Architect, Inc. is available on the MORE INFORMATION panel.

Chief Architect Trial Software

Chief Architect Premier X12 and Chief Architect Interiors X12 both have Trial versions available for free download at chiefarchitect.com.

The Trial software offers the same functionality as a purchased license with a few limitations:

- File Saving
- Printing
- File Exporting
- Recording of Walkthroughs
- Printing or Exporting of Materials Lists
- Library Browser restrictions
- Use of the Time Tracker utility
- Use of the CAD Detail from View tool
- Creating or saving Plan Database files
- Exporting of Layer Sets

Full details can be found in the software’s Help and at chiefarchitect.com.

Converting the Trial Version

An installation of the Chief Architect Trial software can be converted into a full working version of the program at any time by purchasing a software license. There are several ways to begin this process in the Trial:

- Click the **Purchase Full Version Now** button in any Trial Restriction message box.
- Select **Help> Purchase Chief Architect**.
- Select **File> Startup Options** and then click the **Purchase Full Version Now** button.

Once you have purchased a license, you can activate it while the Trial software is running.

To activate the full version

1. Select **Help> Activate Full Version**.
2. In the **Product Activation** dialog, type or paste the **Product Key** associated with your software license.
3. Click the **Activate Full Version** button.

Chief Architect strives to make our documentation as helpful as possible. Please send any suggestions to: documentation@chiefarchitect.com.
Chapter 2:

File Management

Chief Architect reads and edits two main document types:.plan files and .layout files. The complete 3D model of a structure, surrounding terrain and any CAD data associated with it are stored in the plan file. Data used to create working drawings and the links to various views or details are stored in the layout file.

All commands related to opening, saving and closing plans are located in the File menu. You can also open plans from the Startup Options dialog. See “Startup Options” on page 23.

Just as with files created in other software applications, you should back up your plan and layout files externally on a regular basis to avoid accidental loss of work.

Compatibility with Previous Versions

Plans and layout files produced in the following programs can all be read by Chief Architect X12.

• Chief Architect® 10.0 through X11
• All Better Homes and Gardens Home Designer® products, Interior Designer, and Landscaping and Deck Designer, Versions 7 and 8.

Only the .plan and .layout files from prior versions can be opened in Chief Architect X12. A number of steps are recommended when migrating plans created in an earlier program version into Chief Architect X12. Before doing so, see “Getting Started Checklist” on page 1017.

Chief Architect automatically archives plans created in prior versions. See “Auto Archive” on page 45.

Files that have been opened and saved in Chief Architect X12 cannot be read by any of the program versions listed above. To continue to read files in the program in which they were created, be sure to create copies of your files before opening them in Chief Architect X12.

Plans and layout files produced in the Windows® version of Chief Architect X12 can be read in the Mac® version, and vice versa.
File Association

Although multiple versions of Chief Architect can be installed on a computer, the operating system will only associate .plan, .layout, .calib, and .calibz files with one of them. If they are not associated with Chief Architect X12, click the Associate Files with this Program button in the Preferences dialog. See “File Management Panel” on page 86.

Opening Chief Architect Plans in Home Designer Programs

Plans created in Chief Architect Versions 10 through X8 can be opened in the latest Home Designer programs for viewing and annotating, but not for general editing or drawing of architectural objects.

Plans created in build 11.4 or later of Chief Architect X1, or in later program versions, can be set to allow limited editability in Home Designer programs. When this permission is enabled, a Home Designer user can use all of their program’s drawing tools and can edit objects in the plan that those tools can create. If an object cannot be created in the Home Designer program, however, it will not be editable.

Please note, too, that if a plan has more floors than the Home Designer program supports, the entire plan can be viewed and annotated only.

To protect some objects from being edited when a file with editing permission is opened in a Home Designer program, consider locking their layers. See “Locking Layers” on page 143.

Allow Editing in Select Home Designer Products
can be enabled or disabled only when the file is opened in Chief Architect. See “General Plan Defaults Dialog” on page 77.

Organizing Your Files

You should keep your plan and layout files separate from the support files needed to run Chief Architect. To keep files organized, you may find it helpful to create a new folder for each project.

Chief Architect files may use imported images, textures and other custom content saved in their own external data files. Consider storing copies of all external files in the same folder as the plan and layout files that use them so that they are easily found. See “Adding Library Content” on page 700.

Here is one way to organize your files:

- Create a folder in your Documents directory called “Chief Architect Plans” or another name you prefer. See your operating system’s Help to learn how to create folders.

- Inside this folder, make a new folder for each client or project. Save all the files for that client or project inside this folder, including plan and layout files and referenced external files. See “Saving, Exporting, and Backing Up Files” on page 42.

Chief Architect Data

When Chief Architect X12 is installed, the program automatically creates a folder in the user Documents directory called Chief Architect X12 Data. This folder contains important user-specific information saved in the following folders and files and should not be moved, renamed or deleted:

- **It is recommended that each layout file be saved in the same folder as the plan file(s) associated with it.** See “Managing Layout Links” on page 975.

To specify a default Save As location

1. Select Edit> Preferences, then select New Plans from Category list. See “New Plans Panel” on page 90.
2. Under Open and Save As, click Use this Folder. The Browse button becomes available.
3. Browse to the folder you plan to save your projects in. Click OK.
• **Archives** - A folder of automatically archived plan and layout files. See “Auto Archive” on page 45.

• **Backdrops** - A folder of custom backdrop images. See “3D Backdrops” on page 792.

• **Hotkeys** - A folder of hotkey assignments. See “Hotkeys” on page 114.

• **Images** - A folder of custom images. See “Using the Contextual Menu” on page 701.

• **lex** - A folder of customized dictionaries. See “Spell Check” on page 388.

• **Database Libraries** - A folder of user library data. See “Library Content” on page 696.

• **Scripts** - A folder for custom Ruby scripts. See “Ruby in Chief Architect” on page 1001.

• **Templates** - A folder of plan and layout template files. See “Template Files” on page 73.

• **Textures** - A folder where you can save image files used to create custom material textures. See “Creating Materials” on page 764.

• **Toolbars** - A folder of customized toolbar files. See “Toolbar Customization Dialog” on page 111.

• **mmaster.mat** - The Master Materials List file. See “The Master List” on page 957.

• **sheetSizes.sheet** - A list of user-created Drawing Sheets. See “Customize Sheet Sizes Dialog” on page 988.

• **units.dat** - A list of user-created units of measurement. See “Unit Conversions Panel” on page 90.

• **_MigrateBackup** - If you migrated legacy settings into version X12, additional folders with names appended with _MigrateBackup may also be present. See “Migrating Content and Settings” on page 186.

Data Folder Name and Location

The name of the Chief Architect X12 Data folder cannot be changed, but you can specify its location on your system in the **Preferences** dialog. See “Folders Panel” on page 88.

If you specify a new location for this folder, the program will not migrate any custom user settings that you might have. Instead, it will automatically create a new folder at that location containing default information from the Chief Architect installation folder. If you would like to copy custom settings to the new location, you can do this yourself in an operating system window.

When specifying a location for the Data folder, bear these considerations in mind:

• If you move the Chief Architect X12 Data folder on your computer without specifying its location in Preferences, the program will automatically replace the folder in its default location using default information from the Chief Architect installation folder.

• The same will result if you specify a location on a network or removable device and that location becomes inaccessible. For this reason, it is best to use a location on your local hard drive.

• The User Database Libraries in particular may contain a large amount of data. Whatever location you choose to use must be located on a hard drive with sufficient space to hold these files.

Just as with your plan and layout files, it is a good idea to back up your Chief Architect X12 Data folder.

Because the Chief Architect X12 Data contains custom user data, it is not deleted when the program is uninstalled. See “Uninstalling Home Designer Pro” on page 188 of the Tutorial Guide.

Creating a New Plan or Layout

To create a new, blank plan, select **File > New Plan**.

You can also choose **New Plan** in the **Startup Options** dialog. See “Startup Options” on page 23.
By default, a new layout file will be assigned the same name of the first plan file sent to it, associating the layout files with the plan files used.

New plan and layout files derive their default settings from the currently selected template files. See “Template Files” on page 73.

New, blank plans are called **Untitled.plan** and new, blank layout files, **Untitled.layout**. Unless these files are named and saved, they will be lost when closed. See “Saving, Exporting, and Backing Up Files” on page 42.

Units of Measurement

All plan and layout files save measurements in either Imperial or metric units. New files are created using one or the other, depending on the current setting in the **Preferences** dialog. When the program is first installed, the Windows OS setting for units determines what system is used. See “New Plans Panel” on page 90.

A plan or layout file’s unit of measurement must be specified before it is created and cannot be changed later. If you normally work in one set of units but need to create a new file using the other, select **File > Templates > New Plan From Template** to open a new file using an appropriate template without changing your Preferences settings. See “Using Template Files” on page 74.

While it is recommended that you create new plans using the type of unit that you plan to use, you can display dimensions using any type of unit. See “Dimension Preferences and Defaults” on page 342.

Template Files

New plan and layout files are created as copies of the current template files specified in the **Preferences** dialog. See “Template Files” on page 73.

Commonly used settings, defaults and other information are included in template files. You can customize the settings in a template file to fit your work style and then save your changes as a new template file. See “To create a plan template” on page 74.

If no template has been specified in the **Preferences** dialog, new plans and layouts are created using the system defaults. System defaults cannot be modified.

When Chief Architect opens a new, blank plan or layout file, the new file is actually a copy of a template using either metric or U.S. units of measurement and predefined default settings, layer settings, wall definitions, and page setup information. See “Creating a New Plan or Layout” on page 41.

Select Template Dialog

When a new, blank plan or layout file is opened in Chief Architect, the new file is actually a copy of a template using either metric or U.S. units of measurement and predefined default settings, layer settings, wall definitions, and page setup information.

Creating a new plan without referencing a template file is not recommended. If you try to create a new plan or layout using a template file that is not available, the **Select Template** dialog will prompt you to specify a template for the new file you are creating.

- Select **Load Installed Template (Recommended)**, then select a template file from the drop-down list.
- Select **Load Custom Template**, then click the **Browse** button and browse to a plan or layout file saved on your computer.
- You can also type or paste the full path name of a file in the text field.

If you encounter this dialog, make sure that the program Data folder is at a location that can be accessed by the program. See “Chief Architect Data” on page 40.
Saving, Exporting, and Backing Up Files

Saving, exporting, and backing up your files are three separate tasks that accomplish different things:

• Saving a plan or layout file retains your work so that it can be later opened in Chief Architect.
• Exporting a file allows you to save certain kinds of data in a format that can be used by a program other than Chief Architect.
• Backing up your files involves taking steps to make sure that your valuable data is protected and available when needed.

Whether you are saving, exporting, or backing up your data, it is important that you select a location on your computer for the files you create, and also specify a short, meaningful name that you will be able to identify in the future.

To save an untitled plan or layout file

1. Select File> Save to open the Save File dialog.
2. Specify a location on your computer where you would like to save the file. See “Organizing Your Files” on page 40.
3. In the File name text field, type a name for the file.
4. Chief Architect automatically assigns the File of type and file extension .plan to plan files and .layout to layout files.
5. When both the Save in location and File name are correct, click Save.

Although the program warns you if you try to exit without saving, you should get in the habit of saving plan files before exiting the program.

Saving Plan and Layout Files

When you first save a new, untitled file, you must select a location for it on your computer and give it a name. There are two options for saving plan and layout files: File> Save and File> Save As.

Both Save and Save As can be used to save your plan and layout files; however, they accomplish this in two different ways.

• File> Save saves the current state of your plan or layout file without changing its name and should normally be used for saving your work.
• File> Save As opens the Save File dialog, allowing you to save the plan or layout file using a different name or location on your computer.

Initially, all Open and Save As operations go to your Documents directory. After that, the location last visited is remembered and subsequent Open or Save As commands default to the directory last used for that operation. This path is saved when the program exits. The next time Chief Architect is launched, these defaults are used.

If you prefer, you can instead specify a directory to be used for all Open or Save As operations in the Preferences dialog. See “New Plans Panel” on page 90.

Saved Views

All saved camera views, plan views, and CAD Details are saved with their plan file. See “View Windows” on page 119.

When saving a layout, the program saves all pages of the layout, all the links to the various views saved in the layout, and all the CAD objects added to the .layout file.

By default, a new layout file is assigned the same name as the first plan file from which a view is sent to it. It is also saved in the same directory as the plan file. If no view has been sent to a layout, it remains untitled until you save it.

Save File Dialog

The Save File dialog uses the operating system’s file save dialog format, and is also used when exporting files. The dialog name may vary, depending on the type of file being saved or exported.

A similar Select Folder dialog allows you to select a folder to which files can be exported.
Choose a location on your local computer for the file you are saving.

Any existing folders and/or files in the current location display here.

In the **File Name** field, type a name for the file. If you select an existing file from the space above, its name will display here automatically.

When saving a file, the program will choose the appropriate file type from the **Save as type** drop-down list. When exporting, you may need to choose a specific file type.

Saving Revision Files

Revisions are a common aspect of any design project. There are a number of possible strategies for organizing revision files:

- Prepending the file name;
- Appending the file name;
- Saving revisions in separate folders.

To avoid confusion and potential mistakes, it is recommended that you always give files unique names - including revision files. If you choose to organize your revisions by saving them in separate folders, you should also give each file a unique name that makes it impossible to confuse it with another file saved in a different folder.

Exporting Files

Chief Architect has a number of options for exporting and importing information out of and your drawings. See “Importing and Exporting” on page 879.

Often, file export dialogs are simply versions of the **Save File** dialog.

Similarly, file import dialogs are often similar to the **Open File** dialog. See “Importing Files” on page 48.

Backup Entire Plan

File> Save As is a simple way to transfer a plan or layout to a different location on your computer. Bear in mind, though, that plan and layout files often reference external data files such as imported textures, images, and backdrops. These external files are not affected when **Save As** is used.

If you transfer a plan file from one computer to another, the program will warn you of missing files if the external data files used by the plan cannot be found when you open it.

Layouts are also dynamically linked to plan files. When transferring layout files to another computer, be aware that the plan files are also external file references and are not actually contained in the layout.

When transferring plans or layouts to another computer that does not have these external files, use
the **Backup Entire Plan** tool. See “Backup Entire Plan or Project” on page 53.

Backing Up Your Files

It is always a good idea to create backup copies of all your important files on your computer.

It is strongly recommended, however, that you never save directly:
- Across a network, such as onto a server;
- Onto removable media such as a USB thumb drive;
- Across the Internet.

Instead, copy your files to such locations only after you have saved them on your computer’s hard drive and exited the program.

Thumbnail Images

A thumbnail is a miniature image that helps identify a file in the **Open Plan File** dialog in Windows and in the **Find Plan Assistant**. Any view of a plan or any layout page can be saved as the thumbnail. See “Searching for Plans” on page 50.

If thumbnails are enabled in the **Preferences** dialog, the program automatically creates one when you first save a new plan or layout. You can choose to generate small or large thumbnails. See “File Management Panel” on page 86.

Auto Archive

The first time a plan or layout is saved, Chief Architect creates an Archive folder in the Chief Architect Data folder. The Archive folder contains Auto Save and Archive files.

The program does not create Auto Save and Archive files for untitled plans and layouts. In order for these to be created, a file must have been previously saved and given a name and save location on your computer. Further, Archive files are only updated when you save your work.

Auto Save and Archive files should not be viewed as a substitute for regularly saving your work by selecting **File> Save** or pressing Ctrl + S on the keyboard, nor should they be considered an alternative to your own file backup routine.

Similarly, you should never open files saved in these locations. Copy the files to the local hard drive, and then open them. See “Opening and Importing Files” on page 47.

Archive folders are used by Chief Architect to manage prior versions of your files. You should not view these files as a substitute for your own backup routine, and should never save a file in an archive folder. See “Auto Archive” on page 45.

When backing up your Chief Architect files, consider backing up not only your `.plan` and `.layout` files, but your custom user data, as well - including library content, toolbar configurations, and textures. This custom data is all located in the Chief Architect Data folder, so it can be easily backed up. See “Chief Architect Data” on page 40.

You can, if you wish, create a folder inside the Data folder for your `.plan` and `.layout` files, as well. See “Organizing Your Files” on page 40.

To create a custom thumbnail image

1. You must save the file and give it a name before you can save a thumbnail.
2. Create the 2D or 3D view that you want to use as a thumbnail for the current file.
3. With the desired view active, select **File> Save Thumbnail Image**.

Thumbnail images are saved in the plan or layout file that they are associated with.

Archive Files

Every time a drawing is saved, Archive files that keep a historical archive of your plan are automatically created or updated.

Files can be archived by hour, day or most recent save. They are renamed according to which archiving option is selected in the **Preferences** dialog. See “General Panel” on page 85.

<table>
<thead>
<tr>
<th>Archiving Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>Files are renamed to reflect the previous save.</td>
</tr>
<tr>
<td>Save</td>
<td>Files are renamed to reflect the current save.</td>
</tr>
<tr>
<td>Daily</td>
<td>Files are renamed according to the day of the save.</td>
</tr>
<tr>
<td>Hourly</td>
<td>Files are renamed according to the hour of the save.</td>
</tr>
</tbody>
</table>

archive files indicating all three archiving options
Plan, layout and related files from previous versions of the program are automatically moved to the archive folder when the plan is opened and saved in Chief Architect.

Archive files are meant to be for emergency use only. If you must access an archive file, open it as you would any other file. See “Creating a New Plan or Layout” on page 41. As soon as the file is open, use **Save As** to save this file to another location.

Legacy Archive Files

Plan and layout files saved in the current program version are not backwards-compatible: that is, they cannot be opened in older versions of the software.

If you open a Chief Architect plan or layout file from a previous program version and immediately **Save** it (not **Save As**), the Auto Archive utility will create an additional archive file using the original program version format. This archive file is a copy of the original and can still be opened in the original program version.

If you open and **Save** a Chief Architect Version 10 plan or layout file, the legacy archive file name will be appended “ _v10” to help distinguish it from other archived .plan or .layout files of the same name, and a copy of its archive folder will be created in the Chief Architect X12 Archives folder.

Manage Archives

Chief Architect offers two convenient ways to access Archive folders.

- **Select File> Manage Auto Archives** to open the current plan’s Archive folder.
- **Click Yes** in the Archived Files dialog when the program warns you that the number of archive files exceeds the Auto Archive Files value.

You can also move or delete archived files using your operating system. See your operating system’s Help for more information.

Auto Save Files

As you work, Chief Architect automatically creates Auto Save files at regular intervals when changes are made to a file but not saved by selecting **File> Save**.

These Auto Save files are appended _auto_save.plan or _auto_save.layout and are saved in the Archive folder.

When you close a file normally, its Auto Save file is retained until the next time the file is opened - at which time the Auto Save file is overwritten.

When your computer shuts down accidentally, you can recover some of your work by opening the _auto_save_bak file.

Even with Auto Save, you should save your work manually on a regular basis using any of the following methods:

- **Click the Save button.**
- **Select File> Save.**
- Press Ctrl + S on the keyboard.
Undo Files

Chief Architect stores a set number of copies of all open plan file changes, known as undo files. Undo files are referenced whenever you select **Edit > Undo** or **Edit > Redo**. See “Undo and Redo” on page 223.

Undo files are stored in the Undo Directory, which can be specified in the Preferences dialog. See “Folders Panel” on page 88.

The maximum number of Undo files is specified in the **Maximum Undos** value in the Preference settings. If you have Undo enabled, be sure to define a directory on a hard drive with enough space for these files.

When Chief Architect is closed normally, any current Undo files are deleted.

Opening and Importing Files

Opening and importing files are often similar tasks, but accomplish two very different things:

- Opening a file refers to opening it in the program in which it was created. Only plan or layout files can be opened in Chief Architect. See “Compatibility with Previous Versions” on page 39.
- Importing a file brings data that was created in a different program into Chief Architect. A number of different file types can be imported into Chief Architect.

Select **File > Open Plan** to open an existing **.plan** file or **File > Open Layout** to open an existing **.layout** file located on your computer. Chief Architect automatically browses to either the directory last used or to a specific directory, depending on your current Preferences settings. See “New Plans Panel” on page 90.

![Open File Dialog](image)

Before opening a file located on a removable storage device, server, or other computer on a network, copy it to your local machine’s hard drive first.

Open File Dialog

The **Open File** dialog uses the operating system’s file open dialog format, and is also used when importing files. The dialog name may vary, depending on your operating system and the type of file being opened or imported.

A similar **Select Folder** dialog allows you to select an entire folder of files to import.
Choose the location on your local computer for
the file you are opening.

Any existing folders and/or files in the current
location display here.

In the File Name field, type the file’s name. If
you select the file in the space above, its name
will automatically display here. When importing
some types of files, multiple files may be selected.

When opening or importing a file, the program
will usually choose the appropriate file type
from the Save as type drop-down list. When
importing, you may need to choose a specific file
type.

Plan files open to the floor that was active when the
file was last saved and closed; layout files open to the
page that was active.

Importing Files

Chief Architect has a number of options for
exporting and importing information out of and into
your drawings. Often, file import dialogs are simply
versions of the Open File dialog. See “Importing and
Exporting” on page 879.

Similarly, file export dialogs are often similar to the
Save File dialog. See “Exporting Files” on page 44.

Recently Opened Files

A list of recently opened and saved plan and layout
files can be accessed by selecting File> Open
Recent Files. Select one of these files to open it
without using the Open File dialog.

The maximum number of recent files listed in the
File menu can be changed in the Preferences
dialog. You can also specify that the recent files list
display at the bottom of the File menu rather than in
a submenu. See “File Management Panel” on page
86.

The names of recent files also display in the Startup
Options dialog. Click on the name of a file to open
it. See “Startup Options” on page 23.

Plan Databases

A Plan Database is a collection of plan files along
with search information about those files. You can
create one or more Plan Databases and use them to
find drawings that you have created that meet a set of
search criteria that you specify. See “Searching for
Plans” on page 50.

Creating a Plan Database File

Select Tools> Plan Database> Create Plan
Database to create a new plan database file
that can be used to search for plans using the Plan
Find Assistant. The Create Plan Database dialog
opens.

- Use the Database File field to name the plan
database file to be created. Click the Browse
button to save this file at the location of your choice,
as well as name it.
- Specify the Plan Search Path, which is the
pathname of the folder where plans to be
included in the plan database are saved. Any plan
files in this folder will be added to the plan database.
Click the Browse button to navigate to a folder on
your computer.
- The Include Subfolders checkbox allows you
to specify whether the search only looks in the
Plan Search Path or if it also searches any subfolders
found.
 - Check Use Relative Path if you anticipate mov-
ing the folder containing the database and plans
to another location. As long as the database and
the plans it references remain in the same folder,
that folder can be moved to another location.
When you click **OK**, the program searches for plan files and adds them to the plan database file. The program must read each plan and analyze it so this process may take some time.

You can **Cancel** the search process at any time. If you do, your plan database will have incomplete information and will not contain entries for all plans in your search folder. When all plans have been found and added to the plan database, the program automatically opens the new plan database file for modification.

Editing a Plan Database File

Once a plan database file is created, it can be modified. Select **Tools > Plan Database > Edit Plan Database**, then select the plan database file you want to modify.

Click **OK** to open the **Edit Plan Database** dialog. You can edit any of the information in the plan database and add and remove plans from the database.

- **Plans in the Database** - All plans that currently have information stored in the plan database are listed here.
 - Click **Add Plan** to select a plan file to add to the plan database.
 - Click **Remove** to remove the currently selected plan from the plan database.

- **Plan Information** - Information about the selected plan displays and can be edited here. This information displays when a plan is found and selected using the **Search for Plans** tool.
 - The Thumbnail preview image of the selected plan displays to the right. See “Thumbnail Images” on page 45.
 - Select a plan **Style** from the drop down list.
 - Click the **Add Style** button to add the name of a style to the list.
 - Enter the **Price** range for this plan.
 - The **Area** is automatically calculated by the program based on the living area of the plan when it is added to the database. You can enter a different value if you wish.
 - The number of **Bedrooms** is automatically calculated when a plan is added to the database. You can enter a different number if you wish.
 - The number of **Baths** is automatically calculated when a plan is added to the database. You enter a different number if you wish.
 - The number of **Floors** is automatically calculated when a plan is added to the database. You can enter a different number of floors if you wish.
 - The selected plan file’s **Path** name displays here.
 - Click **Select File** to relink the selected plan to a file on your computer. If a plan file is renamed, moved, or removed from your system, the plan database will be unable to locate it. You must then relink the plan database to the file or remove it to keep the plan database information accurate.
• Click **Open Plan** to open the selected plan. Opening a plan closes the **Plan Database** dialog. If you have not saved any changes you made before clicking the **Open Plan** button, you are asked to do so before you continue.

• Enter a **Description** for the plan, if desired.

Searching for Plans

Select **Tools> Plan Database> Search for Plans** to open the **Find Plan Assistant**, which helps you search specific plan database files based on search parameters that you define. At the bottom of each page, the number of plans that match your current search parameters displays. As you modify the parameters, this number increases or decreases as matching plans are found. If this number is zero, the **Next** button will be disabled. On any page, click the **Back** button to modify any previously selected parameters.

Find Plan Assistant

The **Find Plan Assistant** can be used to search for plans using stored information about each plan, such as the style of construction and the number of bedrooms and other room types.

When you open the **Find Plan Assistant**, choose a plan database to search. Click the **Browse** button to select a plan database. Once a plan database is selected, click **Next** and proceed through the **Find Plan Assistant**.

House Style

1. Select a style of house from the drop-down list.
2. Specify the maximum number of floors that you would like.
3. Specify the minimum and maximum number of bedrooms that you would like.
4. The number of plans in the database that match your search parameters thus far displays here for reference.

Click **Next** to continue.
Searching for Plans

House Size

Specify the minimum and maximum number of bathrooms you would like.

Specify the minimum and maximum number of square feet that you would like.

Define a price range by specifying Minimum and Maximum prices.

The number of plans in the database that match your search parameters thus far displays here for reference. Click Next to continue.

Plan Details

Select a plan to see a preview and its description.
Click on the name of a plan to select it and view information about it.

Basic information about the selected plan display here.

A preview of the selected plan displays here.

A written description of the selected plan provides additional details displays here.

Click **Next** to continue, then click **Finish** to view the selected plan.

Referenced Files

Chief Architect plan and layout files often reference a variety of external files for added detail, including:

- Material Textures and Maps
- Images
- Plant Images
- 3D Backdrops
- Picture Files
- PDF Files

Whenever any view in a plan or any page in a layout is opened, the program checks for referenced files used in that view and will notify you if any of those files cannot be found by opening the **Missing Files** dialog.

The **Missing Files** dialog will also open whenever you Export 3D Model or Export VRML. See “Importing and Exporting” on page 879.

If a layout file is missing referenced files on pages that you do not view during the current session, this dialog may also open when you print the layout. See “Layout” on page 961.

You can also open this dialog at any time by selecting **Tools> Checks> Missing Files**. When accessed this way, all missing files associated with the current file are listed: not just those used in the current view.

Missing Files Dialog

The table lists any Missing Files as well as useful information about each:

- **Missing File** reports the name and file extension of the missing file.
- **File Usage** indicates how the missing file is used in the program.
- **Object Name** states the name of the object in Chief Architect that references the file.
- **Object Location** indicates where in the file the object can be found.

- The next column indicates whether a missing texture is in use in the plan.
- **File Path** states the last known location of the missing file on your computer system.

Click on a line item in the table to select it and resolve it using the options on the right. Multiple line items can be selected; however, the selections on the right may be limited. See “Shift and Ctrl Select” on page 170.

The buttons on the right offer options for resolving a selected missing file. The names of
these buttons will vary somewhat, depending on the type of file(s) selected in the list on the left.

- Click the top Replace Object button to replace any instances of an object or material referencing the selected missing file with a different object or material from the library. Not available for material maps, PDF files, or picture files.
- Click the Replace File button to open the Browse for Missing File dialog and select a file saved on your system to replace the missing one. See “Opening and Importing Files” on page 47.
- Click the Delete Object button to remove the object or material referencing the missing file from the plan. Not available for material textures that are In Use.
- Click the Add Search Directory button to direct the program to a particular folder to search for missing files in. The list of Search folders can be reset in the Preferences dialog. See “Reset Options Panel” on page 104.

You can prevent this dialog from opening automatically by checking Do not display missing files again during this session at the bottom of the dialog. This option is not available when the dialog is opened manually.

Backup Entire Plan or Project

Because Chief Architect plans contain many references to external files such as material textures and images, it is a good idea to make copies all the associated files when a plan is moved to a new location. You can easily do this by selecting File> Backup Entire Plan.

Layout files also rely on references to plan files, images, and other files. Select File> Backup Entire Project to copy these files when you want to move a layout file to a new location.

Backing up an entire plan or layout is important when:

- Migrating legacy files created in older program versions.
- Transferring files to another computer or sending them to another user.
- Archiving or backing up your work.

Note: Always use File> Backup Entire Plan or Project when sending files to a user of the Chief Architect Viewer. See “Sharing Your Files with Clients” on page 37.

To back up a plan or layout

1. To copy all associated plan or layout files to a new directory, select File> Backup Entire Plan or Project.
2. The Backup Entire Plan or Project dialog opens.

- Choose Backup Plan Files and All Referenced Files to copy the plan or layout file and all externally referenced files such as linked plan files, inserted picture files, metafiles, .pdf files, and texture, image, backdrop, material map graphics files.
- Choose Backup Plan Files Only to copy all associated plan files and any externally linked files and inserted picture files, but no graphics or texture files. This is best used only when transferring a file to a computer that already has the graphics files installed.
- Check Send Backup Files to Zip Archive to save the files in a zipped folder instead of a regular folder.
- Click OK.

3. The Select the Plan or Project Backup Folder or Choose Zip Archive to Backup dialog opens next. This is a typical Save File dialog. See “Saving, Exporting, and Backing Up Files” on page 42.
 • Navigate to a folder on your system and select it.
 • With the destination folder for the backup selected, click OK.

4. If the destination folder already contains files, the program will confirm whether you want to overwrite them.
The resulting folder contains a copy of the plan or layout file and all referenced files, and can be moved to a new computer.

Exiting Chief Architect

Select **File> Exit** to exit the program. If you have not saved any open files, you will be reminded to do so. It is better to save your work before exiting than to save on exit. See “Closing Views and Files” on page 128.

When you exit from the program using **File> Exit**, all Autosave files and Undo files are automatically deleted.

Returning Viewer Files

When customers review and annotate files using the Chief Architect Viewer, they only need to return the .plan and/or .layout files. The associated files do not need to be returned.

On a Mac, if you click the program window’s red **Close** button, the window will close but the program itself will continue to run. To close it down completely, right-click on its icon on the Dock and select **Quit** from the contextual menu.
The tools described in this chapter allow you to conduct preliminary budget and space planning, manage project information and saved views of your projects, and keep track of your time spent working on each file.

Chapter Contents

- Project Browser
- Project Information
- Time Tracker
- Time Log Dialog
- Space Planning
- Room Box Specification Dialog
- The Reference Display
- Finding Objects
- Plan Check
- Loan Calculator
Project Browser

The Project Browser is a convenient way to access all of the views and Materials Lists saved with an open plan and all of the pages saved in an open layout. You can dock it to the top, bottom, or side of the Chief Architect window or let it float freely. To open the Project Browser, select View > Project Browser. See “View and Side Windows” on page 28.

1 The name of an open plan file displays here.

• All CAD Details saved in the plan are listed here. See “CAD Details” on page 255.
• All Cameras and overviews saved with the plan are listed here by floor. See “3D View Tools” on page 784.
• All Cross Sections and elevation views are listed here.
• All Floor Levels in the plan are listed here, including the Foundation and Attic. See “Multiple Floors” on page 537.
• All Materials Lists saved in the plan are listed here. See “Materials Lists” on page 943.
• All saved Plan Views in the plan are listed here. See “Plan Views” on page 120.
• All Schedules in the plan are listed here. See “The Schedule Tools” on page 506.
• All Wall Details saved with the plan are listed here by floor. See “In Wall Detail Views” on page 647.

2 The name of an open layout file displays here. See “Layout Page Management” on page 978.

• Any CAD Details saved with the layout are listed here. See “CAD Details” on page 255.
• Any pages that are in use in an open layout display here, in numeric order. See “In the Project Browser” on page 978.
• Drag a layout page in the list from one location to another to change its position in the document.
• Any Layout Page or Revision Tables in the layout file are listed here. See “Layout Page and Revision Tables” on page 981.

Using the Contextual Menu

Items in the Project Browser can be accessed, modified and organized using the contextual menu. To access its contextual menu, simply right-click on an item. See “Contextual Menus” on page 30.

You can also select multiple line items in the same folder as a group and then right-click to open a shared contextual menu. The options that are available in the menu depend on the type of objects selected. See “Shift and Ctrl Select” on page 170.

• Plan and Layout file level items have Save Plan, Close All Views, Save Layout, Close Layout, Expand All, and Collapse All in their contextual menus.
• All folder level items with contents in them have Select All, Expand All, and Collapse All in their contextual menus.
• All views, floor levels, and pages can be accessed by selecting Open View or Show Page, respectively. You can also open a view or page by double-clicking on its name.
• If a plan view is open, Save View will be an option in its contextual menu. Similarly, if a camera is open, Save Camera will be among its options.
• An open a view can be closed by selecting Close View from the contextual menu.
• Plan Views and CAD Details have specification dialogs that can be accessed by selecting Edit View. See “Saved Plan View Specification Dialog” on page 122 and “CAD Detail Specification Dialog” on page 256.
• Layout pages have an Edit Page Information option. See “Layout Page Information Dialog” on page 980.
• All views aside from Floors and layout Pages can be Renamed.

Project Information

Information about the current project, the client it is drawn for, and the registered Chief Architect user can be inserted into text objects to improve organization and clarity in your documents. See “Text Macros” on page 400.

Some of this information can also be included when exporting information to REScheck. See “Export to REScheck” on page 897.

Designer Information

Designer Information is saved in the Default Designer Information dialog, which can be accessed through the Preferences dialog. See “Text Panel” on page 84.

If you would like to customize the Designer Information for a particular file, select Tools>

Client Information

Select Tools> Project Information> Client Information to open the Client Information dialog. This dialog is similar to the Designer Information dialog, but its specifications apply to Client text macros. This information must be filled out separately for plan files and layout files.

Time Tracker

The Time Tracker tool monitors the time spent on each Chief Architect file. You can enter start and end times each time a plan or layout file is opened and closed, or allow it to run automatically. The Time Tracker keeps a log that can be amended and edited as needed.

Select Tools> Time Tracker> Start Time Logging to begin logging time for the current plan or layout file. This creates a new entry. Opening a plan or layout automatically starts a time log if you set your preferences to do so. See “Time Tracker Panel” on page 92.

Select Tools> Time Tracker> Stop Time Logging to stop logging time for the current file. Only available when an entry is currently being recorded.

Select Tools> Time Tracker> View Time Log to open the Time Log dialog and view the time log for the current file.

Time Tracker information is stored with each file and can be printed or exported from the Time Log dialog.

You can control how Time Tracker functions, including its timeout period, in the Preferences dialog. See “Time Tracker Panel” on page 92.
The **Time Log** dialog displays all entries logged for the current plan or layout file. Entries can be added, deleted, edited, exported, and printed.

Select **Tools > Time Tracker > View Time Log** to open the **Time Log** dialog.

A summary of current plan or layout file’s Log Entries displays here. Click in a row to select that entry.

- Click the **Add** button to add a new entry using the current time as the Start Time.
- Select an entry and click the **Delete** button to remove it from the current file.
- Click **Export** to open the **Save Time Log** dialog and specify a name and destination for the exported file. Time log information can be exported as either a text (.txt) or Comma Separated Values (.csv) file. See “Exporting Files” on page 44.
- Click **Print** to open the **Print** dialog and print the log. See “Print View Dialog” on page 995.

The **Selected Entry** settings let you modify the entry selected in the list above.

- The default **User** name is derived from the **Preferences** dialog. You can select an entry and change the **User** here. See “Time Tracker Panel” on page 92.
- The **Start** and **End** times can be edited by typing new values in the text fields. You can also click the drop-down list and select a date from the calendar. The Start time must predate the End time. See “Region and Language Settings” on page 66.
- The **Duration** of the selected entry and the **Total Duration** display for reference.
- **Notes** about the selected entry can be typed into the text field on the right.

If you have multiple plan and/or layout files associated with a particular project and wish to bill them together, export your Time Logs to another application and then combine them.
Space Planning

The Space Planning Tools are a time-saving way to create a preliminary room-by-room design of a home without getting caught up in the details. When the room boxes are laid out, the Build House tool converts them into a working plan that can be edited and detailed to completion.

Space Planning Assistant

In plan view, select Tools> Space Planning> Space Planning Assistant gathers information about the rooms you want to include in your house. When you click Finish, the selected room boxes display.

Room boxes can now be arranged into a floor plan.

Note: Each Bedroom called for in the Space Planning Assistant also produces a Closet.

Placing Room Boxes

In addition to or as an alternative to the room boxes created for you by the Space Planning Assistant, you can create your own room boxes. In plan view, select Tools> Space Planning, choose the desired room type from the submenu, then click to place a room box of that type.

Displaying Room Boxes

Room boxes and their labels are located on the “Space Planning Boxes” layer. Space Planning Box labels use the Text Style assigned to that layer, as well. See “Displaying Objects” on page 141.

Editing Room Boxes

Once created, room boxes can be edited in a variety of ways.

- Select room boxes using the Select Objects tool just like other objects in Chief Architect. See “Selecting Objects” on page 167.
- Room boxes can be resized, rotated, and rearranged. See “Editing Box-Based Objects” on page 184.
- Try to line up the rooms so that they are just touching. Excessive overlaps may cause your rooms to form incorrectly. Closets are the exception. You can overlap a room with a closet, or place in inside another room box.
- Rooms can be copied and pasted using the Copy/Paste edit button and deleted using the Delete edit button.
- Select Tools> Space Planning or click the Space Planning Configuration button to access the room box tools and place additional room boxes in your plan. Select a tool and click in the plan to place a room box of that type.
- Select Tools> Space Planning> Toggle Room Boxes or click the toggle button to hide or show the room boxes.
When the room boxes are in place, select **Tools> Space Planning> Build House** to convert them into a building composed of walls and railings. Doors are inserted between the rooms, as well.

When you Build House, the “Space Planning Boxes” layer is automatically turned off. The room boxes that you created are not deleted, however.

Multiple Floors

If you specified a two-story house in the **Space Planning Assistant**:

1. Edit and arrange the room boxes on Floor 1 as desired.

2. Select **Tools> Space Planning> Build House** tool to create the walls on the first floor.

3. Go **Up One Floor** and notice that the positions of the walls on Floor 1 display in red as a reference.

4. Arrange the rooms on Floor 2 as desired using the red polylines as a guide.

5. On the second floor, select **Tools> Space Planning> Build House** to complete the second floor.

Room Box Specification Dialog

Select one or more room boxes and click the **Open Object** edit button to open the **Room Box Specification** dialog.
General Panel

Most of the settings on the GENERAL panel are used when the selected room box is converted to a room using the Build House tool.

Specify the selected room box’s Room Type and Name.

- Specify a Room Name for the selected room box. When the default is specified, the Function selected below is used as the name.
- Select a Function from the drop-down list. See “Room Types and Functions” on page 315.

Specify the Size of the selected room box.

- Specify the room box’s Width and Height.
- Specify the Fillet Radius, which is the radius of the curve on each of the room box’s corners.

Unlike the other settings on this panel, this value does not affect the shape of the room created using Build House.

Line Style Panel

The LINE STYLE panel is available for a variety of other objects in the program. For more information, see “Line Style Panel” on page 235.

Fill Style Panel

The FILL STYLE panel is available for a variety of other objects in the program. See “Fill Style Specification Dialog” on page 155.

The Reference Display

The Reference Display allows you to show the positions of objects on a different floor or even in a different plan file in the current view. This allows you to confirm correct placement of objects; show an as-built structure in the same view as a remodel drawing; compare different options; and more.

Referencing a Floor Plan

- the Reference Display uses the “Reference Display Layer Set”. See “The Reference Floor” on page 543.
- If you specify that the Reference Display refer to another plan file, it will show the same floor level as the current plan by default, if possible, and will use the “Reference Display Layer Set” as defined in that other plan file.

While the default “Reference Display Layer Set” is sufficient for most purposes, you can create additional reference layer sets and use any of them individually or in combination in the Reference Floor Display. See “Layer Set Management” on page 148.

Any layer set can be used as in the Reference Floor Display; however, for best results you should use a layer set designed specifically for this purpose. See “Layer Sets” on page 147.

Reference Floor Display settings, including whether its display is toggled on, which floor level or levels are shown, and which layer set or sets it uses, are plan view specific and can be customized in the Saved Plan View Specification dialog. See “Plan View Panel” on page 973.

These settings can also be customized in plan views sent to layout. See “Plan View Panel” on page 973.
Referencing a 3D Model

By default, the default layer set for the view type in the referenced plan is used. See “Layer Set Management” on page 148.

Finding Objects

There are a variety of tools in the program designed to help you locate specific objects. These tools often open a new view window in which the object in question is either highlighted or selected.

- To find out where a line item in a schedule or the Materials List is located in the model, select its row or any cell in its row and click the Find Object in Plan edit button. See “Find Object in Plan” on page 511.
- To locate a string of text, select Edit> Find/Replace Text. See “Find/Replace Text” on page 387.
- To find objects that are similar to a selected object in the current view, click the Match Properties edit button. See “Matching Properties” on page 219.
- In a Wall Detail, Framing Overview or other 3D view in which wall framing can be seen, select a wall framing member and click the Find Wall edit button to locate its owner wall in plan view. See “Selecting Walls” on page 280.
- In the Truss Detail, select a truss and click the Find Trusses edit button to switch to a plan view in which the truss is selected. See “Truss Details” on page 659.

Additional tools are available to help you find files referenced by your plans and layout files.

- Select Tools> Checks> Missing Files Check to identify and locate any missing referenced files. See “Referenced Files” on page 52.
- Select Tools> Layout> Referenced Plan Files to identify and locate any plans linked to the current layout file. See “Managing Layout Links” on page 975.

Plan Check

Plan Check examines the current floor of a plan, checking for anything that appears to violate common building practices. Plan Check may not find all the problems in a plan, but does it point out areas that may need improvement.

To run Plan Check, select Tools> Checks> Plan Check.

Potential plan errors found are usually highlighted in plan view. To ensure the highlighted item is on-screen, make sure the entire plan is shown in the window before you run Plan Check.

Plan Check Dialog

The current error number, along with the total number of errors found, is stated at the top of the dialog.

A description of the current error displays in the field on the left.

Options for navigating Plan Check are found on the right side.

- Click Next to ignore the current error and proceed to the next.
- Click Previous to return to the previous error.
• Click Hold to suspend Plan Check so you can fix the current error. Select Tools> Checks> Plan Check again and the check starts where it left off.
• Click Done to terminate Plan Check.
If this dialog obscures the plan view, drag its title bar to move it. It remembers its new position and displays there the next time Plan Check is run.

Room Types

Plan Check can do a much better job of checking for problems if it knows what the rooms in your plan are to be used for, so you should assign a Room Type to each room in your plan. See “Room Types and Functions” on page 315.

The first time Plan Check runs in a plan, it automatically assigns a room type to as many undesignated rooms as it can. Some rooms are determined by their size and shape, and others by their contents. For example, a shelf in a small room indicates a closet; a stove or refrigerator indicates a kitchen; or a bed, a bedroom. If the program cannot assign a room type, Plan Check highlights it and suggests that you do so manually.

Loan Calculator

Select Tools> Loan Calculator to open the Loan Calculator dialog. This dialog lets you calculate different aspects of a loan for the current plan based on a variety of parameters.

1 Specify what aspect of the loan you would like to calculate from the Calculate drop-down list:
 • Monthly Payment
 • Loan Amount
 • Term
 • Interest Rate
2 The calculation Result, based on the information you provide, displays here.
3 If you make changes to any of the fields in the dialog, click the = button to refresh the Result.
4 The Required Fields are the same as the options in the Calculate drop-down list. The option selected under Calculate will be inactive under Required Fields.
 • Specify the desired Loan Amount.
 • Specify the desired Term, in years.
 • Specify the desired Interest Rate.
 • Specify the desired Monthly Payment.
5 The Optional Fields allow you to include additional information in your loan calculation.
 • Specify the expected Property Taxes per year.
 • Specify the expected Homeowner’s Insurance cost per year.
 • Specify the expected Private Mortgage Insurance (PMI) cost per year.
 • Specify the cost of any expected Other Fees.
When Monthly Payment is calculated, each Optional value is divided by twelve (months) and then added to the total payment.

When a Calculate option other than Monthly Payment is selected, these values are divided by twelve (months) and then subtracted from the specified Monthly Payment value. The result, which does not display, is then used to determine the Loan Amount, Term or Interest Rate.
Preferences are global settings that affect the functionality and appearance of the Chief Architect environment, while default settings control what objects look like when they are initially created. You can save time and increase your productivity by becoming familiar with these settings and customizing them before you begin a new project or as needed thereafter.

Default Settings vs Preferences

Default and preference settings have important effects on how the tools in Chief Architect function. Default settings are file specific, while Preferences are global, taking effect regardless of what file is open.

Defaults and Preferences can be customized to suit your needs and improve your efficiency, so it is recommended that you become familiar with them and learn how you can use them to your advantage.

Default Settings

Default settings determine the initial characteristics of objects when they are first drawn. For example, when you place a base cabinet in a plan, its size, materials, front items, hardware and fill style are determined by settings in the **Base Cabinet Defaults** dialog.

Some defaults affect the structure of your model: for example, Floor, Foundation, Framing, and Wall defaults.

Defaults are file-specific, which means that any changes that you make to the default settings in one plan or layout file will have no effect on other plans or layout files. You can, however, import the defaults settings saved in one plan file into another. See “Importing Default Settings” on page 75.

Default settings are an important aspect of template files, which determine the initial settings of new plan
and layout files and can be used to save you considerable time. See “Template Files” on page 73.

You can access a complete list of the various default settings in the current plan or layout file by selecting **Edit > Default Settings** from the menu.

![Default Settings dialog](image)

- Click the + beside a category to expand it and access the defaults for items related to that category.
- To open the defaults dialog associated with an item in the list, double-click on the line item, or click on the item and then click the **Edit** button.
- General CAD defaults are view-specific and are only available in views where CAD objects can be drawn. See “CAD Defaults Dialog” on page 226.

Many defaults dialogs can also be opened by double-clicking on a parent and/or child toolbar button of a tool affected by the settings in that dialog. For example, you can:

- Double-click the **Cabinet Tools** parent button to open the **Defaults Settings** dialog for Cabinet tools only;
- Double-click the **Base Cabinet** child button to open the **Base Cabinet Defaults** dialog.

A few defaults dialogs, such as **CAD** and **Layer Set Defaults**, do not have a parent or child tool associated with them. You can add optional buttons to your toolbars to quickly access these dialogs. See “To add a button to a toolbar” on page 109.

Most items have one defaults dialog that affects all objects of that type. Manual Dimensions and the Text, Callouts, and Markers tools, on the other hand, support multiple Saved Defaults. If you double-click one of these line items, a **Saved Defaults** dialog will open, allowing you to access and manage all defaults associated with that item. See “Multiple Saved Defaults” on page 67.

Some objects have similar defaults dialogs which can be selected and edited as a group. Multiple Saved Defaults, Camera Defaults, Door Defaults, the Base, Wall, and Full Height Cabinet Defaults, and the Floor Defaults are examples. See “Shift and Ctrl Select” on page 170.

Preferences

Preference settings influence the overall environment of the program, such as what the interface looks like, how the tools are accessed, and the basic rules governing how objects are drawn and edited. See “Preferences Dialog” on page 79.

Unlike default settings, Preferences are global, which means that any changes that you make to them will take effect in all plan and layout files.

To access the **Preferences** dialog, select **Edit > Preferences** from the menu.

Region and Language Settings

There are a few formatting considerations in Chief Architect that are set based on your operating system’s Region settings:

- **Units of measurement** - When you first install and launch the program, your template plan and layout files will be set to use either Imperial or metric units, depending on your operating system settings. See “New Plans Panel” on page 90.
- **Currency** - The currency associated with your Region settings will be used in the Materials List, Components dialogs, and Loan Calculator. See
"Materials Lists" on page 943 and "Loan Calculator" on page 63.

- **Decimal mark format** - Depending on your operating system settings, either a dot or a comma will be used in dimension lines, dialogs, and anywhere the program can display a numeric value using decimals.

- **Thousands separator** - Depending on your operating system settings, a comma, dot, or non-breaking space may be specified as a thousands separator, or digit grouping symbol, for dimension lines.

- **Date format** - The format of date text macros and Sun Angle date labels vary depending on your operating system settings. See “Text Macros” on page 400 and “Sun Angles” on page 824.

Dynamic Defaults

Dynamic defaults are values that can be changed globally throughout the current plan or layout file. They are available for a variety of objects, including dimension lines, walls, doors, cabinets and rooms.

- If you change a dynamic default value in a defaults dialog, all objects of that type that are set to use the default will update automatically to use the new value.

- Any objects of that type that are not using the default value because of editing will not be affected if you change the default.

Dynamic defaults are presented in several different ways in specification dialogs. Some settings have a **Use Default** radio button, or a “Use Default” option in a drop-down list.

Dynamic default check boxes have a **Default** checkbox. Uncheck this box to make the setting not dynamic, or check it again to restore the dynamic behavior.

Set as Default

The **Set as Default** edit button allows you to apply the settings in a selected object’s specification dialog to the defaults for that type of object.

Set as Default affects the attributes of both subsequently created objects as well as any objects using Dynamic Defaults. See “Dynamic Defaults” on page 67.

Multiple Saved Defaults

While most objects in Chief Architect have one defaults dialog that controls how all objects of that type are created in a given plan, Manual Dimensions, Revision Clouds, Rich Text, Dynamic default text fields have an Active Defaults icon in the value field.

- Click on the Active Defaults icon to remove the red check mark and prevent the value from being dynamic.

- Type a value into the text field. The red check mark is removed from the Active Defaults icon and the setting is no longer dynamic.

- Click on the Defaults icon to restore the red check mark and make the setting dynamic again.

Materials are another example of an attribute that uses Dynamic Defaults. See “Material Defaults” on page 758.

Attributes of already existing objects that are not Dynamic Defaults are not affected when **Set as Default** is used, so it should not be viewed as an alternative to setting up defaults before you begin drawing. See “Default Settings” on page 65.

The **Set as Default** edit tool is not available for Terrain Paths, including Sidewalks, Streams, Terrain Walls and Terrain Curbs. See “Terrain Wall and Curb Tools” on page 908.

Text, Callouts, Markers, and Arrows can each have Multiple Saved Defaults rather than just one. This lets you set these tools up for more than one requirement or task in advance, and then simply
specify which default you want to use as the Active Default at any given time. See “Default Sets” on page 71.

Structural Member Reporting and Ray Trace Options also have Multiple Saved Defaults. Rather than affect drawing tools, though, these affect the information in Materials Lists and the properties of ray trace views.

Using Multiple Saved Defaults

There are a couple of different approaches to using Multiple Saved Defaults:

- They can be created for specific tasks. For example, dimension defaults for a site plan can be placed on the “Dimensions, Plot Plan” layer and use a large font size and a format using feet, yards, or meters, while the defaults for cabinet elevations can use the “Dimensions, Kitchen and Bath” layer, a smaller font, and inches or millimeters.
- They can be set up for use at particular scales, such as 1/4” = 1’ and 1/2” = 1’, or 1 mm = 50 mm and 1 mm = 100 mm.
- You can also use a combination of these two strategies.

A selection of Multiple Saved Defaults are included in the template plans installed with Chief Architect to serve as examples of these two approaches. You can use these sets as they are, customize them, or create new ones.

Saved Defaults are all view-specific. This means that if a Saved Default is active in a particular saved view, and you then save your work and close the view, that Saved Default will be active the next time you open the view - regardless of what is in use in other views. See “Saved Views” on page 119.

The settings associated with Saved Defaults are static, which means that objects created while one Saved Default is active are not affected when you switch to another Active Default. See “Dynamic Defaults” on page 67.

Manually-drawn dimension lines are not affected when you switch Active Defaults; however, they do use dynamic defaults inherited from a Saved Dimension Defaults and will be affected if that Saved Dimension Defaults is edited. See “Dimension Defaults Dialog” on page 343.

Text Styles

In addition to multiple saved defaults, objects that include text within them as well as object labels can be assigned a Text Style, which includes properties like font, color and size. See “Text Styles” on page 398.

Objects that have text within them are not affected if you assign a new Text Style to their Active Defaults. If a given Text Style is modified, however, any objects that it is assigned to will be affected.

Saved Defaults Dialog

Tools that have Multiple Saved Defaults have a Saved Defaults dialog which lets you:

- Make changes to existing Saved Defaults.
- Add and remove Saved Defaults from the list of those available in the current file.
- Specify which Saved Default is active.

To open the Saved Defaults dialog for any annotation object type, double-click on its name in the Default Settings dialog. See “Default Settings” on page 65.

If Edit Active Default on Double-Click is selected in the Preferences dialog, you can also access the Saved Defaults dialog by double-clicking on the toolbar button for one of these object types. See “General Panel” on page 85.
Active Defaults Dialog

You can view and modify the defaults that are currently active by selecting **Tools > Active Defaults** to open the **Active Defaults** dialog.

The name of the currently active view is stated in the dialog’s title bar. In an unsaved plan view, the floor level will be stated instead. See “View Windows” on page 119.

The settings in this dialog are also found on the **SELECTED DEFAULTS** panel of the specification dialog for most view types in the program, as well as in the Camera Defaults dialogs. See “View Windows” on page 119 and “Camera Defaults Dialogs” on page 781.

Saved Defaults can also be managed in the Default Sets dialog, and can be grouped into Default Sets for specific drawing tasks. See “Default Sets” on page 71.

Note: if you click Cancel or press Esc in the Saved Defaults dialog after editing, renaming, or copying a Saved Default, your changes will not be retained.
The **Default Set** that you are **Currently Using** is selected in the drop-down list.

- Select a different Default Set from the drop-down list to load its settings below and activate it when you click **OK**.
- Click the **Edit Default Set** button to open the **Default Sets** dialog. See “Default Sets Dialog” on page 71.
- Click the Rename Default Set button to give the selected set a different name.

If “Active Defaults” is selected from the **Currently Using** drop-down list, it means that the Selected Defaults, below, are not associated with a saved Default Set.

- When “Active Defaults” is selected, you can click the **Save New Default Set** button to create a new Default Set based on the current Active Defaults.

- Click the **Add** button beside any Saved Default to create a new Saved Default for the object type based on the one that is currently selected. Type a short, descriptive name for the new Saved Default, then modify its settings as needed.
- Click the **Edit** button to open the defaults dialog for the object type and make any changes you may need to the selected Saved Default.
- Click the **Rename** button to type a new name for the saved default that is currently selected.
- Click the **Delete** button to remove the selected Saved Default from the list of those available in the plan or layout. Note that if a Saved Default is either in use or assigned to an Default Set, it cannot be deleted.

Layers -

- Select the **Current CAD Layer** from the drop-down list or click the **Define** button to open the **Layer Display Options** dialog. Not available for camera views or overviews. See “Current CAD Layer” on page 250.
- Select a **Layer Set** from the drop-down list or click the **Define** button to open the **Layer Display Options** dialog. See “Layer Sets” on page 147.
Default Sets

Default Sets are a fast, easy way to switch from one collection of Saved Defaults created for one particular purpose to another collection set up for a different task.

Default Sets include defaults for: manually-drawn Dimensions, Text, Revision Clouds, Callouts, Markers, Arrows, the Current CAD Layer, as well as the Active Layer Set. Multiple Default Sets can be saved in any plan, each for a specific purpose, and you can quickly switch from one set to another as you work.

Many of the objects included in Default Sets can be assigned a Text Style.

Saved Defaults are all view-specific; so by extension, Default Sets are as well. This means that if an Default Set is active in a particular saved view, and you then Save your work and close the view, that Set will be active the next time you open the view - regardless of what is in use in other views.

Using Default Sets

As with Saved Defaults, there are a couple of approaches to using Default Sets:

- They can be created for specific tasks.
- They can be set up for use at particular scales.
- You can also use a combination of these two strategies.

A selection of Default Sets are included in the template plans installed with Chief Architect to serve as examples of these two approaches. You can use these sets as they are, customize them, or create new Sets.

Activating a Default Set

A Default Set can be selected in any view that supports Dimensions, CAD, and Text: plan view, cross section/elevation views, CAD Details, and Wall Details.

Activating a Default Set really means activating all of the Saved Defaults and layer settings associated with it. There are three ways to activate an Default Set:

- Select a set from the Active Default Set Control drop-down, which you can add to your toolbars. See “To add a button to a toolbar” on page 109.
- Select an Default Set from the Currently Using drop-down list in the Active Defaults dialog. See “Active Defaults Dialog” on page 69.
- Open a saved view in which the Default Set was previously active.

Using Active Defaults

If a particular Default Set is active and you switch one of its Saved Defaults to a different Saved Default, the Default Set will no longer be considered active and “Using Active Defaults” will display in the Active Default Set Control drop-down. This is not a problem: it simply means that you aren’t using all of the defaults that you may have set up for a specific purpose.

You can view and modify the currently active Saved Defaults in the Active Defaults dialog. You can also save the current defaults as an Default Set for future use, if you wish. See “Active Defaults Dialog” on page 69.

Creating Default Sets

There are two ways to create a new Default Set:

- Click either the New or the Copy button in the Default Sets dialog.
- Click the Save Current Active Defaults button in the Active Defaults dialog.

Default Sets Dialog

The Default Sets dialog lists the Default Sets available in the current plan file and lets you add, remove, edit, and save them. There are a number of ways to access this dialog:

- Select Edit> Default Settings from the menu. Select “Default Sets” and click the Edit button. See “Default Settings” on page 65.
A list of the Default Sets available in the current plan or layout display here.

- Click on an item in the list to select it.
- The selected set is highlighted and displays in the Name field to the right.
- When a set is selected, its name and other attributes can be edited.
- Click the New button below the list to a new Default Set. Type a short, descriptive name for the new set in the Name field to the right.
- Click the Copy button below the list to create a copy of the currently selected Default Set. Type a short, descriptive name for the new set in the Name field to the right.
- Click the Delete button to delete the selected Default Set from the list and the current file.

The Name of the selected Default Set displays here. You can change its name by typing in the text field. Names are case-insensitive and must be unique.

Information about the Selected Defaults associated with the selected Default Set displays and can be modified here.

- For each annotation object type, select a Saved Default from the drop-down list.
- Click the Add button to create a new Saved Default for the object type based on the currently selected Saved Default. Type a short, descriptive name for the new Saved Default, then modify its settings as needed.
- Click the Edit button to open the defaults dialog for the object type and make any changes you may need to the selected Saved Default.
- Click the Rename button to assign a different name to the selected Saved Default.
- Click the Delete button to remove the selected saved default from the list of those available in the plan or layout.

Information about the Selected Defaults associated with the selected Default Set displays and can be modified here.

- Select a Layer Set from the drop-down list. See “Layer Sets” on page 147.
- When “Use Active Layer Set” is selected, the layer set in use in the current view does not change when the Selected Default Set is made active. This option is the default for installed Default Sets.
- Click the Define button to open the Layer Display Options dialog. Not available when “Use Active Layer Set” is selected. See “Layer Display Options Dialog” on page 144.
- Select the Current CAD Layer from the drop-down list or click the Define button to open the Layer Display Options dialog. See “Current CAD Layer” on page 229.
• Click the **Define** button to open the **Layer Display Options** dialog.

Exporting and Importing Default Sets

Default Sets can be exported out of a plan or layout file and then imported into other plans or layouts.

When you export Default Sets, all of the Multiple Saved Defaults in the file are exported, regardless of whether they are used by an Default Set. See “Multiple Saved Defaults” on page 67.

Exporting Default Sets

To export a plan or layout’s Default Sets, open that file and then select **File> Export> Export Default Sets**. The **Export Default Sets** dialog is a typical **Save As** dialog that lets you specify the exported file’s name and its saved location on your computer. See “Exporting Files” on page 44.

Exported Default Sets files use the `.cadefs` file format. Information exported in `.cadefs` files includes:

- All Default Sets saved in the current file.
- All Saved Defaults for Manual Dimensions, Text, Rich Text, Callouts, Markers, and Arrows.
- All Layer Sets that are associated with an Default Set. Layer Sets not associated with an Default Set are not exported.

Import Default Sets Dialog

To import Default Sets into a plan or layout, open that file and then select **File> Import> Import Default Sets**. After you select a file to import, the **Import Default Sets** dialog opens.

1. The current **File** pathname displays here. Click the **Browse** button and browse to the location of a different `.cadefs` file you wish to import. If the pathname is not that of a valid `.cadefs` file, this text will display in red.

2. Specify how **Imported Defaults** - including Default Sets and Layer Sets - are handled.

3. Check **Overwrite Existing Defaults** to delete all Saved Defaults for Text, Rich Text, Callouts, Markers, Arrows, and Dimensions in the file and replace them with imported Saved Defaults. When this is unchecked, which it is by default, existing defaults are retained along with those that are imported. See “Multiple Saved Defaults” on page 67.

4. Specify how Saved Defaults with **Duplicate Names** are handled.

5. Choose **Replace Existing Defaults** to replace any Saved Defaults already present in the plan.

6. Choose **Rename Duplicate Defaults** to retain existing Saved Defaults and rename imported defaults by appending them with a “2”. If subsequent Saved Defaults with duplicate names are imported, the number will increase.

If a specific Layer Set is associated with an Default Set, it will not be imported unless it does not exist in the destination file.

Template Files

When Chief Architect opens a new, blank plan or layout file, the new file is actually a copy of a template using either metric or U.S. units of measurement and predefined default settings, layer settings, wall definitions, page setup information, and more.
Once you are familiar with the default settings in Chief Architect, you can create template files to fit your needs, store them in your Templates directory, and even specify them as the defaults for new files. If you make changes to a default template file, all subsequently created plans or layouts will use the new default settings.

If a template file is not specified or cannot be found, the program starts new plans using a set of system defined defaults. System defaults are very basic and unlikely to meet your drawing needs, so you should always specify a template plan and layout.

Using Template Files

A template is used every time you create a new plan or layout file. You can specify which template files are used in the Preferences dialog.

To set a template as your default

1. Select Edit> Preferences and go to the NEW PLANS panel of the Preferences dialog. See “New Plans Panel” on page 90.
2. Select U.S. Units or Metric Units.
3. Click the Browse button for either the plan or layout template.
4. Select a template file from the Templates directory or navigate to a different location and select a template from there.

To create a new plan or layout file using a template other than the current preference, choose File> Templates> New Plan from Template or New Layout from Template. The program browses to the Templates directory in your Chief Architect X12 Data folder. See “Chief Architect Data” on page 40.

Note: When creating a new plan or layout using a template, be sure to select the appropriate units of measurement. The Imperial or metric units used in the new file are the same as those in the template used to create it.

Save as Template

You can create your own plan and layout templates using the Save as Template tool.

Template files can be created from scratch; however, if you have a plan or layout with settings and data that you would like to use in future projects, you can use the Save as Default tool to purge unnecessary data and save a copy in your Templates directory.

File specific settings to customize in a plan template include:

- Default Settings. See “Default Settings” on page 65.
- Default Sets. See “Default Sets” on page 71.
- Layers, layer sets, and layer settings. See “Layers” on page 142.
- Saved Plan Views. See “Plan Views” on page 120.
- Wall Type Definitions. See “Wall Type Definitions Dialog” on page 294.
- Detail drawings, notes, and schedules in CAD Detail views. See “CAD Details” on page 255.
- Custom text macros. See “Text Macros” on page 400.
- If anything is drawn in the template plan, it will be present in all new plans created with that template.

To create a plan template

1. Open the plan file with settings and data that you would like to use as a basis for a template.
2. Select File> Templates> Save As Template.
3. In the Save as Template dialog for plans:

 - Check the box beside each category of object or data that you want to delete from the current file.
• Unless you have a specific reason to retain a particular category, it is best to delete them all.
• Check **Set Template as Default for Imperial/Metric Plans** to use the new template as your default template whenever you select **File> New Plan**. Leave this unchecked if you prefer to access this template by selecting **File> New Plan From Template**. See “Units of Measurement” on page 42.

4. In the **Save Plan File** dialog, give the template file a short, descriptive name and save it in your Templates directory.

5. When you click **Save**, the original plan file remains open, and a new plan with the specified name and save location is created.

The primary difference between plan and layout files is that there are fewer default settings in layouts. In addition, most layout templates include a border and title block whereas plan templates are often blank.

File specific settings to customize in a layout template include:

• **Default Settings**. See “Default Settings” on page 65.

• Layers and layer settings. See “Layers” on page 142.

• A title block and border. See “CAD and Text in Layout” on page 963.

• General notes and other generic text used in multiple projects.

• Layout Page Information. See “Layout Page Information” on page 980.

• Drawing Sheet Setup settings. See “Drawing Sheet Setup Dialog” on page 986.

To create a layout template

1. Open the layout file with settings and data that you would like to use as a basis for a template.

2. Select **File> Templates> Save As Template**.

Importing Default Settings

Default settings are file-specific; however, you can transfer many important default settings from one plan file to another by selecting **File> Import> Import Default Settings**.
Not all defaults settings saved in a plan can be imported from one file to another. For example, Electrical, CAD, Floor, Framing, Foundation, and General Plan Defaults are not imported.

- Defaults associated with Default Sets are not imported but can be exported and imported separately. See “Exporting and Importing Default Sets” on page 73.
- Saved plan views can also be separately imported. See “Importing Saved Plan Views” on page 121.
- Layer Sets can be separately exported and imported, as well. See “Exporting and Importing Layer Sets” on page 152.
- Wall Type Definitions can also be exported and imported. See “Exporting and Importing Wall Types” on page 297.

If the source file that you import from is from an older program version, it may be missing settings available in Version X12. If a default setting is missing, the system default will be imported instead. For this reason, it is best to review defaults before importing them and to avoid importing any defaults that are not actually present in the source file. See “Template Files” on page 73.

Bear in mind that some default settings are dynamic and, if changed, can affect existing objects in the plan. See “Dynamic Defaults” on page 67.

To import default settings

1. Open the plan that you would like to import default settings into.

2. Select File> Import> Import Default Settings.

3. In the Open Plan File dialog, browse to and select the plan file that you would like to import defaults from and click OK. See “Importing Files” on page 48.

4. In the Import Default Settings dialog:
 - Use the scroll bar on the right to scroll through the list.
 - Check the box beside any defaults that you want to import.
 - Click the Select All button to place checks in the boxes beside all defaults in the list, or click Clear All to clear all of the check boxes.
 - Multiple line items can be selected by Shift+ or Ctrl+clicking their names. Then check or uncheck the box beside any selected item to affect the entire selection set. See “Shift and Ctrl Select” on page 170.
 - Click OK to close the dialog and import the selected defaults.

Reset to Defaults

Select Edit> Reset to Defaults to open the Reset to Defaults dialog. This dialog allows you to reset critical structural settings in the current plan to the default values.
General Plan Defaults Dialog

The settings in the **General Plan Defaults** dialog control basic features of the Chief Architect environment in plan files. Just as with other default settings, they are file specific, which means that they can be set differently in individual plan files. To open this dialog, select **Edit > Default Settings**, select **Plan**, and click the **Edit** button, or double-click the **Select Objects** button.

The **General Layout Defaults** dialog is similar to the **General Plan Defaults** dialog, but has fewer settings and is available in layout files only. Its settings, too, are file specific.

1. The settings can be cleared for the **current floor** or for **All Floors**.
2. Specify which settings you want to reset to **Default**.
 - Check **Floor and Ceiling Heights** to reset the default values as specified in the **Floor Defaults** dialog. Floor and ceiling heights for any room can be changed in the **Room Specification** dialog. See “Floor Defaults Dialog” on page 537.
 - **Roof Groups** - You can specify a room’s Roof Group in the **Room Specification** dialog. This builds the roof over this room and others in the same Roof Group independently from the roof built over other parts of the plan. Check to reset to the default Roof Group, zero. See “Roof Groups” on page 584.
 - When **Roof Directives** are reset, all items on the ROOF panel of the Wall Specification dialog are reset to the default. See “Roof Directives in Walls” on page 584.
 - **Wall Top Heights** and **Wall Bottom Heights** - Wall shape and height can be edited in 3D views. Check to reset wall shapes and heights. See “Editing Walls” on page 280.
 - **Overridden Dimension Text (Entire Plan)** - You can suppress the dimension value associated with a dimension segment and replace it with text of your own. Check this to restore any suppressed dimension values and remove the replacement text. See “Add Additional Text” on page 365.
General Settings - Specify the default functionality for a variety of general behaviors in the program.

- Check Warn Before Delete Selected Item if you want the program to require confirmation before an item is deleted.
- Check Ignore Casing for Opening Resize to allow wall openings such as doors to be positioned against an intersecting interior wall. Clear this box retain sufficient space for the opening’s specified interior trim width. Not available in layout files.
- Check Allow Editing in Select Home Designer Products to allow limited editing of the current file in compatible Home Designer programs. See “Compatibility with Previous Versions” on page 39.
- Check Show Pitch as Degrees to display the roof pitch in degrees. Not available in layout files.

- The Arrow Key Scroll Distance setting determines how far to scroll in plan view when you press an arrow key. The initial default is 12 inches (300 mm). Not available in layout files. See “Using the Arrow Keys” on page 127.

Specify the Allowed Angles used when Angle Snaps are enabled. See “Angle Snaps” on page 132.

- Select 15 Degrees to enable Angle Snaps in 15° increments.
- Select 7 1/2 Degrees to enable Angle Snaps in 7 1/2° increments.
- Check Additional Angles and enter up to eight custom Allowed Angle values. Click the Number Style button to specify the format used to enter angles in dialogs. See “Dialog Number/Angle Style Dialog” on page 105.

The Snap Grid allows you to snap objects to specific points on-screen as they are moved or resized. See “Grid Snaps” on page 133.
• Check **Use Snap Grid/Units** to enable Grid Snaps.
• Specify the **Snap Unit** you wish to use. The initial default is 1 inch (10 mm).

It may be helpful to temporarily change the Snap Unit when working with large objects such as terrain or small objects such as molding profiles.

• Uncheck **Show Snap Grid** to turn off the display of the Snap Grid, a visual indicator of the location of the snap points.
• Click the **Color** bar to specify the **Snap Grid Color**. See “Color Chooser/Select Color Dialog” on page 160.

• Check **Display as Dots** to display the Snap Grid using dots rather than lines.

4 You can also click **Grid Snaps** toggle button to turn on/off grid snapping or click the **Display Reference Grid** toggle button to turn on/off the grid display.

5 Specify how the **Living Area** label is calculated and whether it displays in plan view. Not available in layout files. See “Living Area” on page 321.
• Select **Main Layer** to have the Living Area calculation measure from the walls’ Main Layer.
• Select **Surface** to have the Living Area calculation measure from the walls’ exterior surface.
• Uncheck **Show “Living Area”** to disable the display of the Living Area label.

Preferences Dialog

The settings in the **Preferences** dialog are global: they apply to all plan and layout files and are preserved between sessions. To access this dialog, select **Edit > Preferences** in Windows® or **Chief Architect > Preferences** in macOS™. Unlike most dialogs in the program, it is not necessary to have a plan or layout file open to access the **Preferences** dialog.

The **Preferences** dialog’s list of panels is organized in a tree structure with categories and subcategories. A white arrow next to a category indicates that it has subcategories. Click the arrow to make the subcategories visible or to hide them.

Preferences dialog panels:
- Appearance Panel
- Colors Panel
- Font Panel
- Library Browser Panel
- Text Panel
- General Panel
- File Management Panel
- Folders Panel
- Ruby Panel
- New Plans Panel
- Unit Conversions Panel
- Time Tracker Panel
- Architectural Panel
- CAD Panel
- Edit Panel
- Behaviors Panel
- Snap Properties Panel
- Materials List Panel
- Report Style Panel
- Master List Panel
- Render Panel
- Ray Trace Panel
- Video Card Status Panel
- Reset Options Panel
Check **Contextual Menus** to activate contextual menus that display when you right-click. See “Contextual Menus” on page 30.

- Check **Click Twice to Display** to require two right-clicks on an object before the contextual menu displays. This allows the first right-click to be used for object selection. See “Selecting Objects” on page 167.

In 3D views, the two clicks must be on the same object surface in order for the contextual menu to display: Clicking on two different surfaces of the same object is treated like two single-clicks.

Check **Status Bar** to activate the Status Bar at the bottom of the main program window. See “The Status Bar” on page 33.

- Check **Show Screen Redraw Time** to display the number of seconds it takes to redraw the current view.

- Check **Show Coordinates** to display the coordinates of your cursor at all times on the right side of the Status Bar.

The coordinates’ number style is controlled in the **Number Style/Angle Style** dialog. See “Dialog Number/Angle Style Dialog” on page 105.

 Specify the on-screen display of **Line Weights**. See “Line Weights” on page 992.

- Check **Show Line Weights** to represent line weights on-screen. Depending on your zoom factor and your monitor’s resolution, lines may appear to be wider on screen than when they are printed. Zooming closer may reflect a more accurate idea of the actual line width.

- Specify the **Minimum Display Weight**, in Pixels. This is the lowest line weight possible on screen, regardless of how far you zoom out. A Minimum Display Weight of 0 is the same as 1.
This setting is ignored when printing or when Print Preview is enabled.

4. **Display** -

- **Images and Pictures** - Check **Display in Color when Possible** to display pictures and images in color even when Color is toggled off. Does not affect the display of images in any 3D views aside from Vector Views. See “Color On/Off” on page 154.

- **Menus** - Check **Show Icons** to display tool icons next to items in the menus.

- **Color Off is** - Specify whether views appear in **Black and White** or **Grayscale** when color is toggled off. Does not apply to any 3D views aside from Vector Views. See “Vector View” on page 829.

5. Specify whether **Dialog Previews** use the **Standard** or **Vector View Rendering** Technique by default. See “Dialog Preview Panes” on page 32.

6. Specify how **Toolbars** present child tools when a parent button is clicked.

- Choose **Parent-Child** to display child tools as buttons at the end of the toolbar where the parent button resides.

- Choose **Drop Down** to display child tools when the drop-down arrow to the right of the parent button is clicked.

- Uncheck **Scale Toolbar Icons for High DPI** to prevent toolbar icons from becoming larger on systems running Windows 7 or 8 and using high DPI resolution. When checked, toolbar buttons will increase in size when high DPI is used. Not available in the Mac version of the software.

- Specify the desired toolbar **Button Size**, in pixels. Increasing this value will proportionally resize the text in the drop-down toolbars, as well. See “Toolbar Button Size” on page 109.

7. Uncheck **Side Window Drag Docking** to prevent undocked side windows from docking when moved using the mouse. A side window can still be docked to its last docked location by double-clicking its title bar. See “View and Side Windows” on page 28.

- **Top/Bottom Docking** - Check the box beside a side window’s name to allow it to dock on the top and bottom edges of the program window. Does not affect docking to the left and right sides.

8. Specify the Minimum Display Size of **Dimensions** and **Labels**, in pixels. This is the on-screen size and does not affect printed or exported output. To use the printed scale, set these values to 0 or turn on **Print Preview**.

- Dimension sizes are set in the **Dimension Defaults** dialog. See “Dimension Defaults Dialog” on page 343.

- Printed label sizes are set in the **Schedule Defaults** dialogs. See “Labels Panel” on page 515.
Colors Panel

1. Specify the **View Colors** for a variety of different elements in the software’s interface by clicking a color bar to open the **Select Color** dialog. See “Color Chooser/Select Color Dialog” on page 160.

 - Specify the **Background Color** for plan view and CAD Details. The background colors for 3D views can be set in their defaults and specification dialogs. See “Backdrop Panel” on page 809.
 - Specify the **Layout Background** color, which is the background color in layout files. See “Layout” on page 961.
 - Specify the **Selection Line** color, which is the color of the lines that represent object(s) and their edit handles when they are selected.

 2. Specify the **Handle Fill** color, which is the fill color of the edit handles for selected objects.

 3. Specify the **Selected Edge Handle Fill** color, which is the fill color of the edit handle on a selected object’s Selected Edge. See “Selected Edge” on page 168.

 4. Specify the **Selection Fill** color, which is the fill color for selected objects. Note that depending on the fill assigned to a selected object, its Selection Fill color may vary.

 Note: If the Selection Line and Handle Fill Colors are similar, it may be difficult to distinguish between active and inactive CAD Points.
• Specify the **Editing Transparency**, which is the degree to which the selection fill and edit handles are transparent. The default value is 20%.

2 Specify the **Interface Colors** that you want to use in Chief Architect by selecting an option from the drop-down list:

- Select “System” to use your operating system’s color settings.
- In the Mac version of the software, select “Force Light” to use Light Mode in Chief Architect regardless of the system settings, or “Force Dark” to use Dark Mode in Chief Architect regardless of the system settings.
- Select “Custom Color Theme” to apply a color theme to the program interface and select its characteristics below.

The table and settings that follow are only available when “Custom Color Theme” is selected, above:

- The table lists all available Color Themes. Click on a line item to select and activate that color theme.
- Locked themes are installed with the program and cannot be modified or deleted.
- To create an unlocked theme, select any theme in the list and click the **Copy** button.
- Select an unlocked theme and click the **Rename** button to specify a new name.
- Select an unlocked theme and click the **Delete** button to remove the theme from the list.
- When an unlocked theme is selected, the settings below the table are enabled, allowing you to specify the colors for a variety of elements in the program interface.
- When **Toolbar Button/Image Backgrounds** is unchecked, toolbar buttons and images in dialogs use the Dialog/Toolbar Background color.

The program interface will update as you select different color themes or edit the selected unlocked theme’s color settings.

Font Panel

The **Font** panel controls the font used by dimensions in legacy plans when they are opened in Chief Architect X12, as well as the font used in the Materials List.

1 Specify the **Fonts** for use in Legacy Dimension Conversion and Materials Lists.

- Select **Legacy Dimension Conversion** from the list to specify the font used by dimensions in legacy files from Versions 10 to X3. See “Dimensions” on page 341.

- Select **Materials Lists** from the list to specify the font used by Materials Lists and the Master List. See “Materials Lists” on page 943.

2 Specify **Fonts** for use in Legacy Dimension Conversion and Materials Lists.

- Select **Arial** from the drop-down list for use in Legacy Dimension Conversion and Materials Lists.

 ![Legacy Dimension Conversion settings only affect plans from previous versions when they are opened in Chief Architect X12. Set these values to the default font that you used in previous versions before opening legacy files.](image)

- Select a **Font** from the drop-down list for the use selected to the left. See “Fonts and Alphabets” on page 373.
• Select one or more font styles to apply to the selected use: **Bold**, **Italic**, **Underline**, and/or **Strikeout**.

Sample text displays the selected font and font style.

For information about text in Chief Architect X12 files, see “Text, Callouts, and Markers” on page 371.

Library Browser Panel

The **LIBRARY BROWSER** panel controls the appearance of the Library Browser window. See “The Library Browser” on page 691.

1. **View** options control the display of the main sections of the Library Browser.
 - Check **Hide Selection Pane** to hide the pane that displays objects in a selected catalog or folder.
 - Check **Hide Preview Pane** to hide the pane that shows a preview of a selected object.

2. **Selection Pane View** options control how objects in the Selection Pane are presented.
 - Select **Tiled to Fit Window** to display all items in a catalog or folder. If there are many items, their previews may be very small to fit in the pane.
 - Select **Scrollable List** to display all items in the selected catalog or folder in a scrollable list. If there are many objects, the list may be long but each object preview will be sized to fit the pane.
 - Check **Show Names in Selection Pane** to display the names of the objects in the Selection Pane.

3. **Preview Pane/Selection Pane Layout** - Select a radio button to change the appearance of the Library Browser.
 - **Vertical** - Displayed sections of the Library Browser are divided vertically.
 - **Horizontal** - Displayed sections are divided horizontally.
 - **Stacked** - Displayed sections are divided both horizontally and vertically.

Specify whether selected library items in the **Preview Pane** are displayed using the **Standard** or **Vector View** Rendering Technique. See “Rendering Techniques” on page 828.

To restore the original size and position of the Library Browser and other side windows, click the **Restore Side Windows** button on the Reset Options Panel.

Text Panel

The settings on the **TEXT** panel control some behaviors affecting text objects. See “Text, Callouts, and Markers” on page 371.
Text Specification Enter Key -

• Uncheck Create New Line to close the Text and Rich Text Specification dialogs when the Enter key is pressed. When this is checked, a new line of text is created when Enter is pressed and the dialog remains open.

• Default Designer Information - Click the Define button to enter designer information that applies to all plans drawn in Chief Architect. This default may be overridden for individual plans. See “Designer Information” on page 57.

Specify how the Leader Lines tool functions. See “The Text Tools” on page 374.

• Specify the Number of Segments that text Leader Lines have. Changes to this setting affect subsequently drawn Leader Lines: existing lines are not affected.

• Uncheck Create Rich Text to create Text objects when the Leader Line tool is used. When checked, Rich Text is created.

General Panel

1 When Undo is checked, the Undo and Redo commands can be used. See “Undo and Redo” on page 223.

• Maximum Undos - Specify how many levels of Undo and Redo you want available, from 1 to 100. Undo files are saved in the Undo Directory.
When **Check For Program Updates** is checked, Chief Architect will check for updates when the program is launched.

- By default, Chief Architect checks for program updates once a day when the program is launched. You can specify a different frequency, in days, if you prefer.

When **Show Options at Startup** is checked, the **Startup Options** dialog opens when Chief Architect is launched. See “Startup Options” on page 23.

Troubleshooting -

- Uncheck **Optimize for Multi-Core CPUs** to turn off program optimizations for multi core processors. This box is checked by default and should only be unchecked for technical troubleshooting purposes.

- Uncheck **2D Zoom and Panning Optimizations** to turn off program speed optimizations for zooming and panning in 2D views.

- Check **Record Timing Log** to have the program create an event timing log in the Hidden User Settings Folder for troubleshooting purposes. Unless you are actively troubleshooting program performance, this box should be unchecked.

- Check **Highlight Overridden Dimension Text** to highlight the text in any dimension labels where the actual dimension label has been suppressed. See “Add Additional Text” on page 365.

Additional options are available in the Mac version of the software only:

- When **Mouse Movement Optimizations** is checked, zooming using the mouse scroll wheel is optimized for Mac systems. This box is checked by default and should only be unchecked when troubleshooting issues with the mouse scroll wheel in the Mac version of the software.

- Use the **Mouse Scroll Sensitivity** scroll bar or text field to control how sensitive the mouse scroll wheel is when zooming using the mouse scroll wheel in the Mac version of the software.

Uncheck **Edit Active Default on Double-Click** to open the **Saved Defaults** dialog when you double-click the toolbar button associated with a drawing tool that has multiple saved defaults. When this box is checked, the defaults dialog for the currently active saved default opens. See “Multiple Saved Defaults” on page 67.

Specify when the program should **Save Dialog Size and Position**: **Always**, **Per Session**, or **Never**. See “Dialog Size and Position” on page 32.

- Check **Open Dialogs to the Last Panel Visited** to open paneled dialogs to the last panel that you accessed during the current program session. When unchecked, dialogs always open to the first panel. See “Dialogs” on page 30.

Specify how window sizes in **Room Planner Imports** are measured. See “Import Room Planner File” on page 881.

- Check **Measure Windows from Inside of Frame** to measure window heights and widths from the inside of the frame. When unchecked, window sizes are measured from the outside of the window frame, as they are in the **Window Specification** dialog in Chief Architect. See “General Panel” on page 438.

File Management Panel

The settings on the **File Management** panel let you modify functions related to the program’s plan and layout file management.
Check **Auto Save**, then enter a value greater than zero in the text field to specify the frequency in minutes that Auto Save files are created. Auto Save files are stored in the Archive folder. See “Auto Save Files” on page 46.

Even with Auto Save active, you should frequently save your work to the hard drive by selecting File> Save.

File Locking - Choose whether or not to lock `.plan` and `.layout` files when they are open. File Locking prevents another program or copy of Chief Architect software from opening and modifying the same file at the same time and is recommended in nearly all circumstances.

- Select **Use File Locking** to lock files.
- Select **Disable File Locking** to disable this feature.

Specify the maximum size and location of the **Recent File List**.

- Specify the maximum number of recently opened files to list in the **Startup Options** dialog and at File> Open Recent Files. You can open any of the files in this list by selecting it, making it a quick way to access your most recent work.

- Uncheck **Show in Submenu** to display the Recent File List at the bottom of the File menu rather than in a submenu.

Thumbnail Images to automatically create thumbnail images of files that display when opening or searching for saved files. If this option is disabled, you can still create thumbnails manually. See “Thumbnail Images” on page 45.

- Select either **Small** or **Large** thumbnails. Large thumbnails provide a higher quality image but result in larger file sizes.

Select an **Auto Archive Files** option. Every time a file is saved, the current archive file is overwritten. See “Archive Files” on page 45.

- Select **Hourly** to save and append archive files based on an hourly format.
- Select **Daily** to save and append archive files based on a daily format.
- Select **Previous Save** to archive only the most recently saved file, unappended.
6 Uncheck **Auto Archive Warning** to prevent the program from prompting you to manage archive files. When checked, you will be reminded to manage the current file’s archives when they reach the number specified below.

- Enter the **Maximum Files**, which is the number of files that must be in a file’s Archive directory before the Manage Archives warning will display. See “Manage Archives” on page 46.

7 When **Copy Externally Referenced Material Files to My Data Folder** is checked, the program automatically makes a copy of the material texture and map files associated with any custom materials that you create in your Chief Architect X12 Data folder. This can help prevent these files from becoming lost if the originals are deleted. See “About Materials” on page 758 and “Chief Architect Data” on page 40.

8 Click the **Associate Files With This Program** button to direct your computer’s operating system to associate all .plan, .layout, .calib, and .calibz files with Chief Architect X12. This button will not be active if plan, layout, and library files are already associated with this program and version. See “File Association” on page 40.

Folders Panel

Chief Architect stores many support files in various folders on your computer. The default locations of these directories are listed and can be redefined on the **FOLDERS panel** if necessary.

You do not need to change default locations under normal circumstances, but sometimes it may be preferable to locate certain files in another location.

- **Important user-specific information** is stored in the **Chief Architect X12 Data** folder, which is located in your Documents directory by default. See “Chief Architect Data” on page 40. If you specify a new location, any custom toolbars or other settings that you may have will not be copied to the new location: you can do this yourself if you wish.

- **Make sure that the location you specify is accessible and has adequate space for the files in this folder.** See “Data Folder Name and Location” on page 41.

- **The User Library Folder** contains custom library objects saved in the User Catalog in the Library Browser. When **Keep User Library and Referenced Files in Data Folder** is checked, this folder’s location will update if you specify a new location for the Data folder, above. When this is unchecked, this folder will remain in the location
specified below. If you specify a new location, the program will automatically copy your existing User Library content as well as your Backdrops, Images, Patterns, and Textures folders to the new location. See “The User Catalog” on page 697.

- By default, **Temporary** files and **Undo** files are stored in the same folder. If you wish to use a different folder, you must specify a directory on a hard drive with sufficient space to hold these files. See “Undo and Redo” on page 223.

- Chief Architect will not let you save your work in the Temporary or Undo folder, or open files saved in either location.

- All library content aside from your User Catalog is stored in the **System Library Database** Folder. By default, this folder is created in the directory intended for shared application data in your operating system (C:\ProgramData in Windows; /Library/Application Support in macOS). If you specify a new location, the program will automatically copy your library content to that location. See “Library Content” on page 696.

If you choose to use a different folder, you must specify a directory on a hard drive with sufficient space to hold these files.

- **All Program Paths** - Click the **Show** button to open the **Program Paths** dialog, where you can find the location of files that may be needed for troubleshooting purposes. See “Program Paths Dialog” on page 1015.

Ruby Panel

The settings on the RUBY panel let you specify the Ruby safe level and the location of any Ruby files you may run in the Ruby Console. See “The Ruby Console” on page 1010.

![Preferences](image)

Select the **Ruby $SAFE level** you wish to use from the drop-down list. A level of 0 is unprotected and could allow a malicious script to be run, while a level of 5 may prevent you from using the Ruby Console productively. Level 2 is chosen by default.

In the **Include in $LOAD_PATH** field, specify the pathname of the directory where your Ruby scripts are stored. Separate multiple locations with a semi-colon.
New Plans Panel

Specify what system of measurement New Plans and Layouts use, as well as what files are used as the templates for new plans and layouts. See “Template Files” on page 73.

- Select the U.S. Units or Metric Units radio button to determine the units used in your new files. Once a new plan or layout is created, its measurement system cannot be changed.

- Plan Template - Displays the template file the program uses when you open a new plan. Click the Browse button to select a new plan template.

- Layout Template - Displays the template file the program uses when you open a new layout file. Click the Browse button to select a new layout template.

Open/Save As Directory - Control how the program behaves when a new plan is opened or an existing plan is saved.

- Use Last Directory refers the program to the directory last used to save or open a plan file.

- Use This Directory refers the program to a particular location specified by you.

- Click the Browse button to define a particular directory when Use This Directory is selected.

Unit Conversions Panel

In many places throughout Chief Architect, you can specify the size of an object with any Length unit listed on the UNIT CONVERSIONS panel. Using the data on this panel, the program will convert your entry into the unit set in the Dialog Number/Angle Style dialog. See “Dialog Number/Angle Style Dialog” on page 105.

These conversions are also useful when you import drawings. When an object is drawn in a Chief Architect plan file, it is always at its true, unscaled size and the drawing is only scaled when you print it. This means that if you import a scaled drawing, you must compensate for its scaling by creating a custom unit of measurement. See “Import Drawing Assistant” on page 883.

You can also create units that measure area and volume, which can be used in custom Materials List formulas and Ruby macros. See “Materials List Formulas” on page 952 and “Ruby in Chief Architect” on page 1001.

The default unit conversions are locked and cannot be changed, but custom conversions can be added to the list and later modified.
A list of available units of measurement displays here. Click on the name of a unit to select it.

- **Add**, **Edit**, **Delete**, or **Copy** the unit conversions. Certain unit conversions are locked and cannot be edited or deleted.

If you click **Add**, **Edit** or **Copy**, the **Add Unit Conversion** dialog displays.

The **Sample** area shows how the unit selected above converts to a selection of similar units. You can use this to verify that any unit conversion you add is correct.

Add Unit Conversion Dialog

1. **Unit Name** - Type a short, descriptive name of the new unit. Names must be unique: the names of units installed with the program cannot be used.

Names can include any characters, as well as spaces. Bear in mind, though, that names of units for measuring length that have numbers in them may be unusable if entered in some dialogs in the program.

Check **Default Unit** to display this new unit in places that present lists of available units. For example, if
you have inches as units and make inches a default, inches appear on the list when you are given a choice of units, such as in the **Import Drawing Assistant**. In other places, such as the Materials List, all units are listed.

Measurement Type specifies what the new unit measures. Select the appropriate radio button: **Length**, **Area**, or **Volume**.

Conversion -

- Specify how much to **Multiply by** your custom unit to convert to the unit you select from the drop-down list. A measurement type must be selected before the list is populated.

A Sample of the Unit Conversion defined above displays here.

To create a new unit of measurement

When importing a drawing with a 1” = 20’ scale, for example, create a unit to convert this scaling to 1” = 1”.

1. Click the **Add** button to open the **Add Unit Conversion** dialog.
2. Type a short, descriptive name like “convert 1:20” in the **Unit Name** field.
 - Because this unit will be used only for scaling conversion, including numbers in its name will not cause any issues.
3. Select **Length** as the **Measurement Type**.
4. Type 20 in the **Multiply by** field.
5. Select “ft” from the drop-down list.
6. Click **OK** to close the dialog.

Time Tracker Panel

- Uncheck **Automatically Start Timer on File Open** if you do not want to begin logging time whenever a file is opened. If this is not checked, you must select **Tools> Time Tracker> Start Time Logging** to begin logging.
- Check **Stop timer if idle for __ minutes**, and enter the number of minutes to stop logging time when a plan has been idle.
- Check **Display Idle Timeout Dialog** to warn when a plan is considered idle.
- Specify the **Default User Name** used in Time Log entries. This field is initially populated by the name that you entered when you registered your software license. See “Designer Information” on page 57.

For more information, see “Time Tracker” on page 57.

Note: You can achieve the same results if you Multiply by 240 to convert to inches.
Architectural Panel

Select the desired default behaviors for selected Walls.

- Check **Show Same Wall Type Handles** to display edit handles on selected walls that draw new walls of the same type when dragged. See “Same Wall Type Edit Handles” on page 284.
- Check **Select Room Before Wall in 3D** to select the room defined by a wall when you click on the wall in 3D views. See “Selecting Rooms” on page 317.
- Check **Turn on Connect Island Rooms When Opening Legacy Plans** to automatically connect “island” rooms an Invisible wall in legacy plans opened in Version X12. See “Room Definition” on page 313.

Opening Appearance - Specify the appearance of opening indicators on cabinets, doors, and windows. See “Displaying Cabinets” on page 466, “Displaying Doors” on page 406, or “Displaying Windows” on page 434.

- Select **Opening Indicators Point to Hinge Side** for opening indicators that point to the hinge side of the opening.
- Select **Opening Indicators Point to Handle Side** for opening indicators that point to the handle side of the opening.

Check **Stair Sections Move Independently** to allow stair sections connected by landings to move separately, without moving the entire staircase. See “Editing Stairs and Ramps” on page 551.

Uncheck **Enable ‘Show Room Label’ Automatic Behavior When Changing Room Types** to prevent a room’s label from displaying when an “Unspecified” room is assigned a different Room Type in its Room Specification dialog. When this box is checked, the room label’s display will be enabled when the Room Type is changed from “Unspecified”. See “General Panel” on page 333.

Check **Automatically Place Roof Intersection Points** to automatically generate temporary CAD points that correspond to roof plane intersection points. When unchecked, these temporary points are not created. See “Locating Intersections” on page 595.

Select the desired **Skylight Ceiling Hole Default** behavior.

- If you select **Skylights Automatically Generate Ceiling Holes**, the program automatically generates a ceiling hole for a new skylight.
- Select **Manually Edit Ceiling Hole Polylines** to create your own ceiling holes.

CAD Panel

The CAD panel contains settings that define how CAD blocks, Sun Angles and other CAD and CAD-based objects behave.
The CAD Blocks settings determine the default fill style behavior for CAD blocks. See “CAD Blocks” on page 251.

- Check **Always use ‘By Object’ for CAD block fill style** to retain the fill patterns of the component objects of CAD blocks. When checked, all settings that would otherwise affect the fill style of a CAD block in its specification dialog are ignored. See “CAD Block Specification Dialog” on page 254.

- Check **Use ‘By Object’ when creating new CAD blocks** to have By Object checked in the CAD Block Specification dialog when a new CAD block is created. See “General Panel” on page 254.

The Options settings control the editability of polylines and splines.

- Uncheck **Connect CAD Segments** to prevent CAD objects from snapping together to form polylines as they are drawn or edited. See “Connect CAD Segments” on page 167.

Note: Unlike other Preferences, the program always resets Connect CAD Segments to be on whenever you close the program.

- Check **Advanced Splines** to enable the advanced spline setting as the default editing behavior for all subsequently drawn splines. You can also enable this function for an individual spline by clicking the Advanced Splines edit button. See “Advanced Splines” on page 188.

The Line Properties settings affect open CAD shapes, including lines, arcs, and splines.

- **Endcap Printed Length** - The beginning and end of CAD lines that use a dashed line style are sometimes difficult to distinguish. Endcaps can be placed to eliminate this problem. Specify the printed endcap length in inches (mm).

- Uncheck **Show Same Line Type Handles** to turn off the display of these edit handles on selected CAD objects. See “Same Line Type Edit Handles” on page 234.

Sun Angle - Define the default Latitude, Longitude and Time Zone used when creating Sun Angles. See “Sun Angles and Shadows” on page 823.
The settings on the EDIT panel of the Preferences dialog control the appearance of the cursor and selection behavior of edit handles. See “Using the Mouse Pointer Crosshairs” on page 196.

You can use a cursor with Crosshairs in different view types and control its appearance. See “Crosshairs” on page 27.

- Check Enable in Plan and Cross Section/Elevation Views to use a cursor with crosshairs in plan and cross section/elevation views. This option is checked by default.
- Check Enable in Perspective Views to use a cursor with crosshairs in perspective camera views and overviews.
- When Synchronize with Cursor is checked, the mouse pointer and crosshairs always move together on screen. If you feel that they do not keep up with your mouse movements, try unchecking this option.
- Click the Color bar to open the Select Color dialog and specify the color of the crosshairs.
- Crosshair Size is specified as a percentage of the view Window Width. Specify the Size as 100% to extend the crosshairs across the entire screen.
- Set the Aperture Size, measured in pixels. The aperture is the space where the crosshairs meet. A value of 0 makes the crosshairs meet at a point. Larger numbers leave a gap in the center.

Specify the desired Selection settings, which affect how objects are selected and their appearance.

- Enter an Edit Handle Size in pixels. The edit handles are twice this number of pixels plus one. For example, the default value is 4, which results in a handle that is 9 x 9 pixels (4 x 2 = 8, and 8 + 1 = 9). The minimum value is 1, which results in a handle that is 3 x 3 pixels.
- Enter a value, in pixels, for Edit Handle Tolerance to specify how close to an edit handle you must click in order to select it. The default value is 0.
- Check Show Start and End Indicators to display an S and an E at the start and end points of a selected wall or the selected edge of a CAD-based object. This can make it easier to edit the selected edge in the object’s specification dialog. See “Selected Edge” on page 168.

Specify program behavior when using Marquee Selection to select objects. See “Marquee Select” on page 169.

- Choose Select Intersected Objects to select any objects whose bounding boxes are inter-
• Choose Select Contained Objects to select only objects located entirely within the marquee. This option provides the best results in most situations.

• Choose Select Objects by Center to select only objects whose center points are located within the marquee.

Behaviors Panel

The settings on the BEHAVIORS panel of the Preferences dialog define basic editing behaviors of CAD and architectural objects.

1 Rotate/Resize About defines the point about which an object or a group of objects rotates or resizes. See “Rotate/Resize About” on page 130.

• Select Object Center to rotate or resize the selection about its center point. Object Center is the default setting.

• Select Current Point to rotate the object about the current CAD point instead.

To resize a CAD object about a current point, select the Resize Edit Type.

This function can also be accessed by selecting Edit> Edit Behaviors> Resize. See “Defaults, Preferences, and Edit Behaviors” on page 163.

• Rotate Jump defines the angles an object or group of objects jumps to as it is rotated. When

Concentric
Resize

Current Point

Resizing About

Operating in"
this value is set to 0°, the Allowed Angles set in the Plan Defaults dialog are used; otherwise, Allowed Angles are ignored.

The **Primary Movement Methods** control the directions that you can move objects using their edit handles.

- Select **Orthogonal** to move an object perpendicular to any of its edges.
- Select **Polar** to move an object at Allowed Angles.

3 Specify whether the **Continuous Drawing Behavior** restarts after a closed shape is formed. See “Alternate” on page 164.

- Uncheck **Stop When Connected** to remain in the continuous Alternate drawing mode after a closed shape is formed. When checked, the continuous drawing mode is halted but can be started again.

4 Select one of the six **Edit Type** radio buttons. For detailed information about the different edit types and how they affect different objects, see “Defaults, Preferences, and Edit Behaviors” on page 163.

- If **Concentric** is selected, specify the desired **Jump** increment.
- Uncheck **Behavior Indicators** to turn off the display of the mouse pointer icons associated with these Edit Behaviors. This box is checked by default.

Snap Properties Panel

The settings on the SNAP PROPERTIES panel of the Preferences dialog control the behavior of Object Snaps as well as the appearance of snap indicators. See “Object Snaps” on page 131.
Options -

- Specify the **Objects in History**, which is the number of Extension Line Anchors that can display at one time.

- Specify the **Snap Distance**, which is how far the cursor can be from a snap point for the snap to occur. This value is measured in screen pixels; the default value is 12. When working with very small objects, you may find it helpful to reduce this value; when working with very large objects, it may be helpful to increase it. This setting also controls the minimum length of camera and cross section/elevation lines of sight. See “Creating Camera Views” on page 785.

- Specify the **Maximum Bump Distance**, which is the distance that a selected object must be dragged to override bumping and move past an obstructing object.

- Check **Snap Cabinets After Paste** to make the cabinets snap together after you paste them.

- Check **Always Snap Walls on Allowed Angles** to limit walls to Allowed Angles. When unchecked, Object Snaps can override Angle Snaps, allowing walls to snap at off angles as they are drawn or edited. See “Angle Snaps” on page 132.

Control the appearance of **Snap Indicators**.

- Specify a snap **Indicator Size** in pixels. This setting also controls the size of temporary CAD Points. See “Place Point” on page 229.

- Click the color bar to select a snap **Indicator Color** from the **Select Color** dialog. See “Color Chooser/Select Color Dialog” on page 160.

- Click the color bar to select an **Extension Color** from the **Select Color** dialog.

- Click the color bar to select an **Angle Snap Grid Color** from the **Select Color** dialog.

- Check **Display Angle Snap Grid** to turn on the display of the Angle Snap Grid. See “Angle Snap Grid” on page 133.

Enable any combination of **Object Snaps**. You can also turn these options on or off with the toggle buttons on the toolbar or using keyboard hotkeys.

- Check **Object Snaps** to enable the object snap and extension snap options, below.
• **Endpoint** enables snapping to the ends of lines, arcs, splines and other objects.

• **Midpoint** enables snapping to the midpoint of an object such as a line or arc. For objects such as boxes, you can snap to the midpoint of any side of the box.

• **Center** enables snapping to the center of cabinets, fixtures, furniture, as well as circles and arcs.

• **Quadrant** enables snapping to the left, right, top, or bottom of an object. Only used for arcs and circles.

• **On Object** enables snapping to any point on the selected object, including CAD objects and cabinets.

• **Points/Markers** allows you to snap to any temporary points you may have placed, as well as callouts and markers.

• **Intersection** enables snapping to the intersection of two objects, such as the intersection of a line with another line. Intersection snapping also snaps extension lines to objects, and allows you to snap two extension lines to each other.

When Intersection snapping is enabled, wall extension line snapping will also occur. See “Creating Walls” on page 273.

Check any combination of **Extension Snaps**.

• **Tangent Extensions** enables snapping to a point tangent to the point where the extension anchor sits.

• **Perpendicular Extensions** enables snapping to a point perpendicular to the point where the extension anchor sits.

• **Orthogonal Extensions** enables snapping to a point on a 90° axis from the extension anchor.

Control the behavior of **Other Snaps**.
• Check **Bumping/Pushing** to allow objects to bump into and move other objects. See “Bumping/Pushing” on page 192.

• Check **Bumping/Pushing for Type-in Movement** to cause objects moved using dimensions or the **Enter Coordinates** dialog to bump into objects in their path of movement and stop. When unchecked, objects moved using type-in methods move to their specified destination locations. See “Moving Objects” on page 192.

• Check **Angle Snaps** to enable snapping to Allowed Angles. See “Angle Snaps” on page 132.

Materials List Panel

The settings on the **MATERIALS LIST** panel control which categories are included in Materials Lists. The names of all categories and their ID prefixes are listed here. They are defined by the program and cannot be changed. See “Materials Lists” on page 943.

When a material is entered in the Materials List, the program decides what category it goes in and assigns it an ID, which is the prefix followed by a number. EX1 would be the first exterior trim piece entered in the Materials List for a particular plan.

• **Include These Categories** - Check the categories you want to include in every new materials list generated. Before you hide a category, make sure you know what items are listed within it.

• **Select All** to check the boxes beside all categories, or click **Clear All** to clear the check boxes beside all categories.

> It is usually better to remove categories from individual plan lists in the Layer Display Options dialog, rather than globally. See “Layer Display Options Dialog” on page 144.

Report Style Panel

The **REPORT STYLE** panel controls the appearance of Materials Lists and the Master List.
Include These Columns - Check the box beside each column to include it in newly created Materials Lists. Columns can also be specified for an individual Materials List by choosing Tools> Active View> Edit Active View while that Materials List is active. See “Materials List Specification Dialog” on page 949.

- Use the Move Up and Move Down buttons to change the order that columns appear. To change the order, select one or more items in the list and click the button. The selected columns move up or down by one in the list.

When Querying Suppliers and Manufacturers - Select an option to narrow or broaden your query when searching the Master List.

Choose whether or not Grid lines display in the Materials and Master Lists, both on-screen and printed.

- Check Horizontal Lines for lines between Materials List rows.
- Check Vertical Lines for lines between Materials List columns.
- Check Solid Lines for a solid line style. When unchecked, dotted lines are used.

When Custom Colors is checked, Materials Lists use the colors defined below. When this is unchecked, either the colors associated with the active Color Theme or your operating system’s default colors are used. See “Colors Panel” on page 82.

Background Colors can be specified for Odd and Even numbered rows.

Specify the Text Font Size, which is the height of the font used in the Materials List and Master List. See “Editing Materials Lists” on page 950.
Master List Panel

The MASTER LIST panel specifies how the Master List(s) for materials appears. You can maintain multiple Master Lists, but only one may be used at any given time. See “Materials Lists” on page 943.

1 Include These Columns - Check each column to include it in the Master materials list.

Use the Move Up and Move Down buttons to change the order of columns. To change the order, select one or more items in the list and click the button. The selected columns move up or down by one in the list.

2 Master List File - The name and pathname of the currently referenced Master List is shown. It is referenced for all subsequently opened plans when a materials list is generated.

- Click the Browse button to select a different Master List. Navigate the directory structure until you find the new Master List to be used, select it, and click OK.

Note: If the Master List file is saved in the program Data folder, and the location of My Data Folder is changed, this pathname will automatically update. See “Folders Panel” on page 88.

- Click the New button to create a new Master List. Name and save it in the location of your choice. When you create a new Master List, it is blank until you build a materials list and enter prices, supplier or manufacturer information. The Master List is saved automatically when you close.

Render Panel

The settings on the RENDER panel control how 3D views are generated and navigated.
Preferences Dialog

1 General Options -

- **Horizon Lines** are lines that generate along the curved edges of symbol objects in Vector Views. Uncheck this box to increase the speed of Vector View generation but also suppress these lines. See “Vector View” on page 829.

- **Hardware Edge Smoothing** uses the video card to reduce the jagged appearance of angled surface edges and pattern lines, producing cleaner lines. The higher the smoothing effect, the longer the rendering time. See “Edge Smoothing” on page 817.

2 The 3Dconnexion® 3D Mouse and Gamepad settings affect how 3D mice and gamepads function in Perspective 3D views. See “3Dconnexion® 3D Mice” on page 794.

- Select **Navigate about Camera** to center mouse movement about the location of the camera.

- Select **Navigate about Camera Focal Point** to center mouse movement about the location of the camera’s focal point. See “To create a camera view” on page 785.

3 The **Troubleshooting** settings can be used to troubleshoot performance in 3D views.

- Uncheck **Use Enhanced Lighting** to disable most lighting effects in Rendering Techniques that support lighting. This box is checked by default and should only be unchecked for troubleshooting purposes. It may become unchecked automatically if the program detects a problem with your video card. See “OpenGL and Hardware” on page 779.

- Uncheck **Use Global Illumination** to disable lighting effects in the Physically Based Rendering Technique. This box is checked by default and should only be unchecked for troubleshooting purposes. See “Physically Based” on page 830.

- When **Texture Compression** is checked, material textures are compressed so that less video memory is required when a 3D view is generated. Texture Compression takes time, however, so view generation will typically be slower.

Ray Trace Panel

The settings on Ray Trace panel allow you to specify how much of your computer’s processor resources to allocate to the Chief Architect Ray Tracer. Changes to these settings do not affect ray traces that are in progress or queued: only ray traces that you start in the future. See “Ray Tracing” on page 839.
• Specify the **Number of Cores Used** by typing in the text field or clicking the up or down arrows. The number of cores available will vary, depending on the number of cores your system has and whether it uses hyper threading.

• Check **Use Maximum** to use the highest number of cores available on the system.

Video Card Status Panel

The **VIDEO CARD STATUS** panel displays information about your video card, including the vendor and whether the minimum required OpenGL version is supported. See “OpenGL and Hardware” on page 779.

This information may be important if you are having problems generating 3D views.

Reset Options Panel

In order for some of the Reset Options to take effect, you will need to restart Chief Architect.

• If message boxes have been suppressed, you can make them display again by clicking **Reset Message Boxes**. See “Message Boxes” on page 33.

• Click the **Reset Dialog Sizes** button to restore all dialog boxes to their original sizes and positions. See “Dialogs” on page 30.

• Click the **Reset Toolbars** button to reset all toolbars to their original states. If you are encountering warning messages regarding toolbars, this option may resolve the issue. Note that any custom toolbar configurations that you may have created will be discarded if you click this button. See “Creating Custom Toolbar Configurations” on page 111.

• Click the **Reset Side Windows** button to restore all side windows to their original sizes and positions. Side window Settings are also reset, as are the panes in the Library Browser. See “Side Windows” on page 28.

• Chief Architect retains a list of locations where you have located missing files in the past. If you find that the program takes a long time searching before informing you that files are missing, you can click the **Reset Search Folders** button to clear this list. See “Referenced Files” on page 52.

• Click the **Reset Migration** button to be prompted to migrate your content and settings from an older program version the next time you launch the software. See “Migrating Content and Settings” on page 186.
• Click the **Reset Preferences** button to restore all preferences to those originally installed with the program.

Dialog Number/Angle Style Dialog

At the bottom of many dialogs, you can click the **Number Style** button to open the **Dialog Number/Angle Style** dialog.

The settings in this dialog are global and control the format of distances, coordinates and angles of angles in dialog boxes and inline text fields, as well as in the Status Bar. See “The Status Bar” on page 33.

These settings control the format of values used in dialogs but do not limit how you must enter these values. For example, if you set your Number Style to use Inches, values will display using fractional inches. You can, however, enter values using decimal inches, inches and feet, or even decimal feet by including the appropriate unit indicators. When the dialog you’re typing in updates, the value will be converted to fractional inches.

When Imperial units are used, the **Fractional Inches** and **Feet, Fractional Inches** options use fractional inches with denominators of 2, 4, 8 and 16. A few objects, notably text, dimensions, and floor, ceiling and wall structure layers can be sized using smaller fractions with larger denominators.

Angles can be displayed using one of four basic methods:

- **Degrees/Minutes/Seconds** - Measured counterclockwise from a line drawn horizontally to the right of the angle’s vertex. Useful for most drawing tasks. Select the level of accuracy that you require.

- **Quadrant Bearings** - Measured from a vertical line representing North/South, Quadrant Bearings use directional bearings in their measurements. Useful for site drawings.

- **Azimuth Bearings** - Measured from a line drawn straight up from the angle’s vertex (ie, North on a site plan). Useful for site drawings, Azimuth Bearings use degrees, minutes, and seconds in their measurements.

- **Pitch** - Defined as a ratio of vertical rise to horizontal run. In Imperial units, the run is always 12”; in metric units it is 1000 mm. Useful for roofs.

Quadrant and Azimuth Bearings are affected by the orientation of the **North Pointer**, if one is present in the current plan. See “North Pointer” on page 823.
Chapter 5: Toolbars and Hotkeys

Two of the most efficient ways to access Chief Architect’s tools and settings are the toolbars and keyboard shortcuts, also referred to as hotkeys.

Both toolbars and hotkeys can be customized to suit your workflow.

Chapter Contents

- Toolbar Arrangement
- Customizing Toolbars
- Creating Custom Toolbar Configurations
- Toolbar Customization Dialog
- Hotkeys
- Exporting and Importing Hotkeys
- Gamepad Settings Dialog

Toolbar Arrangement

Chief Architect’s toolbars provide fast access to the program’s most commonly used tools and settings, and are organized so that related tools are grouped together and easy to find.

The toolbars that display in a given view depend on the view type. For example, the toolbars that are available in floor plan and 3D views are not available in Materials Lists or Ray Trace views.

Some toolbars are available in more than one type of view. If a tool cannot be used in that view, its icon will appear pale grey in color.

Many of Chief Architect’s tools are organized into families of related tools which can be accessed using either of two styles of toolbar interface: the Child Tool Palette or Drop Down tools. You can select the interface that you prefer in the Preferences dialog. See “Appearance Panel” on page 80.

You can turn off the display of toolbars entirely or turn them on again by selecting View> Toolbars.

Drop-Down Tools

Click on the arrow to the right of a button to display a drop-down list of related tools. For example, click the arrow to the right of the Window button to display a drop-down list of the other Window Tools.

The most recently selected tool displays in the toolbar.
Child Tool Palette

An alternative to Drop-Down toolbars is the Parent button and Child Tool Palette interface. Parent toolbar buttons have a blue triangle in the lower right corner. When you select a Parent button, its Child tools display in the Child Tool Palette. If the Child Tool Palette has been closed, it will open.

By default, the Child Tool Palette is docked on the left side of the program window; but it can be undocked and moved, as well as resized and closed, just like other side windows. See “Side Windows” on page 28.

As long as it is open, the Child Tool Palette will also display the members of a selected tool’s family when the Drop Down interface is active. If you select a tool that does not belong to a family, the previously selected tool’s family will continue to display in the Tool Palette.

When you click the Window Tools Parent button, for example, its Child buttons display in the Child Tool Palette.

Click the Settings button at the bottom of the palette to select how the tools within it are presented:

- Select **Fit Palette** to resize the palette so that it is one row wide.
- Select **Grid View** to display only the button icons of the child tools in a grid that may have multiple rows, depending on the width of the palette side window.
- Select **List View** to display child tools in a vertical list with each tool’s button icon and name in a row.

You can open the Tool Palette at any time, even when Drop Down tools are enabled, by selecting **View> Tool Palette**. See “View Tools” on page 125.

Drop-Down Controls

In addition to tool and setting buttons, there are a number of drop-down controls that let you choose between a selection of layer and active default settings, and can be added to your toolbars:

- **Active Layer Set Control** - See “Activating a Layer Set” on page 147.
- **Saved Dimension Defaults Control** - See “Saved Dimension Defaults” on page 342.

Saved Plan Views and Default Sets allow you to quickly switch layer sets and activate multiple saved defaults at once:

- **Saved Plan View Control** - See “Plan Views” on page 120.
- **Active Default Set Control** - See “Activating a Default Set” on page 71.

The Edit Toolbar

When you select an object, its edit toolbar opens. By default, it is located at the bottom of the program window, just above the Status Bar. The buttons on the edit toolbar can be used to edit the selected object(s). Which buttons display depends on the type of object selected, the current view, and how you selected the object.

Toolbar Configurations

Chief Architect installs a set of Toolbar Configurations, which control what tools are initially included in the toolbars, as well as where these toolbars are located.

- The **Default Configuration** displays architectural tools used for house design, including walls, windows, doors, stairs, cabinets, etc.
- The **Terrain Configuration** displays buttons associated with the terrain and road tools, including the plant and sprinkler tools. See “Terrain Toolbar Configuration” on page 899.
- The **Kitchen and Bath Design Configuration** displays buttons associated with kitchen and bath design. See “Cabinets” on page 459.
- The **MEP Configuration** displays buttons associated with mechanical, electrical, and plumbing. See “Line Styles” on page 157.
Customizing Toolbars

The Toolbar Configurations installed with the program are designed to help make tools quickly and easily accessible; however, for greatest efficiency, you may want to customize them to meet your own particular needs. A number of options are available:

- Toggling toolbars
- Moving toolbars
- Adding buttons to existing toolbars
- Adding new toolbars

Any changes made to an existing Toolbar Configuration will be saved whenever you:
- Switch to a different configuration;
- Close the Toolbar Configuration dialog;
- Exit out of Chief Architect.

Bear in mind that the size of the Chief Architect program window and the space available for toolbar button depends on your monitor’s size and screen resolution settings.

Toggling Toolbars

There are several ways to toggle individual toolbars on or off:

- Right-click in an empty space on any toolbar and mouse over Toolbars in the contextual menu. In the submenu, toolbars with a check mark next to their name are on in the current view. Click on a toolbar name to turn it off if it is on, or vice versa.
- Toolbars can be turned on or off in the Toolbar Customization dialog. See “Toolbar Panel” on page 112.
- If a toolbar is undocked, click the Close button at its top right corner.

You can turn off the display of toolbars entirely or turn them on again by selecting View> Toolbars.

Moving Toolbars

You can move any toolbar to a different location by clicking and dragging its dotted grab bar. Toolbars can be docked to any side of the program window, or they can be undocked and left floating.

Undocked toolbars can be moved outside of the program window, and they can be closed completely. They can also be reshaped; however, they cannot be resized in such a manner that any buttons become hidden.

Changes to toolbars are saved between program sessions.

Adding and Removing Buttons

Toolbar buttons can be added to or removed from toolbars using the Toolbar Customization dialog.

To add a button to a toolbar

1. Select Tools> Toolbar and Hotkeys> Customize Toolbars and go to the Tools panel of the Toolbar Customization dialog. See “Tools Panel” on page 112.
2. Select the View Type that you want to add a toolbar button in.
 - You can add any buttons you like to any View Type; however, not all buttons will necessarily be available for use in all views.
3. Search or browse to find the desired button or its parent in the Available Toolbar Buttons list.
4. Click and drag the button you wish to add to a toolbar out of the dialog box.
 • Drop it onto an existing toolbar to add the button to that toolbar.
 • Drop it away from an existing toolbar to create a new toolbar. See “To create a new toolbar” on page 110.

To remove a button from a toolbar, open the Toolbar Customization dialog, then click and drag the button out of the toolbar area.

Buttons cannot be added to or removed from the Edit toolbar. See “The Edit Toolbar” on page 29.

Adding and Removing Toolbars

Toolbars can be added to or removed from each View Type using either the toolbar contextual menu or the Toolbar Customization dialog.

To add or remove an existing toolbar
1. Right-click on an empty space in a toolbar.
2. In the contextual menu, click on the name of a toolbar.
 • If the toolbar has a check mark next to it, clicking on it will clear the check mark and remove the toolbar from the current View Type.
 • If the toolbar does not have a check mark next to it, clicking on it will add the toolbar to the current View Type.

You can also specify which toolbars are used in each View Type in the Toolbar Customization dialog. See “Toolbar Panel” on page 112.

Creating New Toolbars

New toolbars can be created using the Toolbar Customization dialog.

To create a new toolbar
1. Select Tools> Toolbar and Hotkeys> Customize Toolbars and go to the TOOLS panel of the Toolbar Customization dialog.
2. Select the View type to which you want to add a new toolbar.
3. Select the first button that you want on the toolbar from the Available Toolbar Buttons list.
4. Click and drag the button out of the dialog box and drop it:
 • In an empty section of the program window border to create a new toolbar docked at that location.
 • In the drawing area to create a new, undocked toolbar.

5. Additional buttons can be added by dragging them onto to this new toolbar.

6. A new toolbar will inherit the name of the first tool that was added to it, preceded by the word Custom. You can assign a new name on the TOOLBAR panel of the Toolbar Customization dialog.

7. Also on the TOOLBAR panel, specify the View Types that the new toolbar should be used in.

Locking Toolbars

When your toolbars are organized the way you want them, you can select Tools> Toolbars and Hotkeys> Lock Toolbars to prevent them from being moved. Select the same tool to unlock toolbars. Lock Toolbars is also available in the contextual menu for toolbars: right-click in an empty space on any toolbar to access it. See “Contextual Menus” on page 30.

Restoring Toolbars

To discard your changes and restore all installed Toolbar Configurations to their original condition, click the Reset Toolbars button in the Toolbar Customization dialog. See “Toolbar Panel” on page 112.

Because resetting toolbars affects all installed Toolbar Configurations, you may find it worthwhile to create your own custom Toolbar Configurations. You can also restore toolbars to their original state in the Preferences dialog; however, please note that if toolbars are restored using this option, any custom configurations that you have created will be discarded. See “Reset Options Panel” on page 104.
Creating Custom Toolbar Configurations

If you extensively edit your toolbars, consider creating one or more custom Toolbar Configurations so that your changes can be backed up as well as transferred to a different computer if you wish.

To create a custom configuration

1. Go to the Configurations panel of the Toolbar Customization dialog.
2. Select a configuration similar to the one you want to create and click Copy.
3. Give the new configuration a short, unique name. It will be saved in the Chief Architect Toolbars folder. See “Chief Architect Data” on page 40.
4. When you click OK, the new configuration will appear in the list, and it will be active.
5. On the Toolbars panel, select each of the different View Types to see the toolbars active in each and confirm that they suit your needs.
6. You can now move toolbars, add or remove buttons, and add or remove toolbars to meet your requirements.
7. When you are satisfied with your new Toolbar Configuration, click Close.

It is a good idea to back up your custom Toolbar Configurations files. See “Chief Architect Data” on page 40.

Custom Configuration Buttons

By default, new Toolbar Configurations display a default configuration button; however, if you want you can make your own button icon for your custom Toolbar Configuration.

Create a .bmp file with the same name as the configuration and save it in the Toolbars folder. To see an example, look at the Default.bmp file in the Chief Architect Toolbars folder, which corresponds to the Default Toolbar configuration. See “Chief Architect Data” on page 40.

• Toolbar button bitmaps must be 20 x 20 pixels in size.
• The color (R:192, G:192, B:192) maps to the system 3D face color.
• The color (R:128, G:128, B:128) maps to the system 3D Shadow color.
• The color (R:223, G:223, B:223) maps to the system 3D light color.

Importing Custom Configurations

Toolbar Configurations can be imported into the program, allowing you to transfer custom configurations between computers as well as add backed up configurations to new installations.

To import a custom configuration

1. Go to the Configurations tab of the Toolbar Customization dialog.
2. Click Add.
3. Browse to the location of the toolbar you want to import.
4. Click Open. If the toolbar file is not in the Chief Architect Toolbars folder, a copy of the file will be created there.

Toolbar Customization Dialog

Select Tools> Toolbars and Hotkeys> Customize Toolbars to open the Toolbar Customization dialog. You can also right-click in an empty space in any toolbar and select Customize Toolbars from the contextual menu.

In the Toolbar Customization dialog, you can:

• Add and remove buttons from toolbars.
• Specify which toolbars display in different view types.
• Select the active Toolbar Configuration.
Tools Panel

From the TOOLS panel, you can add or remove buttons from your toolbars, as well as create new toolbars.

1. Select the **View Type** that you would like to add toolbar buttons to. When the dialog is first opened, the selected View Type is that of the current view. If you select a different View Type, the toolbars associated with it will display behind the dialog for reference until you click the **Done** button.

2. The **Available Toolbar Buttons** display in a list that can be searched or browsed.
 - Type a keyword or the name of a tool in the **Search** field. As you type, only buttons that match your search will display. When nothing is typed in this field, all buttons will display in the list. If a child tool matches your search, its parent will display in the search results. Click the arrow next to the parent’s name to see the child tools.
 - The Available Toolbar Buttons list can be browsed using the scroll bar to the right.
 - Click on a button in the list to display a description of that tool, below.
 - Parent tools have an arrow to the right of their button icon in the list. Click on this arrow to display the child tools below the parent. See “Toolbar Arrangement” on page 107.

If you do not see a particular button in the list, it may be the child of a parent tool.

3. **Tool Description** - When a button is selected in the list above, a description of it displays here.

Toolbar Panel

The TOOLBAR panel allows you to manage the use of individual toolbars.
When this dialog is first opened, the selected View Type is that of the current view. If you select a different View Type, the toolbars associated with it will display behind the dialog for reference until you click the Done button.

The Toolbars table displays the names of all available toolbars, along with the View Types in which they are in use.

- Select a toolbar by clicking on its name.
- Click to place a check mark in a column to add the selected toolbar to that View Type; click on check mark to remove it.
- Double-click on a toolbar in the Toolbar Name column to rename it. Toolbar names must be unique.
- Click Delete to remove the selected toolbar from the list. A deleted toolbar is no longer available in any View Type.
- Click Reset Toolbars to restore all the toolbars to their original configuration. See “Restoring Toolbars” on page 110.

Configurations Panel

The Configurations panel allows you to add, remove, and switch between Toolbar Configurations. See “Toolbar Configurations” on page 108.

Clicking the Reset Toolbars button removes all changes that you may have made to all installed Toolbar Configurations.
A list of Toolbar Configurations displays here. Select a configuration before clicking the **Remove**, **Copy**, or **Switch To** buttons.

- Click **Switch To** to switch to the selected Toolbar Configuration, making it active. See “To switch toolbar configurations” on page 109.
- Click **Copy** to create a copy of the selected Toolbar Configuration.
- Click **Remove** to remove the selected Toolbar Configuration. This removes the configuration from the list but does not delete the configuration file permanently. If only one configuration is listed, it cannot be deleted.
- The location of the **Current Toolbars Folder** displays below. See “Chief Architect Data” on page 40.

Hotkeys

Many Chief Architect tools have a keyboard shortcut, or hotkey, associated with them. If such a hotkey exists, it will display to the right of the tool’s name in the menu.

![Edit menu items with button icons to the left and hotkeys to the right](image)

To use a hotkey, simply press the appropriate key or combination of keys on your keyboard instead of selecting the menu item or clicking the toolbar button. For example, press the Ctrl and Z keys at the same time to perform an **Undo**.

Note: If a key or key combination is in use as a system hotkey, it cannot be used as a program hotkey.

You can specify the hotkeys associated with Chief Architect tools in the **Customize Hotkeys** dialog. In this dialog, you can program hotkeys to activate tools and invoke a variety of commands such as opening dialogs, including Defaults dialogs.

Number keys can be, and are, used as hotkeys. Bear in mind that if a number key is assigned as a hotkey, the corresponding number pad key will invoke the same command as long as it is not assigned to something else. The converse, however, is not true: if a number pad key is assigned as a hotkey, the corresponding number key will not invoke that command.

Create Hotkey List

A list of the hotkeys available to the current program user can be saved in .html or .xhtml format.

Select **Tools > Toolbars and Hotkeys > Create Hotkey List** to open the **Save Hotkey List File** dialog, a standard Save dialog, and create a hotkey list that can then be opened in a web browser window and printed, if you wish.

Next/Last Command

You can navigate a list of up to 100 recently used tools using the **Cancel Selection/Previous Command, Next Command** and **Previous Command** hotkeys. The tools in this list are organized according to the order in which you selected them during the current program session.
Cancel Selection/Previous Command and Next Command are hotkeys only: they do not have toolbar buttons associated with them and are not found in the menu.

By default, Cancel Selection/Previous Command is assigned to the Esc key. This command can be used to:

• Cancel a current object selection.
• Cancel a current drawing or editing action that is in progress.
• Activate the previously used tool or command if no object is selected or action in progress.

By default, Next Command is assigned to the Shift+Esc keys. This command can be used to deactivate the current command and instead activate the one that is next in the list of recently used tools.

If you prefer, you can assign two different hotkeys to the Cancel Selection and Previous Command instead of one single hotkey.

Customize Hotkeys Dialog

Select Tools> Toolbars and Hotkeys> Customize Hotkeys to open the Customize Hotkeys dialog.

1. Show Commands/Hotkeys Containing -
 • Click on an item in the list of Command Names and Hotkeys to select it.
 • To filter the list, type part or all of a tool name or hotkey in the Search field, above. As you type, the list below will be filtered to only show items with either a Command Name or Hotkey that contains what you have typed.

2. Tool Available In - A list of the View Types that the selected command can be used in displays here.

3. A brief Description of the selected command displays here.

Click on an item in the list of Commands and Hotkeys to select it.
Edit hotkey for this command - Click in this field, then press the key or key combination that you would like to use.

- Create a simultaneous hotkey combination by holding down the Shift, Ctrl, and/or Alt keys and typing an additional letter or number.
- Create a hotkey sequence by typing up to four hotkeys or hotkey combinations, one after the other.

Exporting and Importing Hotkeys

Customized hotkeys are user specific and are saved in the Chief Architect X12 Data folder. See “Chief Architect Data” on page 40.

Hotkeys can be exported, making them available for import on another computer, or even by another user on the same computer.

Exporting Hotkeys

To export hotkeys, select File> Export> Hotkeys. The Export Hotkeys dialog is a typical Save As dialog that lets you specify the exported file’s name and its saved location on your computer. See “Exporting Files” on page 44.

Importing Hotkeys

To import hotkeys, select File> Import> Hotkeys. The Import Hotkeys dialog is a typical Open File dialog. See “Importing Files” on page 48.

When hotkeys are imported, the existing User Hotkeys.xml file is replaced by the imported data. Any previously programmed custom hotkeys will not be retained.

You can also specify whether navigation is centered about the location of the camera or its focal point in the Preferences dialog. See “Render Panel” on page 102.

Note: Default hotkeys use the number keys and number keypad interchangeably. User defined hotkeys, however, do not. As such, when a custom hotkey is defined here, characters typed using the numpad begin with “Num +” in Windows, and “Num” on a Mac.

Bear in mind that while nearly all commands can be assigned custom hotkeys, a few cannot: Delete and Enter Coordinates are two notable examples. Hotkeys reserved by the operating system cannot be used, either.
Buttons Panel

1. Check **Enable Gamepad** to allow Chief Architect to recognize a gamepad on your system and enable the other settings in this dialog.

2. On the left side of the dialog is a list of **Command Names** in Chief Architect that have a programmable hotkey.
 - Click on a line item to select it.

3. On the right side of the dialog is a list of typical gamepad buttons and the commands in Chief Architect that they are mapped to.
 - Click the **Assign** button to the right of a mouse button to assign the command selected on the left to that button.

4. Click the **Reset Commands** button to restore the default commands associated with each gamepad button.

Thumbsticks Panel

1. **Speed** - When **Linear Acceleration** is checked, camera acceleration is always directly proportional to the amount the thumbstick is pushed.

When unchecked, acceleration is increased on a curve, allowing more precision on the low end, and more speed on the high end.
Specify the behavior of the **Left Thumbstick** in 2D and 3D views.

- **When Change Camera Height When Moving in 3D**, the left thumbstick can be used to change the camera height in 3D. Uncheck this to maintain a consistent camera height instead.
- Use the slider bar or text field to specify the **2D Sensitivity**, which controls how quickly the view pans in plan and elevation views.
- Use the slider bar or text field to specify the **3D Sensitivity**, which controls how quickly the camera moves in 3D views.

Specify the behavior of the **Right Thumbstick** in 2D and 3D views.

- **When Invert X-Axis in 3D** is unchecked, pushing the right thumbstick to the left rotates the camera to the left. When checked, pushing this thumbstick to the left rotates the camera to the right.
- **When Invert Y-Axis in 3D** is unchecked, pushing the right thumbstick to the up rotates the camera upward. When checked, pushing the thumbstick up rotates the camera downward.
- Use the slider bar or text field to specify the **2D Sensitivity**, which controls how quickly the view zooms in plan and elevation views.
- Use the slider bar or text field to specify the **3D Sensitivity**, which controls how quickly the camera rotates in 3D views.

Click the **Reset Thumbsticks** button to restore the default Left and Right Thumbsticks settings on this panel.
Chapter 6: Window and View Tools

The View and Window Tools let you control how views of your drawing are shown on screen, as well as toggle useful drawing aides on and off.

By default, Chief Architect uses a tabbed document interface. The name of the file and the type of view displays at the top of each view window in its title bar. If the view is saved, its name also displays.

View Windows

In Chief Architect, there are several different types of views:

- Plan Views
- 3D Views
- Cross Section/Elevation Views
- Materials Lists
- CAD Details
- Layout

Each view displays in a view window. While multiple views can be open and display on screen, only one view window can be active at any given time. See “Working in Multiple Views” on page 124.

- Plan, 3D, and Cross Section/Elevation Views are found in plan files only. Each view window can show the model from a different perspective and display a unique set of information about it, making them useful for a variety of drawing tasks and print requirements.

- Materials Lists are found in plan views only and contain a list of objects found in the model along with their components and information like amounts and pricing.

- CAD Details can be found in both plan and layout files and only contain 2D objects like CAD and Text.

- Layout files are composed of multiple pages. A given layout view window can only display a single page at a time.

Saved Views

Most new views in plan files are temporary: if you close the view window, the view will not be retained. Two exceptions to this rule are CAD Details and Auto Elevations, which are saved automatically when they are created. See “CAD Details” on page 255.
Active View Tools

When a plan file is active, select Tools> Active View for tools that allow you to manage the current view. Not available when a layout file is active.

You can specify that any view be saved by selecting Tools> Active View> Save Active View. If the current view is unsaved, you will be prompted to give it a name. If it was previously saved, its saved attributes will be updated.

You can also use Tools> Active View> Save Active View As to create an exact copy of the currently active view. Regardless of whether the current view is saved or not, you will be prompted to give the new view a name.

You can specify that any Plan, Camera, Cross Section/Elevation View, or Materials List be saved. See “Plan Views” on page 120 and “Saving 3D Views” on page 805.

When a view is saved, all of its attributes are retained, including the:
- Floor level
- Extents of the view
- Color toggle
- Active Layer Set
- Active Saved Defaults
- Watermark

If any of these attributes are changed, the changes will not be retained when you close the view unless the view is first re-saved.

Some additional settings are also view specific, although they do not require that a view be re-saved when they are changed:
- Saved Defaults or active Default Set
- Print Preview toggle
- Drawing Sheet Setup dialog settings

Saved views are listed in and can be managed the Project Browser. See “Project Browser” on page 56.

Each saved view has a specification dialog that can be opened by right-clicking on it in the Project Browser or by selecting Tools> Active View> Edit Active View while that view is active:
- Saved Plan View Specification Dialog
- Camera Specification Dialog
- Cross Section/Elevation Camera Specification Dialog
- Materials List Specification Dialog
- CAD Detail Specification Dialog

Closing View Windows

There are a number of ways to close view windows. See “Closing Views and Files” on page 128.

Plan Views

Plan view is where most drawing and editing is done, and when you open a new plan file, a plan view is active. When an existing plan file is opened, the most recently used saved plan view will be active. If there are no saved views in a given plan, or if an unsaved plan view was last active, an unsaved plan view will open instead.

To create a new plan view, select Tools> New Plan View or right-click on the Plan Views folder in the Project Browser and select New Saved Plan View from the contextual menu.

There are three ways to save a plan view:
- Select Tools> Active View> Save Active View to save the current view.
- Select Tools> Active View> Save Active View As to create a copy of the current view.
- In the Project Browser, right-click on a view that is currently open and select Save View from the contextual menu.
- Select Tools> New Plan View to create an identical copy of the currently active plan view in a new view window. If the current view is saved, you will be prompted to give the new saved view a name. If not, the new view will be unsaved like the original.

There are three ways to open a saved plan view:
- Select a view from the Saved Plan View Control drop-down in the toolbars.
• Right-click on a Plan View in the Project Browser and select **Open View** from the contextual menu. See “Project Browser” on page 56.

• If a saved plan view has been sent to layout, select its layout box and click the **Open View** edit button. See “Editing Layout Views” on page 962.

Rotate Plan View

To rotate everything in a plan view, including all objects on all floors, the Snap and Reference Grids, the plan’s Cartesian coordinates, and the drawing sheet, select **Tools> Rotate Plan View** to open the **Rotate Plan View** dialog.

Enter the degrees to rotate the plan view to using decimal units with either positive or negative values. The degrees rotated displays in ±180º format. For example, if you enter 270º, it displays as -90º when the dialog is reopened.

Rotate Plan View rotates a plan relative to its original orientation. For example, entering 90º twice results in a rotation of 90º, not 180º.

Text objects rotate with the plan unless you uncheck **Rotate with Plan** in the **Text Specification** dialog for each object. See “Rich Text Specification Dialog” on page 376.

Rotate Plan View only affects the currently active plan view. If you would like the current plan view to retain its rotation the next time it is opened, check **Remember Zoom/Rotation** in its specification dialog. See “Saved Plan View Specification Dialog” on page 122.

If you use **Rotate Plan View** and then use either the **CAD Detail from View** or **Plan Footprint** tool, the CAD Detail window that is created will permanently inherit the same rotation as the plan view. If you later modify the plan view’s rotation, the CAD Detail will not be affected. See “CAD Details” on page 255 and “Plan Footprint” on page 257.

The Rotate Plan View tool does not rotate objects; it literally rotates only your view of those objects. As a result, it does not alter the orientation of the plan in layout views or on the printed page.

Importing Saved Plan Views

To copy saved plan views from one plan file and import them into the current plan, select **File> Import> Import Saved Plan Views**.

Most attributes of a saved plan view are, potentially, imported. The Active Defaults, Layer Sets including Reference Display Sets, and the Current CAD Layer will all be imported provided that items of the same name do not already exist in the destination plan. If items of the same name do exist, they will be assigned to the imported saved plan view instead.

Two attributes are not imported: the Zoom/Rotation of the original view, and the Default Set. Even when the Active Defaults are imported into the destination plan, the imported saved plan view will be set to “Using Active Defaults.” Default Sets can be imported separately if you wish. See “Exporting and Importing Default Sets” on page 73.

To import saved plan views

1. Open the plan that you would like to import saved plan views into.
2. Select **File> Import> Import Saved Plan Views**.
3. In the **Open Plan File** dialog, browse to and select the plan file that you would like to import views from and click **OK**. See “Importing Files” on page 48.
4. In the **Import Saved Plan Views** dialog:
• Check the box beside all defaults that you would like to import.

Saved Plan View Specification Dialog

To open the Saved Plan View Specification dialog for any saved plan view, right-click on its name in the Project Browser and select Edit View from the contextual menu. See “Project Browser” on page 56.

You can also open the similar Plan View Specification dialog for the currently active view by selecting Tools> Active View> Edit Active View. The Plan View Specification dialog has fewer settings on the GENERAL panel than the Saved Plan View Specification dialog does.

General Panel

When the Plan View Specification dialog is opened using the Edit Active View tool, the GENERAL panel will have fewer settings than if the dialog is accessed via the Project Browser.
Specify the **Name** of the saved plan view. This setting is only available when the dialog is opened via the contextual menu in the **Project Browser**.

General -

- Select the **Floor** level that the selected Plan View displays when it is opened. When “Use Any Floor” is selected, the view will return to whatever floor was active in it when the file was last saved.

- Check **Remember Zoom/Rotation** to maintain the extents of the view as well as its rotation the next time the view is opened. Only available when this dialog is opened via the contextual menu in the **Project Browser**. See “Zoom Tools” on page 126 and “Rotate Plan View” on page 121.

- Uncheck **Show Color** to turn color off in the selected view. See “Color On/Off” on page 154.

- Check **Show Watermark** to display the watermark specified for the current plan file in the selected view. See “Watermarks” on page 994.

- When **Link to Layout** is checked and the view is sent to layout, the layout view will be linked to the plan view. When this is unchecked, the layout view will use the current settings but will not be linked to the view. Only available when this dialog is opened via the contextual menu in the **Project Browser**. See “Saved and Unsaved Plan Views” on page 967.

Pony Wall Display

- The **Pony Wall Display** options control which part(s) of pony walls display by default in the current view. They are also found in the **Pony Wall Defaults** dialog. See “Displaying Pony Walls” on page 270.

Save Options

- The **Save Options** control how or whether changes to the current view’s attributes are saved when those changes are made outside of this dialog. Only available when this dialog is opened via the contextual menu in the **Project Browser**. See “Saved Views” on page 119.

 - When **Prompt to Save** is selected, the program will ask whether you want to save any unsaved changes to the view when you close it.

 - When **Always Save** is selected, any changes that you make to the view’s attributes are saved automatically.

 - When **Never Save** is selected, any changes that you make to the view’s attributes are discarded when the view is closed.

Selected Defaults Panel

The settings on the **Selected Defaults** panel control which Saved Defaults and layer settings are used in the view. These settings are also found in the **Active Defaults** dialog. See “Active Defaults Dialog” on page 69.
Reference Display Panel

The settings on the Reference Display panel control the appearance of the Reference Display in the view. These settings are also found in the Change Floor/Reference dialog. See “The Reference Display” on page 61.

Working in Multiple Views

There is no limit to the number of plan or layout files that can be open, nor is there a limit to the number of view windows that can be open. The name of the file and the type of view is stated at the top of each view window in its title bar as well as in its tab. If the view is saved, its name displays instead of the view type.

By default, Chief Architect uses a tabbed document interface, which means that when more than one view window is open in the program window, each open window will have a tab that displays in a row above the currently active view.

- Each tab states the name of the file, the view type, and the view’s name. Wall Detail tabs also state the floor that the associated wall is found on.
- Each tab features an icon indicating its type of view. These icons are also used in the Project Browser. See “Project Browser” on page 56.
- Click on a tab to make it the active view.
- If there is not enough room in the program window to display all tabs, left and right arrow buttons allow you to scroll through the tabs.
- Tabs can be reordered by clicking and dragging.

There is no limit to the number of 3D view windows that you can have open at a given time; bear in mind, though, that each window demands use of your computer’s resources and that you may see poor performance if too many views are open. See “3D Views” on page 779.

There are several ways to close a view window. See “Closing Views and Files” on page 128.

Tiling Views

As an alternative to tabbed views, windows can instead be tiled. Tiling allows you to display multiple views in a single Chief Architect window so you can see the results of changes in plan view in 3D or vice versa. It can also be useful for copying objects from one plan to another.

There are several ways to create tiled views:

- Click and drag a view window’s title bar or tab into the part of the drawing area that you would like it to be. When a highlighted space is created, release the mouse button.
- Select Window> Tile Horizontally to display views in a horizontal orientation, one above the other.
• Select **Window> Tile Vertically** or press Shift + F6 on the keyboard to display views in a vertical, side by side, orientation.

Views are tiled left to right or top to bottom in the order in which they were last active: the most recent view is on the left or at the top, while least recent is on the right or on the bottom.

• To activate a view, click on its title bar or anywhere in the view window. Note that any changes you make in the active window are reflected in other views as well.

• To end window tiling, select **Window> Tab Windows**. You can also end tiling by double-clicking on the title bar of the program window.

Multiple Program Windows

To create a second program window, click and drag the title bar or tab of a view window completely out of the current program window: for example, onto a second monitor. A second Chief Architect program window will be created with its own menu and toolbars.

Swapping Views

There are a number of ways to switch between open view windows:

• Click on a view window’s tab.

• Select **Window> Swap Views** or press F7 to switch between the two most recent views.

• The **Swap Views** button toggles between the current view and the view that was current before it.

• Select **Window> Select Next Tab** or **Window> Select Previous Tab** to cycle through all open views in the order you prefer.

• In Windows, press the Ctrl + Tab (Next Window) or Ctrl + Shift + Tab (Previous Window) keys to cycle through all open views.

• On a Mac, press the Ctrl + } (Next Window) or Ctrl + Shift + { (Previous Window) keys to cycle through all open views.

• A list of all the views currently open is located at the bottom of the Window menu. Each view is identified by its name and what type of view it is. A check mark is beside the view that is currently active. Select one to go directly to that view.

If more than eight view windows are open, **More Windows** will be the last item in the Window menu. Select this option to open the **Select Window** dialog:

Select the name of a view in the list and click **OK** to make it the active view.

View Tools

The **View Tools** allow you to open and close the program’s side windows, as well as toggle a variety of references and drawing aides. Select the **View** menu to access these tools. You can also add the **View Tools** parent button to your toolbars. See “Adding and Removing Buttons” on page 109.

Refresh Display redraws the current window to clean up extra lines, show missing items, and correct random on-screen effects caused by changes to the model. See “Refresh Display” on page 154.

Library Browser opens and closes the Library Browser side window. See “The Library” on page 691.

Project Browser opens and closes the Project Browser side window. See “Project Browser” on page 56.

Tool Palette opens and closes the Tool Palette, which will display related tools. See “Child Tool Palette” on page 108.

Active Layer Display Options opens and closes the side window of the same name. See “Drawing Groups” on page 153.

Status Bar displays or suppresses the Status Bar at the bottom of the program window. See “The Status Bar” on page 33.

Scrollbars displays and suppresses scrollbars on view windows. See “View Windows” on page 28.
Toolbars displays and hides the program’s toolbars. See “Toolbars and Hotkeys” on page 107.

Color toggles the display of color in the current view. See “Color On/Off” on page 154.

Reference Grid toggles the display of the Reference Grid in all views in the current plan or layout file. See “Grid Snaps” on page 133.

Angle Snap Grid toggles the display of the Angle Snap Grid in all views in the current plan or layout file. See “Angle Snap Grid” on page 133.

Temporary Dimensions toggles the use of Temporary Dimensions when objects are selected. See “Temporary Dimensions” on page 358.

Arc Centers and Ends toggles the display of Arc Centers and Ends in the current view. See “Arc Centers and Ends” on page 176.

Line Weights toggles the display of Line Weights in all views in which lines are drawn. See “Line Weights” on page 989.

Drawing Sheet toggles the display of the drawing sheet. See “Print Preview” on page 989.

Zoom Tools

Zoom is used to magnify any given area on the plan or 3D view. Select Window> Zoom, then click and drag a marquee around an area on screen. When you release the mouse, the selected area expands to fill the screen.

Note that in 3D views, using Zoom does not reposition the camera. This can lead to inconsistencies between a camera's position and what is actually shown in the view if other methods of zooming are used later. See “Repositioning Cameras” on page 793.

When the zoom is complete, whatever tool was active prior to selecting the Zoom tool automatically becomes active again. If another zoom is needed, click the Zoom tool again.

Zoom In - Click to zoom in towards the screen center by a factor of two.

Zoom Out - Click to zoom out from the screen center by a factor of two.

Undo Zoom - Reverse the last zoom operation.

Fill Window - Fits all visible items on screen.

Fill Window Building Only - Fits all walls and railings on the current floor on screen.

Zooming With the Mouse Wheel

Use the mouse wheel to zoom in and out in all view windows. Scrolling the mouse wheel one click up or down zooms in or out, centering on the location of your pointer and changing the zoom by about 10%.

By default, zooming in 3D views changes the camera’s position. See “Mouse Scroll Wheel and Trackpad” on page 793.

Note: Depending on the configuration of your mouse, it may be necessary to hold down the Ctrl key while turning the mouse wheel.

Undo Zoom

Select Window> Undo Zoom to reverse the last zoom operation.

Note: Undo and Redo do not affect zoom.

Fill Window

In plan view, a CAD Detail or a cross section/elevation view, select Window> Fill Window or press the F6 key to view nearly everything on screen that is visible, including the Reference

126
Display. CAD Points are the only objects that are not included when Fill Window is used.

If you are zoomed in so that only a portion of the drawing displays on screen, selecting Fill Window zooms out so that the entire view fits on the screen. If you are zoomed out so that the entire drawing is smaller than the screen, selecting Fill Window zooms in until the drawing fills the screen.

When the drawing sheet is shown, Fill Window zooms to the sheet borders.

Fill Window Building Only

Window> Fill Window Building Only is similar to Fill Window, but zooms in or out to so that all walls, railings, and roof planes in the view fill the current window. These objects are included in the extents of the view even if their layers are turned off. Other objects are ignored.

In 3D Views

Fill Window and Fill Window Building Only behave slightly differently in perspective and orthographic 3D views. In perspective views, the original zoom factor is restored, while in orthographic views the camera’s Field of View is adjusted so that all surfaces in the 3D view are included.

Panning the Display

There are four ways to pan the display without changing the zoom factor.

Using the Scroll Bars

One method is to use the scroll bars on the right and bottom edges of the window.

- Drag the square button in the bar itself in order to pan a larger distance.
- Click the end arrow keys on the scroll bars to shift the display in 12” increments.
- The 12” increment is defined in the Plan Defaults dialog under Inches Scrolled by Arrow Key. See “General Plan Defaults Dialog” on page 77.

Using the Arrow Keys

In plan view, the Shift + arrow keys on the keyboard work exactly like clicking the arrow buttons on the scroll bar. They shift the display according to the number of inches defined in the Plan Defaults dialog.

Using the Mouse

If you have a wheel mouse, you can pan the display by pressing the middle mouse button, or wheel, and moving the mouse in the direction you would like to pan. When the middle mouse button is held down, the pointer changes to a hand icon.

In the Mac version of Chief Architect, you can pan using the left mouse button and Option key. Mouse drivers sometimes have other functions assigned to the wheel and buttons. These override the Chief Architect setting.

Using a Mac Trackpad

In the Mac version of Chief Architect, you can two finger drag to pan the display. See “Trackpads” on page 27.

Using the Pan Window Tool

The Pan Window tool works much like the mouse wheel method.

- Select Window> Pan Window. The pointer changes to a hand icon. Click and drag to pan the window. The program reverts to the previously active tool when you release the mouse button.
- Double-click the Pan Window tool and the command remains active.
Closing Views and Files

If a view is still needed, you can swap to a different view without closing it. If, however, a view is no longer needed, it can be closed. There are several ways to close a view window:

- Select **File > Close View** to close the active window.
- Press Ctrl + W or Ctrl + F4 on the keyboard to close the active window.
- Click the **Close** button in the active view’s title bar or in any view’s tab.
- A tabbed view can be closed by clicking on its tab using the middle mouse button.
- Right-click on a Camera, Cross Section, or Plan View in the Project Browser and select **Close View** from the contextual menu.
- Select **File > Close All 3D Views** to close all currently open camera view windows instead of just the active window.

If a plan has only one view window open and you try to close it, the program will prompt you to save before closing if there are any unsaved changes. Edited cross section/elevation and saved plan views also prompt you to save before closing. See “Saving, Exporting, and Backing Up Files” on page 42 and “Saved Views” on page 119.

Even if all view windows are closed, the program can still be open. See “Exiting Chief Architect” on page 54.
Chapter 7: Creating Objects

There are a wide variety of objects in Chief Architect that you can use to create complete 3D models and working drawings. Although these objects are sometimes very different from one another, the methods used to create them are similar. Once an object is created, it can be selected and edited to meet the requirements of your project. The editing characteristics common to most objects are described elsewhere. See “Editing Objects” on page 163.

Architectural vs CAD Objects

There are two broad categories of objects in Chief Architect: architectural objects and CAD objects. CAD objects such as lines, arcs, text, and dimensions are 2D objects that can be created and edited in plan view, and cross section/elevation views, CAD detail windows, and on layout pages but do not display in 3D camera views and overviews. See “The CAD Drawing Tools” on page 228.

In contrast, architectural objects such as walls, cabinets, doors, windows, and stairs display in 2D and 3D views. Architectural objects can be created and edited in 2D and 3D views but not in CAD Detail windows or on layout pages.

Some architectural objects, such as custom countertops and slabs, have some behaviors in common with CAD objects and are referred to as CAD-based.

Defaults and Preferences

The ways that objects in the program behave as they are created and edited are affected by a number of default and preference settings. See “Preferences and Default Settings” on page 65.

It is a good idea to be familiar with these options and how they affect both drawing and editing in the program.

Chapter Contents

- Architectural vs CAD Objects
- Defaults and Preferences
- Snap Behaviors
- Object Snaps
- Angle Snaps
- Grid Snaps
- Creating Objects
- Copying and Pasting Objects

Snap Settings

Select Edit> Snap Settings to access the three categories of Snap Settings that determine how objects snap to one another and whether they snap to allowed angles or to points on a grid, as well as object bumping and pushing behaviors.

Object Snaps enable snapping to objects. See “Object Snaps” on page 131.
Angle Snaps enable snapping at Allowed Angles. See “Angle Snaps” on page 132.

Grid Snaps enable snapping to the Snap Grid. See “Grid Snaps” on page 133.

Bumping/Pushing enables bumping and pushing behaviors. See “Bumping/Pushing” on page 192.

Edit Behaviors

Select Edit> Edit Behaviors to access the six global edit behavior modes that determine how dragging the edit handles with the left mouse button affects a selected object and may also affect how objects are drawn.

The Default edit behavior provides the most commonly used editing options. See “Default” on page 164.

The Alternate edit behavior provides an alternative to the Default behaviors that may be more useful in some situations. See “Alternate” on page 164.

The Move edit behavior allows you to move a selected object using the corner handles and the Move handle. See “Move” on page 165.

The Resize edit behavior scales an object as you drag a corner handle. See “Resize” on page 165.

The Concentric edit behavior allows you to resize objects so that the distance moved by each edge is the same as all other edges. See “Concentric” on page 165.

The Fillet edit behavior allows you to add a fillet at any corner of an object. See “Fillet” on page 166.

Connect CAD Segments

Select Edit> Edit Behaviors> Connect CAD Segments to toggle the ability to edit the individual segments of polyline-based objects and connected walls. It also affects the ability to snap line- and arc-based objects together as they are drawn to form a polyline. See “Disconnect Edges” on page 168.

Rotate/Resize About

Objects can be rotated or resized about either their own centers or the Current CAD point. See “Point Tools” on page 229.

Specify which behavior is used by selecting Edit> Edit Behaviors> Rotate/Resize About Current Point or in the Preferences dialog. See “Behaviors Panel” on page 96.

Arc Creation Modes

Select Edit> Arc Creation Modes to access the five Arc Creation Modes that control how arcs and curved walls are drawn.

Free Form Arc mode allows you to define an arc by clicking and dragging along the desired path. See “Free Form Arc” on page 238.

Center/Radius/End Arc mode allows you to define the center and radius of an arc, and then its length. See “Center/Radius/End Arc” on page 238.

Start/End/On Arc mode allows you to define the start and end points of an arc, then adjust the curvature. See “Start/End/On Arc” on page 238.

Start/Tangent/End Arc mode allows you to define the start and end points of an arc, its tangent and its curvature. See “Start/Tangent/End Arc” on page 238.

Arc About Center mode allows you to draw an arc by defining the center and then the start and end points. See “Arc About Center” on page 238.

Snap Behaviors

There are three categories of snap behavior in Chief Architect that affect how objects are created and how they can be edited:

• Object Snaps, which snap CAD and architectural objects to other objects.

• Angle Snaps, which snap objects at specific angles.

• Grid Snaps, which snap objects to points on a grid.

Snap behaviors can be controlled in the Preferences dialog and in the Plan or Layout Defaults dialogs.
Object Snaps

Object Snaps allow you to position objects precisely relative to each other; for example, to position lines so that their endpoints meet or roof plane edges so that they are collinear.

Object Snaps can be turned on or off by selecting Edit> Snap Settings> Object Snaps, by clicking the toggle button, or in the Preferences dialog. See “Snap Properties Panel” on page 97.

Object Snaps are indicated visually as you create or edit objects. To remove any object snap indicators that are visible on screen, press the 1 (one) key. As you continue drawing or editing, new indicators may appear.

With the exception of On Object snaps, Object Snaps have priority over all other types of snapping in Chief Architect. Bumping/Pushing overrides Object Snaps, however. See “Bumping/Pushing” on page 192.

Object Snap Locations

There are many locations on an object that other objects can snap to. In addition to snap points located on objects, Extension Snaps locate points away from objects. Each type of object snap can be toggled by selecting Edit> Snap Settings, or in the

Preferences dialog. See “Snap Properties Panel” on page 97.

Regardless of which Object Snaps are active, when multiple objects are selected the selection set’s only snap point is its midpoint.

Extension Snaps

For some operations, it is helpful to snap to a point far away from an original object, while maintaining a relationship to a point on that object. For example, you may want to snap to a point exactly perpendicular to a line’s endpoint. Extension Snaps are helpful in these situations.

Extension Snaps are indicated by extension anchors, indicated by small blue circles.
Anchors display for Endpoint, Midpoint, and Quadrant snaps when these snap behaviors are enabled.

When an anchor is established, you can create Tangent, Perpendicular and Orthogonal extension lines relative to it.

To use extension snaps

1. Toggle on Object Snaps and make sure the extension snaps are enabled.
2. Draw a Rectangular Polyline.
3. Select the Draw Line tool and move your pointer along the edges of the polyline.
4. When your pointer passes over an endpoint or midpoint, an extension anchor is created.
5. Move your pointer perpendicular edge displaying the anchor to create a blue, dashed extension line.

Only a limited number of anchors can exist at one time; creating a new anchor removes the oldest existing anchor. You can specify the number of possible anchors in the Preferences dialog. See “Snap Properties Panel” on page 97.

Wall Intersection Extension Snaps

As walls are drawn, extension lines identify points that are either collinear or orthogonal to the end points of other walls. These extension lines identify potential intersection points and display only when Intersection Snaps are enabled. See “Creating Walls” on page 273.

Object Snaps Hotkeys

- Press the “1” key to clear out all current extension anchors.
- Hold down the “S” key to temporarily disable Object Snaps. You are still able to use Extension Snaps to existing anchors, so the “S” key can be used to avoid picking up unwanted extension anchors.

The “S” Key - Case Study

In the following example, there are several lines. Suppose we want to start a line at the intersection of two orthogonal extension lines drawn from two lines, A and B. To establish an extension anchor, we need to drag the mouse over line A’s endpoint, but there are several lines between the endpoints of lines A and B. We need to establish the two extension anchors without snapping to the intervening objects.

Angle Snaps

It is often important that objects be drawn at exact angles. This can be accomplished using Angle Snaps. Angle Snaps allow you to draw walls, lines, and other objects at specified Allowed Angles. Angle Snaps also affect the way objects rotate, the radius of arcs, and a variety of other operations.

You can specify whether Angle Snaps use 15° increments or 7.5° increments plus any additional Allowed Angles that you may specify. See “General Plan Defaults Dialog” on page 77.

Angle Snaps can be turned on or off by selecting Edit> Snap Settings> Angle Snaps, by clicking the toggle button, or in the Preferences dialog. See “Snap Properties Panel” on page 97. When Angle
Snaps are disabled, the Angle Snaps icon will display near the mouse pointer.

Angle Snap Settings

You can change Allowed Angle settings for Angle Snaps in the Plan Defaults or Layout Defaults dialog. See “General Plan Defaults Dialog” on page 77.

Specify 15 Degree or 7 ½ Degree angle snaps. When 7 ½ Degree Angle Snaps are selected, you can also specify Additional Angles.

Angle Snaps and Object Snaps

Angle Snaps have a higher priority than Grid Snaps and On Object Snaps, but a lower priority to all other Object Snaps. If a valid Object Snap exists, the program uses that instead of an Angle Snap.

Sometimes both Angle Snaps and Object Snaps apply. For example, suppose a CAD line is drawn at 15° using Angle Snaps and another line is approached. You can draw the new line at 15° using Intersection Snaps to snap to a point on the existing line.

Grid Snaps are turned on and off by selecting Edit> Snap Settings>Grid Snaps, by clicking the toggle button, or in the Plan or Layout Defaults dialog.

Reference Grid

In addition to the Snap Grid, the Reference Grid is provided to give you a visual sense of scale. The Reference Grid is useful for zooming in and out, or for general layout guidelines, but is not used for snapping.
The Reference Grid can be toggled on and off by selecting View > Reference Grid. See “View Tools” on page 125.

The appearance and size of the Snap and Reference Grids can be controlled in the Plan and Layout Defaults dialogs. See “General Plan Defaults Dialog” on page 77.

Grid Snaps and Angle Snaps

Of the three snap behaviors, Grid Snaps have the lowest priority and are overridden by Angle Snaps and Object Snaps.

When Grid snaps and Angle Snaps are both enabled, objects are drawn and edited using Polar Coordinates. For example, if the grid Snap Unit is set to 12” (1 foot), drawing a new wall at an Allowed Angle snaps the wall length to 0”, 12”, 24”, and so on. The Angle Snap Grid illustrates this nicely: when Grid Snaps are enabled, small perpendicular hatch lines display along the lengths of the Angle Snap Grid lines. These hatches are at regular intervals equal to the Snap Grid Unit, but do not necessarily align with the Snap Grid itself. See “Angle Snap Grid” on page 133.

Creating Objects

In Chief Architect, there are five ways to add new objects to your drawing: by clicking to place an object, by clicking and dragging to draw an object, by entering coordinates, by placing a distribution path or region, or by importing custom symbols, drawings, pictures or metafiles.

If you create an object using any of these methods and the layer it will go on is either locked or turned off, the program will ask you if you want to unlock or display the layer. Objects can be created on layers that are not set to display, but they cannot be created on locked layers. See “Object Creation and Layers” on page 136.

While the size of the drawing area in Chief Architect is limited only by the resources on your computer, it is best to begin your drawing near the origin, 0,0,0. The current position of your mouse pointer displays in the Status Bar at the bottom of the program window. See “3D Drafting” on page 25.

Click-to-Create

Many objects, including doors and windows, cabinets, library symbols, text, pictures, and images are created by clicking. Select a library object or one of the drawing tools mentioned above, then click in the drawing area to place the object at that location.

Continue clicking to place the selected object until another tool is selected.

If you click at a location where there is not enough room for the object to be placed, one of two things may happen:

- Some objects, notably cabinets, doors, and windows, will resize smaller to fit into the space.
- Most objects cannot resize in this manner, so the program will present a warning message indicating that there is not sufficient space at the current location.

When most drawing tools are active or library symbols selected for placement, a preview outline follows your mouse pointer, indicating the size and shape of the object to be created. If your pointer is positioned at a location where the object cannot be placed, this preview outline will not display.

As you move the mouse pointer, the center point of the object’s back edge will snap to active snap points when Grid Snaps or Object Snaps are enabled. See “Snap Behaviors” on page 130.

Many architectural objects can be created in plan view or any 3D view. In order to place a stand-alone, click-to-create object in 3D, it is necessary to click near a wall or within the Terrain Perimeter as these objects help orient the new object within the 3D space.

Clicking and Dragging

Other objects, including walls and railings, straight stairs, and CAD and CAD-based objects are created by clicking and dragging to define either a path or an enclosed area. Select a tool, then click and drag in the drawing area to draw an object between your start and end points.
Continue drawing the selected object until another tool is selected.
You can temporarily slow the movement of the mouse as you drag by holding down the Shift key on your keyboard.
You can cancel any click-and-drag drawing operation before it is completed by pressing the Esc key on your keyboard, or by pressing any two mouse buttons at the same time.

When the Alternate edit behavior is active, a continuous drawing behavior is enabled, allowing you to click at the start and end points of line- and arc-based objects without dragging. See “Alternate” on page 164.

To continuously draw by right-clicking
1. Select a tool that creates line- or arc-based objects.
2. Right-click, drag, and release the mouse button to draw the first object.
3. Move the pointer to a different location and notice the drawing indicator that begins at the object’s endpoint and follows your pointer as it moves.
4. Click to create a second object beginning at the first object’s starting point and ending where you clicked.
5. Continue moving the pointer and clicking to create additional objects until:
 • Another tool is selected,
 • The Esc key is pressed,
 • Two mouse buttons are pressed at the same time,
 • The left mouse button is double-clicked,
 • A closed shape is formed.

Polyline- and Spline-based objects can be created by snapping multiple Line-, Arc-, and/or Spline-based objects together. These objects will only snap together to form a polyline or spline if they are on the same layer and share identical attributes such as color, line style, and arrow specifications. See “Editing Objects” on page 163.

Entering Coordinates
Objects created by clicking and dragging can also be drawn by entering coordinates. See “3D Drafting” on page 25.
Coordinates can be either absolute or relative. Absolute coordinates refer to a fixed point of origin at 0,0,0, while relative coordinates treat the current location of the selected object as the point of origin.

To use the Enter Coordinates dialog
1. Select any tool that requires you to click and drag to create an object.
2. Click and begin dragging to draw the object.
3. Before you finish dragging and with the mouse button pressed, press either the Tab or Enter key on your keyboard.
4. In the Enter Coordinates dialog:
 • The Start Location, where you clicked and began dragging, displays at the top.
5. Specify the method used to define the New Location, or end point.
 • Select Absolute to define the end point using absolute coordinates on the snap grid.
 • Select Relative to Start to define the end point relative to the start point, as though the start point was at (0,0).
 • Check Polar to define the end point of the new line by its Distance and Angle from the start point rather than as X and Y coordinates.
 • The program remembers which option you last used in this dialog.
6. Specify the position of the end point, either as X and Y Position coordinates, or as Distance and Angle.
7. Click OK to close the dialog and create the object.

To keep the Alternate Drawing Mode enabled when a closed shape is formed, uncheck Stop When Connected in the Preferences dialog. See “Behaviors Panel” on page 96.
CAD lines, arcs and points can also be created using the **Input Line**, **Input Arc** and **Input Point** dialogs. See “Input Point” on page 229, “Input Line” on page 232, or “Input Arc” on page 239.

Auto Rebuild

A number of objects, notably foundations, roofs, and framing, can be automatically generated and rebuilt as changes are made to the model. Objects created in this manner can be edited just like other objects; however, the Auto Rebuild functionality will be disabled.

Distributing Objects

You can place multiple copies of any object in an evenly-spaced array either within a region or along a path using the **Distributed Objects** tools. See “Distributed Objects” on page 752.

Importing Objects

Custom symbols, drawings, pictures and metafiles can be imported into the program and placed in the drawing area with a click. See “Importing and Exporting” on page 879 and “Pictures, Images, and Walkthroughs” on page 853.

Converting Objects

A variety of objects can be created by converting existing CAD objects and many CAD-based objects into another type of object. See “Converting Objects” on page 205.

Object Creation and Layers

When it is created, every object is placed on a layer which controls whether and how it displays. See “Layers” on page 142.

If you try to create an object on a layer that is not set to display in the current view, the program will ask if you want to turn that layer on. See “Message Boxes” on page 33.

- Click **Yes** to create the object and turn on its layer in the current view.
- Click **No** to create the object but leave its layer turned off in the current view.
- Click **Cancel** to not create the object and leave the layer turned off.

If you try to create an object on a layer that is locked, the program will prompt you to unlock the layer. If you choose to leave the layer locked, the object will not be created. See “Locking Layers” on page 143.

Similarly, if you try to insert an object into another object that is on a locked layer, nothing will be created. See “Inserted Objects” on page 705.

If you place an object on a renamed or custom layer and then paste it into a new plan or layout file, a new layer will be created in the destination file.

Copying and Pasting Objects

New objects can also be created by cutting, copying, and pasting existing objects, either individually or in groups. Objects can be copied from one floor to another, one view window to another, and one file to another. Because copying uses your system’s clipboard, some objects can be pasted into other applications, as well.

Objects cannot be pasted into any views that they cannot be created in normally. For example, CAD objects cannot be pasted into a 3D camera view or overview, while Architectural objects cannot be pasted into a CAD Detail window or onto a layout page.

If an object on a custom layer or one that inherits properties from a Saved Dimension Default or Saved Text Style is pasted into a different plan or layout file:

- That Saved Default, Text Style, or layer will be created in the destination file if it does not already exist.
- If a Saved Default, Text Style, or layer with the same name does exist in the destination file, the object will inherit its attributes from the existing settings.

See “Multiple Saved Defaults” on page 67 and “Layers” on page 142.
A few objects, such as Terrain Perimeters and camera symbols, cannot be copied.

Cut
Select Edit> Cut or press Ctrl + X to remove the selected object(s) from the file and save them in the system clipboard. To paste the selection in Chief Architect or another application, select Edit> Paste or press Ctrl + V while in that application to enable the Paste function.

Copy
Select Edit> Copy or press Ctrl + C to copy the selected object(s) to the system clipboard. To paste the selection in Chief Architect or another application, select Edit> Paste or press Ctrl + V while in that application to enable the Paste function.

Paste
Select Edit> Paste or press Ctrl + V to enable Paste mode, then left- or right-click in the current view to paste the selected object(s) previously copied to the system clipboard at that location. If pasting from another application, click in the destination view in Chief Architect first to make sure it is active.

Once pasted, these object(s) are selected. Objects pasted in 3D views are selected on their top surfaces.

If the selection being pasted consists of text, it is placed in a Text object.

If the selection being pasted is an image, the Paste Image dialog opens.

The options in the Paste Image dialog and their results are similar to those in the Screen Capture Setup dialog. See “Creating Screen Captures” on page 867.

Copy/Paste
Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard and immediately enable the Paste function in Chief Architect.

The Copy/Paste edit button activates Paste mode in which each available edit tool and handle makes a copy in addition to its primary function and four new edit buttons display on the edit toolbar.

- Click the Sticky Mode edit button to remain in the current mode and place multiple copies of the selected object(s).
- Click the Paste Hold Position edit button to create a copy of the selection at the same location as the original. See “Paste Hold Position” on page 138.
- Click the Point to Point Move edit button to make a copy of the selection at a specific location. See “Using Point to Point Move” on page 193.
- Click the Reflect About Object edit button to make a copy of the selection reflected about another object. See “Reflect About Object” on page 204.
- Click the Main Edit Mode edit button or press the Esc key to return to the selected object’s main edit toolbar.

If you paste a selection in a file other than its original source file, when you return to the original, Paste mode is still enabled.

The Copy/Paste edit button can be used with the edit handles in either of two ways: by clicking or by dragging an edit handle.

To Copy/Paste by clicking
1. Select an object or objects to copy.
2. Click the Copy/Paste edit button, select Edit> Copy from the menu or press Ctrl + C to copy and then Ctrl + V to activate the Paste functionality. The cursor displays the Copy/Paste icon.
3. If you wish to paste the copy in a different view or program window, open that window.
4. If your cursor does not display the Copy/Paste icon, select Edit> Paste from the menu or press Ctrl + V.

5. Left- or right-click once to paste a copy of the object at that location.

To Copy/Paste by dragging
1. Select an object or objects to copy.

2. Click the Copy/Paste edit button, select Edit> Copy from the menu or press Ctrl + C. The cursor displays the Copy/Paste icon.

3. Drag an edit handle:
 • Drag the Move edit handle to position the copy at a new location.
 • Drag a corner handle to create a copy in the same location but with a different size or shape. The result depends on which Edit Behavior you use. See “Defaults, Preferences, and Edit Behaviors” on page 163.

4. You can resize or position the copy accurately with respect to the original by watching the moved distance in the Status Bar at the bottom of the screen.

Sticky Mode

Normally, after an action is performed using the edit tools or handles while in an edit mode such as Paste mode, you return to the Main Edit Mode. Click the Sticky Mode edit button to remain in Paste mode and continue pasting copies of the selected object(s).

To exit Paste mode and return to the main edit toolbar for the selected object, click the Main Edit Mode edit button or press the Esc key on your keyboard. If you have not pasted a copy of the selected object and immediately click Copy/Paste after returning to the Main Edit Mode, Sticky Mode is still enabled.

Paste Hold Position

Click the Paste Hold Position edit button to create a copy of the selected object(s) at the same location as the original. The copy remains selected so you can perform additional operations.

Because multiple walls, railing and fencing cannot share the same space, the Paste Hold Position edit button is not available for these objects.

When copying between different floors or view windows, you can paste a copy at the same absolute position as the original selection using Paste Hold Position command.

To use Paste Hold Position
1. Select the object(s) to be copied.

2. Click the Copy/Paste edit button.

3. Switch to the desired floor or plan file and select Edit> Paste> Paste Hold Position.

4. A copy is placed at the same X, Y coordinates on the new floor or in the new plan as the original’s position.

Copy and Paste in Place

Select Edit> Copy and Paste in Place to create a copy of the selected object(s) at the same location as the original. The copy remains selected so you can perform additional operations.

Because multiple walls, railings, and fencing cannot share the same space, the Copy and Paste in Place command is not available for these objects.

Paste Special

The Paste Special tool allows you to choose a representation for the selection to be pasted.

Selections can be pasted as:
• Enhanced Windows Metafiles (EMF). See “Metafiles” on page 861.
• Device Independent Bitmaps (BMP). See “Importing Pictures” on page 859.
• Unformatted non-unicode text (TXT).
• File Name (a path to a file). Depending on the file type, it will be either opened or imported (if supported).
• Unformatted text (HTML). Pastes as text.
• Model Objects - Chief Architect format, not compatible with other programs.
To use Paste Special

1. Select an object, image, text or file on your computer and copy it.
2. Switch to the desired Chief Architect view window and select Edit> Paste> Paste Special .
3. In the Paste Special dialog, select the desired representation for the selection and click OK.
4. Click in the drawing area to place the copy at that location.

Multiple Copy

The Multiple Copy edit button makes it easy to create regularly spaced or concentric copies of any object or group of objects, including CAD Blocks and Architectural Blocks.

The copy intervals, or offsets, between copies can be specified in the Multiple Copy dialog. See “Multiple Copy Dialog” on page 139.

To use Multiple Copy

1. Select the object(s) to copy.
2. Click the Multiple Copy edit button.
3. Click the Sticky Mode edit button if you wish to make more than one set of multiple copies.
4. Three edit handles will display on the selected object.
 • Click and drag the square Move edit handle. Copies of the selection are made at regular intervals between the original and the pointer’s location.
 • Click and drag the triangular Rotate edit handle. Rotated copies of the selection are made at regular intervals.

5. Release the mouse button to place the copies. The dragged distance determines the number of copies placed.
6. If you clicked the Sticky Mode edit button, you can drag the last object created to make additional copies.
7. Click the Main Edit Mode edit button or press the Esc key to return to the selected object’s main edit toolbar.

The Multiple Copy tool can be used with the Alternate Alt edit behavior to create arrayed copies of objects. See “Alternate” on page 164.

To create an array of copies

1. Select the object(s) to copy.
2. Click the Multiple Copy edit button.
3. Right-click to enable the Alternate Alt edit behavior and drag the either Move or the Rotate edit handle in any direction. The Primary Offset or Primary Number of Copies is used.
4. Release the mouse button and move the pointer in another direction. The Secondary Offset or Secondary Copies value is used.
5. Click the left or right mouse button to place the array of copies.

Multiple Copy Dialog

Separate multiple copy intervals can be specified for:
• General objects
• Roof and floor trusses
• Rafters
• Floor and ceiling joists, posts, and beams
• Wall studs

To set the copy intervals for these objects, click the Multiple Copy button, then click the Multiple Copy Interval button to open the Multiple Copy dialog.

The specified intervals are global rather than file-specific and are retained between program sessions.
Click the **Offset Between Copies When Dragging** radio button to specify the offsets, or copy intervals, at which objects are copied as you drag with the mouse.

- **Primary Offset** - Specify the offset, or copy interval, for each object type.
- You can also specify a **Secondary Offset** for each object type that is used when the Alternate edit behavior is active. See “Alternate” on page 164.
- **Rotation Of All Objects** - Specify the copy interval, in degrees, to be used when objects are rotated as they are copied.

Evenly Distribute Copies When Dragging - Click this radio button to specify a set number of copies to be made as you drag with the mouse. The further you drag, the wider the spaces between the copies. These settings apply to all object types.

- **Primary Number of Copies** - Specify the number of copies to be made.
- **Secondary Copies** - Specify the number of copies to be made when the Alternate edit behavior is active.

Using the Transform/Replicate Object Dialog

Objects and groups of objects can be copied and pasted using the Transform Replicate Object dialog. See “Transform/Replicate Object Dialog” on page 208.

Using Point to Point Move

The **Point to Point Move** edit button can be used in combination with Copy/Paste to make a copy of the selected object(s) at a specified location. See “Using Point to Point Move” on page 193.

To use point to point copy

1. Select the object(s) to be copied, click the Copy/Paste edit button, then the **Point to Point Move** edit button.
2. Click at the start point and then at the end point.
3. An exact copy of the selected object(s) is created at the end point while the original remains unchanged.

Using Reflect About Object

The **Reflect About Object** edit button can be used in combination with Copy/Paste to make a reflected copy of the selected object(s), much the way **Point to Point Move** can. See “Reflect About Object” on page 204.
The way that objects display is an important in all stages of the design process. There are two primary ways that the display of objects is controlled: Drawing Groups and Layers.

Displaying Objects

There are two broad categories of objects in Chief Architect: architectural objects and CAD objects. See “Architectural vs CAD Objects” on page 129.

CAD objects are two-dimensional and display only in the view in which they were drawn. Architectural objects, on the other hand, are 3D and are represented in 2D and 3D views in different ways.

Layer Settings

By default, CAD and CAD-based objects use the settings assigned to their layer: including line style, color, and weight. They can also be assigned custom line attributes in their specification dialogs. See “Line and Text Styles” on page 143.

In plan view, architectural objects are represented much like CAD objects, using the attributes assigned to their layer. In addition, the edge lines of architectural objects in Vector Views also use these

Chapter Contents

- Displaying Objects
- Layers
- Layer Attributes
- Layer Display Options Dialog
- Layer Sets
- Layer Set Management
- Layer Set Defaults
- Active Layer Display Options
- Select Layer Dialog
- Layer Panel
- Object Layer Properties
- Layer Painter, Eyedropper, and Hider
- Layout Layer Sets
- Exporting and Importing Layer Sets
- Drawing Groups
- Display Toggles
- Fill Styles
- Line Styles
- Line Style Specification Dialog
- Color Chooser/Select Color Dialog
layer settings. See “Vector View” on page 829.

In addition, layers can be used to turn the display of objects on and off in different views.

Fill Styles

Closed CAD objects and can also be assigned a fill style for their interior areas. Fill styles may be a solid color or a pattern, and can be specified as transparent. See “Fill Styles” on page 155.

Many architectural objects can also be assigned a fill style; however, it is only used in plan view. In 3D views, architectural objects are represented using surfaces that have materials assigned to them.

Patterns and Textures

The appearance of architectural objects in 3D views is determined by the materials applied to the objects’ surfaces. See “Materials” on page 757.

Material patterns display in Technical Illustration, Line Drawing, and Vector Views, while textures display in other types of rendered views. See “Rendering Techniques” on page 828.

You can turn the display of patterns on or off in 3D views that use them by selecting **3D> Toggle Patterns**.

In 3D views that use textures, you can turn on or off the display of textures by selecting **3D> Camera View Options> Toggle Textures**.

Layers

Layers are used to organize and manage the display of all objects in all views and in the Materials List. A layer can be thought of as a transparency sheet with objects placed on it for viewing. Nearly all views use multiple layers, like a stack of transparencies put together to show different types of objects.

You can find out which layer an object is on in its specification dialog or by selecting the object and looking at the Status Bar. And, you can customize how each layer displays in the **Layer Display Options** dialog.

Multiple layers are organized into Layer Sets, which are designed to help you perform different tasks efficiently or produce specific views for your construction documents or for presentation purposes. You can customize the display settings for individual layer sets and can also copy, add and delete layer sets.

Different types of 2D and 3D views use their own layer sets. You can specify the initial layer set used by a particular type of view in the **Layer Set Defaults** dialog.

Layer Attributes

The display of objects in different views is controlled by layer sets and layers in the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.

In Use Layers

A layer is considered to be in use in the current plan or layout file if one or more objects are assigned to it; if it is selected in one or more defaults dialogs; or, if it a system default layer for one or more drawing tools.

In the **Layer Display Options** dialog, the **Used** column identifies in use layers:

- A red plus sign + indicates that one or more objects are assigned to the layer.

- A white wrench is indicates that there are no objects on the layer, but that it is specified in a defaults dialog.

- A grey S is indicates that the layer is not used elsewhere, but is a system default layer.

Move your mouse pointer over an icon to display a tool tip summarizing where the layer is in use.

Primary and Secondary Layers

Every object is placed on a layer which controls whether it displays in a given view. This layer is referred to as the object’s primary layer, and you can see its name in the Status Bar when the object is selected. See “The Status Bar” on page 33.

In addition, some objects have secondary layers which may alter the appearance of objects on the
primary layer, but do not control whether the objects display or not.

For example, the default primary layer for base cabinets is “Cabinets, Base”. In addition, base cabinets have a number of secondary layers that control the display of the countertop, face indicators, door opening indicators, module lines and labels.

You can view a list of an object’s primary and secondary layers by selecting it and clicking the Object Layer Properties edit button. See “Object Layer Properties” on page 150.

In Plan and 3D Views

All layers with a check in the “Disp.” column display when the current layer set is active. Objects that are not displayed cannot be seen or selected. If you try to place or draw an object on a layer that is hidden, the program asks if you want to turn the layer on.

Some objects are designed to be inserted into another object rather than standing alone. If the display of an object that contains an inserted object is turned off, the inserted object’s display will be turned off, as well. For example, if the display of a wall is turned off, any doors and windows in that wall will not display either. See “Inserted Objects” on page 705.

Only displayed objects are included when DXF/DWG and EMF files are exported, and only displayed objects print.

Materials Lists

Layers showing an “M” in the Mat column are included in subsequently generated materials lists. This allows you to control the inclusion of objects in the Materials List on a layer-by-layer basis.

Some default layers, such as Patterns, do not generate materials and are not included by default. See “Materials Lists and Layers” on page 948.

Layer Attributes

The overall content and organization of materials lists can be controlled in the Preferences dialog. See “Materials List Panel” on page 100.

The components included in the Materials List for a particular object can be specified in the object’s specification dialog. See “Components Panel” on page 959.

Line and Text Styles

A layer’s Color, Weight, Line Style and Text Style attributes determine how an object on that layer appears in plan view and in 3D views using the Vector View rendering technique.

Many objects, including all CAD and text objects, allow you to override these settings for an individual instance without changing its layer. See “Line Style Panel” on page 235.

Edge and Pattern Lines

In 3D Vector Views, objects are represented using lines to define their surface edges. By default, Edge Lines use the attributes set for the object’s layer, as described above.

Some CAD-based architectural objects, such as Slabs, have line style settings in their specification dialogs; however, these specifications are not used unless Use Object Settings is checked in the 3D View Defaults dialog. See “3D View Defaults Dialog” on page 782.

In addition, a material applied to an object surface may have a pattern associated with it. Pattern line color, weight, and spacing is set in the Define Material dialog. See “Pattern Panel” on page 769.

Locking Layers

Objects on layers with a lock icon in the Lock column cannot be selected by the user.
New objects cannot be drawn on a locked layer, either. If you lock a layer and then attempt to draw a new object on that layer, a message box will ask you to unlock the layer.

Layers with objects that you need to see as a reference while working, but not select, are good candidates for locking. For example:

- Locking the “Rooms” layer can make it easier to select objects located inside of rooms.
- Locking the “Roof Planes” layer can make it easier to select objects located under the eaves.

Another use for locking layers is to protect them from editing in plans opened by clients or others in select Home Designer programs. See “Opening Chief Architect Plans in Home Designer Programs” on page 40.

![Layer Display Options Dialog](image)

The **Layer Display Options** dialog controls the display of layers in a selected layer set. From any view except the Materials List, select **Tools> Layer Settings> Display Options** to open this dialog.

The **Layer Display Options** dialog consists of a table that lists all layers and their attributes.

There are a number of dialogs similar to **Layer Display Options** in the program:

- **The Object Layer Properties** edit tool allows you to access and edit the layer or layers associated with one or more selected objects. See “Object Layer Properties” on page 150.

- Select **Tools> Layer Settings> Display Options** in a layout to open the **Layout Page Display Options** dialog. See “Layout Page Display Options” on page 961.

- The **Layer Display Options** dialog is also available for views sent to layout. See “Displaying Layout Views” on page 969.

To edit the attributes of a Reference Floor Layer Set, click the **Define** button in the **Change Floor/Reference** dialog. See “The Reference Display” on page 61.
The **Layer Sets** options let you specify which layer set(s) is affected by changes made in this dialog as well as which layer set is active in the current view. These options are not available in the **Object Layer Properties** dialog.

- The currently active layer set displays in the drop-down list.
- Click the **Copy Set** button to create a copy of the current layer set.
- Check **Modify All Layer Sets**, then make changes to one or more layer's attributes and click OK. The changes will be applied to the layer(s) in all layer sets. See “Modify All Layer Sets” on page 147.
- Click the **Reset Layer Names** button to restore the original names to any system layers that have been renamed in the current file. Not available in the Active Layer Display Options side window. See “In Use Layers” on page 142.
- Click the **Delete Unused Layers** button to remove any layers in the current file that are not in use. Not available in the Active Layer Display Options side window. See “In Use Layers” on page 142.

The **Properties for Selected Layer Set** are presented in a table of layers and their attributes. You can filter the names that display in the list by typing in the **Name Filter** text field. When nothing is typed in this field, all layers display. You can also click a column header to sort all layers in the table by that column. An arrow above a column indicates that it is being used to sort the table, and in which direction it is being sorted. The **Name** column is sorted alphabetically. Layers are named so that similar object types are listed near one another, and sorting is case sensitive to allow greater control over organization. Double-click a layer in the **Name** column to rename it.

- An icon in the **Used** column indicates that the layer is in use. The information in this column can be sorted, but not edited here. See “In Use Layers” on page 142.
- A check in the **Disp** column indicates which layers are set to be visible. If a layer is turned off, this column is blank.
- An M in the **Mat** column indicates which layers are included in the Materials List.
A lock icon in the Lock column indicates which layers are locked, preventing objects on that layer from being selected. See “Locking Layers” on page 143.

The Color column shows the line color for each layer and can be sorted so that like colors are listed together.

The Line Style column shows the line style for each layer and can be sorted so that like line styles are listed together.

The Line Weight column displays the line weight used by each layer and can be sorted so that like line weights are listed together. See “Line Weights” on page 992.

The Text Style column shows the text style assigned to each layer and can be sorted so that layers using the same style are listed together. See “Text Styles” on page 398.

The buttons below the table offer additional control over the layers in the table.

- Click the Select All button to select all layers in the table at once. This allows changes to be quickly applied to all layers.
- Click the New button to open the New Layer Name dialog and create a new layer with a unique name of your choice. Duplicate layer names are not allowed.

Note: New layers are added to all layer sets. However, in all but the current layer set, their display will be turned off.

- Click the Copy button to create a copy of the selected layer. The new layer is added directly below the original in the table.
- Click the Delete button to delete the selected layer. You cannot delete used layers or any of the system layers used by Chief Architect.
- Click the Reset Names button to revert layer names for system layers back to the original names that installed with Chief Architect. This does not affect layers you created.
- Click OK to close the dialog and apply your changes.
- Click Cancel to close the dialog, ignoring any edits.

Layers are selected by clicking on them in the table. Hold down the Shift key or the Ctrl key to select multiple layers at once. Press Ctrl + A or click the Select All button to select all layers in the table. When selected, a layer’s attributes display and can be edited below.

![The program remembers what layer(s) are selected when you click OK and selects them again when you return to this dialog.](image)

3. The Properties for “Selected Layer” options let you modify the attributes of one or more selected layers. Line Color, Style, and Size affect lines in plan view and surface edge lines in Vector Views. When multiple layers are selected, “No Change” may display for attributes that are not shared by the selected layers.

- To turn off a selected layer, uncheck Display. See “Layer Attributes” on page 142.
- Uncheck Materials List to exclude all objects on a selected layer from the Materials List. See “Materials Lists” on page 943.
- To protect the objects on a selected layer from accidental changes, check Lock. Items on locked layers can display but cannot be selected. See “Locking Layers” on page 143.
- To change the color of lines on a selected layer, click the Color bar to open the Select Color dialog. See “Color Chooser/Select Color Dialog” on page 160.
- To change the Line Weight, or thickness, for objects on the selected layer. See “Line Weights” on page 992.
- To change the Line Style of a selected layer, click the drop-down arrow or the Library button to select a line style from the library. See “Line Styles” on page 157.
- To change the Text Style of a selected layer, click the drop-down arrow or click the Define button to open the Text Style Defaults dialog. The Define button is not available when multiple layers with different Text Styles are selected. See “Text Style Defaults” on page 398.

Note: Not all objects display in all views. For instance, invisible walls do not appear in camera views or materials lists, regardless of the layer they are placed on or whether that layer is turned on or not.
Layer Sets

Layer Sets are used to control the layer settings for different views in a plan or layout file. All views associated with a plan file - including views sent to layout - make use of layer sets stored in that .plan file.

A layer set consists of a complete list of the layers in the current plan or layout along with the display settings for each layer as set for a particular type of view or purpose. These display settings can be modified, and can be different for each layer set. See “Layer Display Options Dialog” on page 144.

Any changes made to a layer set in one view affects all other views using the same layer set. If this is not desired, you can create a unique layer set for a particular view. See “Layer Set Management” on page 148.

Layer sets are file specific, which means that changes made in one plan or layout file have no effect on the settings in other files. If you find that you use the same settings often, you should consider adding these layer sets to your template files. See “Template Files” on page 73.

Layer sets are also view specific, so you can use a different layer set in each plan view, camera view, cross section/elevation view, and CAD Detail if you wish. See “View Windows” on page 119.

While any view is active, select Tools > Layer Settings > Display Options to make changes to the layer set used for that view type.

Activating a Layer Set

There are five ways to activate a Layer Set:

- Select a Layer Set from the Active Layer Set Control drop-down.
- Activate a Default Set. See “Default Sets” on page 71.
- Open a saved view in which the Layer Set was previously active.
- Select a Layer Set in the Active Layer Display Options side window. See “Active Layer Display Options” on page 149.
- Select a Layer Set in the Active Defaults dialog. See “Active Defaults Dialog” on page 69.

Layout Layer Sets

Views sent to layout use layer sets saved with the plan, rather than with the layout. See “Displaying Layout Views” on page 969.

Layer Sets and Templates

Layers and layer sets are plan-specific. A custom layer set that you created in one plan file may not be available in another. To include a custom layer set in all new plan files, add it to your template plan. See “Exporting and Importing Layer Sets” on page 152 and “Template Files” on page 73.

Modify All Layer Sets

If you want changes made in one layer set to apply to all other layer sets in the current plan, check Modify All Layer Sets in the Layer Display Options dialog before making changes. The layer name and display attributes are applied to all other layer sets.

For example, if you check Modify All Layer Sets and then change the color and line style for the Text layer of the Electrical Set, the same changes are applied to the Text layer of the Framing Set of the same plan.

In order for changes to a layer to be applied to all layer sets, you must check Modify All Layer Sets before making the changes.

Layer Set Defaults

Whenever a particular type of view is created, such as floor plan view or a framing overview, a specific layer set is activated for that view. Which layer set becomes active depends on the type of view created.

The default layer sets for nine different view types, including the Reference Floor, are specified in the Layer Set Defaults dialog.

Each of these layer sets can be edited as needed in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Normally, it is best to change the settings in the existing default layer sets rather than select different default layer sets, but you can do so if needed.
Layer Set Defaults

The Layer Set Defaults dialog is used to specify the initial layer sets for a variety of special view types. Select Edit> Default Settings to open the Default Settings dialog, then select “Layer Sets” from the list and click the Edit button. See “Default Settings” on page 65.

When a new view window is created, Chief Architect sets the default layer set listed here as the active layer set for that view. See “View Windows” on page 119.

• Click the drop-down list to change the initial layer set for each type of view.
• Select “Use Active Layer Set” from the list to use whatever layer set is currently active in the new view when it is created.
• Click the Define button to open the Layer Display Options dialog and change the layer settings for the layer set. See “Layer Display Options Dialog” on page 144.

Layer Set Management

The Layer Set Management dialog lists the layer sets available in the current plan or layout file and lets you add and remove layer sets and modify and copy existing layer sets. Select Tools> Layer Settings> Layer Set Management to open this dialog.

• Click on a layer set name in the list to select it.
• Click the Define button or double-click on the layer set name to open the Layer Display Options dialog and make changes to the selected layer set.
• Click the New button to open the New Layer Set Name dialog and create a new layer set based on system default settings.
• Click the Copy button to open the New Layer Set Name dialog and create a new layer set based on a copy of the currently selected layer set.
• Click the Rename button to open the Rename Layer Set dialog and type a new name for the selected layer set. Not available for the Default Set.
• Click the Delete button to delete the selected layer set from the current file. The Delete button is enabled if the layer set can be deleted: you cannot delete the active layer set, the Default Set, or any layer set in use as a default.

Do not delete any layer sets that are used by a layout.

• Click the Import button to import layer settings from a .layers file. See “Exporting and Importing Layer Sets” on page 152.
• Click the Export button to export the layer settings in the current plan in a .layers file.
The Active Layer Set for Current View options affect only the layer set used in the view that was active when the Layer Set Management dialog was opened.

Active Layer Display Options

The Active Layer Display Options side window allows you to access the layer settings for the currently active Layer Set or the Object Layer Properties for the currently selected object. Select View> Active Layer Display Options to open or close this side window.

- When no object is selected, the settings for the active Layer Set are shown. See “Layer Sets” on page 147.
- When one or more objects are selected, the objects’ Object Layer Properties are shown. See “Object Layer Properties” on page 150.

The list of layers and the options for editing their attributes are similar to those in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Click the Options button at the bottom of the side window to specify what settings and information are presented:

- Select Layer Set Control to display the Layer Set drop-down list at the top of the side window.
- Select Layer Management to display the Reset Layer Names and Delete Unused Layers buttons.
- Select Layer Name Filter to display the Name Filter text box above the layer table. Type in this field to filter the names shown in the table; when nothing is typed, all relevant layers are listed.
- Select Layer Edit Buttons to display the Select All, New, Copy, Delete, and Reset Names buttons below the layer table.
- Select Layer Properties to display the Properties for Selected Layer settings below the label table.
- Select Show All Layers to list all layers in the table, even when an object is selected.
- Select which Columns to include in the table.

By default, when the Active Layer Display Options side window is opened, it will be docked on the right side of the program window. Like other side windows, though, it can be moved. See “Side Windows” on page 28.

Select Layer Dialog

The Select Layer dialog allows you to select a layer for one of two purposes:

- Select CAD> Current CAD Layer to open this dialog and specify which layer is the Current CAD Layer. See “Current CAD Layer” on page 229.

This dialog also opens when the Layer Painter tool is used. See “Layer Painter, Eyedropper, and Hider” on page 151.

The Select Layer dialog contains the table of layers and Name Filter found in the Layer Display Options dialog. Click on a layer in the table to select it, then click OK.

- If the dialog was opened using the Current CAD Layer tool, the selected layer will become the Current CAD Layer.
- If the dialog was opened using the Layer Painter tool, you can click on objects in the current view to assign them to the selected layer.

Layer Panel

The Layer panel is found in the specification dialogs for many different objects. Here you can specify the layer that the program uses to display the selected object.
Specify the **Layer** that the selected object(s) is located on.

- Check **Default** to place the selected object on the default layer for that object type. If the selected object is an automatically generated dimension line, frieze molding, or shadow board that has been edited, this box will be unchecked. See “Dynamic Defaults” on page 67.
- Click the drop-down list to select a layer from those available in the file.
- Click **Define** to open the **Layer Display Options** dialog and select, modify, or add a new layer. See “Layer Display Options Dialog” on page 144.

Select which **Drawing Group** the selected object(s) is in. See “Drawing Groups” on page 153.

Object Layer Properties

The **Object Layer Properties** edit tool allows you to access and edit the layer or layers associated with one or more selected objects. See “Primary and Secondary Layers” on page 142.

Some objects, such as CAD lines, only have one layer associated with them. Other objects, including many architectural objects like cabinets, have multiple layers that affect their display in various views. A few objects, such as active camera symbols and layout boxes, do not have this edit tool.

When you click the **Object Layer Properties** edit button, the **Object Layer Properties** dialog opens.

The settings in this dialog are similar to those in the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.
Layer Painter, Eyedropper, and Hider

The Properties of the selected object(s) layers in the currently active layer set display in the table. The name of the currently active layer set is included in this heading. See “Layer Sets” on page 147.

- Type in the Name Filter text field to filter the names that display in the list below. When nothing is typed in the field, no layers are suppressed.
- A table listing the layers associated with the selected object(s) displays here. This sortable table functions like that in the Layer Display Options dialog.
- Check Show All Layers to list all layers in the current file rather than just those associated with the selected object. When unchecked, only the layers associated with the selected object(s) display.
- As in the Layer Display Options dialog, when multiple layers with different properties are selected, drop-down lists may display “No Change” and check boxes may have a solid fill. See “Dialogs” on page 30.

Layer Painter, Eyedropper, and Hider

The Layer Painter and Layer Eyedropper tools allow you to move an object to any layer in any view without opening its specification dialog.

The Layer Hider tool lets you turn off the display of any layer in the currently active layer set by clicking on an object on that layer.

To use the Layer Painter

1. In any view, select Tools> Layer Settings> Layer Painter 🎨.
2. In the Select Layer dialog, choose a layer and click OK. Your cursor will display the painter icon. See “Select Layer Dialog” on page 149.
3. Note that the name of the layer being painted is noted on the left side of the Status Bar at the bottom of the program window. See “The Status Bar” on page 33.
4. Move your cursor over an object and notice that the Status Bar now states both the layer being painted and the current layer of the target object.
5. Click on objects in the view to move them to the selected layer.
To use the Layer Eyedropper

1. In any view, select Tools > Layer Settings > Layer Eyedropper.
2. Click on an object to load the layer it is on into the Layer Painter.
3. Your cursor will display the painter icon, and you can click on other objects to place them on the selected layer.

To use the Layer Hider

1. In any view, select Tools > Layer Settings > Layer Hider.
2. Your cursor will display the layer icon.
3. Move your cursor over an object and notice that the Status Bar states the object’s primary layer.
4. Click on the object to turn off the display of its primary layer in the currently active layer set. See “Layer Sets” on page 147.

Layout Layer Sets

Layer sets are an effective way to control not just what displays while you are working, but what displays in the views you send to layout and print. See “Layout” on page 961.

When you send a view to layout, you have two choices as to which layer set the view uses:
• You can use the same layer set as the original view being sent to layout.
• You can make a copy of the layer set used by the original view.

Both approaches have advantages and disadvantages, so you should use the option that best suits your needs. To learn more about the pros and cons of each approach, see “This new layout box references the “Layout Set 1” layer set saved in your plan”.

Exporting and Importing Layer Sets

Layer sets created in one plan can be exported as a .layers file and imported into other plans. This is a convenient alternative to re-creating one or more layer sets that may already exist in another plan.

Exporting Layer Sets

To export layer sets from the current plan or layout file, select File > Export > Export Layer Sets or click the Export button in the Layer Set Management dialog.

To use the Layer Hider

1. In any view, select Tools > Layer Settings > Layer Hider.
2. Your cursor will display the layer icon.
3. Move your cursor over an object and notice that the Status Bar states the object’s primary layer.
4. Click on the object to turn off the display of its primary layer in the currently active layer set. See “Layer Sets” on page 147.

Layout Layer Sets

Layer sets are an effective way to control not just what displays while you are working, but what displays in the views you send to layout and print. See “Layout” on page 961.

When you send a view to layout, you have two choices as to which layer set the view uses:
• You can use the same layer set as the original view being sent to layout.
• You can make a copy of the layer set used by the original view.

Both approaches have advantages and disadvantages, so you should use the option that best suits your needs. To learn more about the pros and cons of each approach, see “This new layout box references the “Layout Set 1” layer set saved in your plan”.

Exporting and Importing Layer Sets

Layer sets created in one plan can be exported as a .layers file and imported into other plans. This is a convenient alternative to re-creating one or more layer sets that may already exist in another plan.

Exporting Layer Sets

To export layer sets from the current plan or layout file, select File > Export > Export Layer Sets or click the Export button in the Layer Set Management dialog.

Importing Layer Sets

To import layer sets into the current plan or layout, select File > Import > Import Layer Sets or click the Import button in the Layer Set Management dialog.

The Import Layer Set File dialog is a typical Open File dialog. See “Importing Files” on page 48.

When the desired .layers file is selected, click Open. The Import Layer Sets dialog will open next.
Specify which layer sets you would like to import.

Drawing Groups

Each object in a plan or layout file belongs to a Drawing Group, which influences whether it displays in front of or behind other objects. Drawing Groups control the display of objects in plan view, CAD Details, and on the layout page. They also control the display of CAD objects drawn in cross section/elevation views. They do not affect the display of objects in camera views and overviews.

Most categories of objects have their own Drawing Group; however, a few objects are instead placed in the Front or Back Group. Imported pictures, which are placed in the Back Group, are a notable example. A selected object’s Drawing Group is reported in the Status Bar. See “The Status Bar” on page 33.

Within a given Drawing Group, drawing order is determined by the order in which objects are placed. By default, an object will display in front of any objects that were created before it was. For example, if you place a chair and then a table, the table will display in front of the chair; if you instead place a table and then the chair, the chair will display in front.

Drawing order also affects how objects are selected. If two objects are positioned so that they overlap one another, and you click at a point that they both share, the frontmost object will become selected first. See “Select Next Object” on page 169.

Drawing Group Edit Tools

Once an object has been placed, its position in the drawing order can be modified. To do this, select one or more objects and click the View Drawing Group Edit Tools edit button.

There are two options for moving a selection towards the back of the drawing order:

- Click the Send to Back edit button to move the selected object(s) to the back of the Back Group so it displays behind all other objects.
Click the **Send Backward** edit button to move the selected object(s) to the back of its current Drawing Group. If it is already at the back of its current group, it will be moved to the next group down in the drawing order.

There are two options for moving a selection towards the front of the drawing order:

- Click the **Bring to Front** edit button to move the selected object(s) to the front of the Front Group so that it displays in front of all other objects.
- Click the **Bring Forward** edit button to move the selected object(s) to the front of its current Drawing Group. If it is already at the front of its current group, it will be moved to the next group up in the drawing order.

Select Drawing Group Dialog

The **Select Drawing Group** edit button reports the Drawing Group number that the selected object(s) is in. When multiple objects are selected, a horizontal line may display instead. Click this button to open the **Select Drawing Group** dialog.

- Select a Drawing Group from the drop-down list to place the selected object(s) into that group. The default group for the selected object is noted as such.
- When multiple objects in different groups are selected, “No Choice” will initially display. You can select “Default: Multiple Values” to return each object to its respective default group.

You can specify the default Drawing Group for most types of objects in their defaults dialogs. See “Default Settings” on page 65.

You can also assign a selected object to a particular **Drawing Group** in its specification dialog. See “Line Style Panel” on page 235 and “Layer Panel” on page 149.

Display Toggles

There are a number of toggles and tools that can be used to affect the appearance of the on-screen display.

Print Preview

Print Preview and its related display toggles allow you to get a sense of what the current view will look like when it is printed. See “Print Preview” on page 989.

Refresh Display

Refresh Display redraws the current window to clean up extra lines, show missing items, and correct random on-screen effects caused by changes to a model. Select **View> Refresh Display** or press the F5 key to refresh the on-screen display.

Color On/Off

The display of color on-screen can be toggled on and off in any view by selecting **View> Color** or by clicking the toggle button.

- If Color is toggled off in any 3D view other than a Vector View or a Line Drawing view, the view will be displayed in grayscale.
- If Color is toggled off in any line based view, including plan view, Vector Views, Line Drawing views, CAD Details, and layout, the view will be displayed either in black and white or grayscale, depending on the **Color Off Is** setting in the **Preferences** dialog. See “Appearance Panel” on page 80.

To display views in gray scale

1. Select **View> Color** to toggle color off.
2. Select **Edit> Preferences** to open the **Preferences** dialog.
3. On the APPEARANCE panel, select **Grayscale** as the **Color Off Is** setting. See “Appearance Panel” on page 80.

To display views in black and white

1. Select **View> Color** to toggle color off.
2. Select Edit> Preferences to open the Preferences dialog.

3. On the Appearance panel, select Black and White as the Color Off Is setting.

When Color is toggled off and Black and White is specified, all lines appear as black, regardless of their color. Solid fill colors appear as either white or black, depending on which is closer to the actual fill color when Color is turned on. The background remains as defined in the Preferences dialog. See “Colors Panel” on page 82.

You can specify whether cross section/elevations, camera views, and overviews using the Vector View Rendering Technique are generated with colors turned on in the 3D View Defaults dialog. See “3D View Defaults Dialog” on page 782.

You can also print in color, black and white, or gray scale. See “Print View Dialog” on page 995.

Arc Centers and Ends

The display of arc center- and endpoints, and the display of circle center points can be toggled by selecting View> Arc Centers and Ends, by clicking the toggle button, or in the CAD Defaults dialog. See “CAD Defaults Dialog” on page 226.

Delete Surface

In any 3D view, select 3D> Delete Surface, then click a surface in the view to temporarily remove the surface from the current view. See “Delete 3D Surface” on page 792.

Fill Styles

Fill styles are CAD-based patterns that can be used to fill the interiors of closed CAD shapes. In plan view, fill styles can also be applied to a variety of architectural objects.

The Fill Styles library contains fill styles that can be applied to objects individually in their specification dialogs, by default in their defaults dialogs, as well as using the Fill Style Painter tools.

You can use the Place Library Object tool to create a custom toolbar button that has a fill style associated with it. See “Place Library Object Button” on page 706.

Fill Style Eyedropper

The Fill Style Eyedropper tools allows you to load a fill style assigned to an existing object into the Fill Style Painter and apply that fill style to other eligible objects. It is similar to other Eyedropper tools. See “Eyedropper Tools” on page 215.

Fill Style Specification Dialog

To open the Fill Style Specification dialog, right-click on a fill style in the library and select Open Object or right-click on an unlocked library folder and select New> Fill Style. See “Using the Contextual Menus” on page 693.

To open the similar Layer Fill Style dialog, click in the Fill column in the Wall Type Definitions or any Material Layers Definition dialog. See “Wall Type Definitions Dialog” on page 294 and “Material Layers Definition Dialogs” on page 750.

Patterns, which are similar to fill styles, can be used to represent materials in Vector Views. See “Patterns and Textures” on page 758.

Import Patterns

Select File> Import> Import Patterns to open the Import Custom Patterns file and import a .pat file. See “Importing Files” on page 48. Patterns are imported directly to the User Catalog in the Library Browser. See “The User Catalog” on page 697.
The **Default Framing** and **Default Header Fill Style** dialogs are also similar to this dialog and can be accessed by clicking the **Fill Style** button on the **Plan Display** and **Openings** panels of the **Build Framing** dialog. See “Build Framing Dialog” on page 632. The settings in this dialog are also found on the **Fill Style** panel of specification dialogs for a variety of objects in the program. This panel is not available for Sprinkler Lines or Electrical Connections as these tools cannot be used to form closed shapes.

![Fill Style Specification](image)

In the **Fill Style** dialog only, specify the **Fill Style Name**.

2. Select a **Pattern Type** from the drop-down list and specify its characteristics.
 - Select “Library” from the list or click the **Library** button to choose a pattern from the library. When a Library fill style is selected, a custom name may display in the list instead of a system default Type. See “Assigned Items” on page 705.
 - When “No Pattern” is selected as the Type, the settings that follow are disabled.

3. Specify the fill style’s **Scale**.
 - Specify the **Width** of the selected fill pattern. For Concrete and Sand fills, instead adjust the overall **Spacing**. Not available for Solid fill.
 - Specify the **Height** of the selected fill pattern. Only available for Grid, Grid 1/2 Offset, and U’s fill Types.
 - Specify a **Scale** for the selected fill pattern. Only available when the name of a library fill style from the library is listed as the fill Type, above.

4. Specify the fill’s **Offsets and Angle**.
 - Specify the **Horizontal** and **Vertical Offsets**. See “Mapping Patterns and Textures” on page 765.
 - Specify the **Angle** of the selected fill pattern. Not available for Solid fill.
Additional **Pattern Appearance** settings control the fill’s line weight and color.

- **Set the Line Weight** for the selected fill pattern. Not available for “Solid” fill.
- **Specify a custom Color** for the lines that make up the fill pattern or Solid fill by clicking the color bar. The Layer Color is used by default.
- **Custom Color** is selected automatically if you click the color bar above.
- **Select Use Layer Color** to have the fill pattern use the layer color for the pattern lines or solid fill.
- **Select Use Background Color** to use the view’s background color for the pattern lines or solid fill.
- **Use the Transparency slider bar or text field to control how transparent the fill pattern lines are.** This setting also affects the transparency of Solid fill colors.

Check **Background** to add a solid background color to the fill pattern and enable the settings below. When unchecked, the fill pattern has a transparent background. Not available when “Solid” is the selected Pattern Type.

- **Specify a custom background Color** by clicking the color bar. The Background Color set in the **Preferences** dialog is used by default. See “Colors Panel” on page 82.
- **Custom Color** is selected automatically if you click the color bar above.
- **Select Use Layer Color** to have the fill pattern use the layer color for the pattern lines or solid fill.
- **Select Use Background Color** to use the view’s background color for the pattern lines or solid fill.
- **Use the Transparency slider bar or text field to control how transparent the background color is.**
- **On the Fill Style panel only, click the Add to Library button to add the fill pattern as it is currently defined to the User Catalog.** See “Add to Library” on page 700.

A preview of the selected pattern displays to the right. As changes are made to the settings on this panel, the preview will update.

- **Choose a Preview Width** from the drop-down list. This value controls how large an area the preview represents. The selected value indicates the horizontal width of the preview pane in actual plan inches (mm).

Line Styles

Line styles can be applied to objects by layer in the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.

CAD and CAD-based objects can also be assigned a line style in their specification dialogs. See “Line Style Panel” on page 235.

A selection of line styles is available in the library, and additional styles can be created or imported into the User Catalog.

You can draw a line that uses a selected style directly from the library. See “Line Tools” on page 231.

To draw with a line style from the library

1. Select a line style in the tree list or Selection Pane of the Library Browser. See “The Library Browser” on page 691.
2. Click and drag in a 2D view to produce a CAD line with the selected style.

3. Continue drawing CAD lines with the same style until another line style or drawing tool is selected.

You can use the **Place Library Object** tool to create a custom toolbar button that has a line style associated with it. See “Place Library Object Button” on page 706.

The **MEP Toolbar Configuration** includes a selection of these toolbar buttons that access line styles from the library. See “Toolbar Configurations” on page 108.

Line Style Management

Once a line style has been assigned to an object or a layer, it is saved in the plan or layout file. Select **CAD> Lines> Line Style Management** to access a list of the line styles saved in the current file in the **Line Style Management** dialog.
All line styles saved in the current file are listed here. Line Styles that are not currently assigned to a layer, an object, or a default may also be included in the list.

- Click on a line style to select it. Multiple line items can be selected, as well. See “Shift and Ctrl Select” on page 170.
- The **Style** column shows a sample of each line style.
- The **Name** of each line style is listed. Click in this column and type a letter to locate names that begin with that letter.
- Line styles with at least one instance in the current file have a plus sign in the **Used** column. See “In Use Line Styles” on page 158, below.
- Move your mouse pointer over a plus sign. A tool tip will summarize where the line style in question is in use.
- Unused line styles have no icons in the **Used** column and can be deleted.

The buttons on the right allow you to add, edit, remove, and reorganize the items in the list.

- Click the **Edit** button to open the **Line Style Specification** dialog for the selected line style. See “Line Style Specification Dialog” on page 159.
- Click the **New** button to open the **Line Style Specification** dialog and create a new line style.
- Click the **Copy** button to make a copy of the selected line style and add it to the list. The new line style has the same name as the original, appended with a number.

Note: Line styles created in Chief Architect are not retained in views exported to .dxf/.dwg. See “Exporting 2D DXF/DWG Files” on page 889.

The items in this list and their order are also found in the Style drop-down list found in various object specification dialogs. See “Line Style Panel” on page 235.

- Click the **Move Up** button to move one or more selected line styles up one position in the list.
- Click the **Move Down** button to move one or more selected line styles down one position in the list.
- Click the **Purge** button to delete all unused line styles from the list.
- Select an unused line style and click the **Delete** button to remove it from the list.
- Click the **Add to Library** button to add the selected line style to the User Catalog. See “Adding Library Content” on page 700.

When **Auto Purge Line Styles** is unchecked and all instances of a line style are removed from the current file, it will continue to be saved in the file and listed here. Check this box to remove unused line styles from the file.

In Use Line Styles

A line style is considered to be in use in the current plan or layout file if it is assigned to one or more objects; if it is selected in one or more defaults dialogs; or, if it is a system default line style.

In the **Line Style Management** dialog, these icons are shown **Used** column:
• A red plus sign + indicates that the line style is assigned to one or more objects.

• A white wrench indicates that the line style is specified in a defaults dialog but is not assigned to any objects currently.

• A grey S indicates that the line style is not used elsewhere, but is a system default.

Move your mouse pointer over an icon to display a tool tip summarizing where the line style is in use.

These icons are also used in the **CAD Block Management** dialog. See “CAD Block Management” on page 253.

Import Line Styles

Select File >> Import >> Import Line Styles to open the **Import Line Styles** dialog and import a .lin or .dat file. See “Importing Files” on page 48.

Line styles are imported directly to the User Catalog in the Library Browser. See “The User Catalog” on page 697.

Line Style Specification Dialog

The **Line Style Specification** dialog allows you to create new line styles for use in Chief Architect. There are several ways to open this dialog:

• Click the New or Copy button in the **Line Style Management** dialog.

• Right-click on an unlocked library folder and select New >> Line Style. See “Adding Library Content” on page 700.

• Right-click on a line style in the User Catalog, then select Open Object from the contextual menu. See “Using the Contextual Menus” on page 693.

• Click on a line style component in the preview to select it and edit it below.

• Check **Highlight Selection** to display a red rectangle around the currently selected line style component.

1. Type the name of your **Line Style Name** in the text field. This is the name that will be listed in the Library Browser.

2. A preview diagram of the line style displays here.
• Check **Mark Repeating Segments** to display vertical dashed lines indicating the division between the last component of one segment and the first component of the next in the preview diagram.

These options allow you to add new components to your line style.

• Click the **Dash** button to add a line segment to the line style.
• Click the **Dot** button to add a single point to the line style.
• Click the **Text** button to add a section of text to the line style.
• Select the **Insert Before** radio button to add the new component before the component that is currently selected.
• Select the **Insert After** radio button to add the new component after the currently selected component.

A list of the line style’s individual components displays here.

• Click on the name of a component in the list to select it. When **Highlight Selection** is checked, above, a red rectangle displays around this component in the preview diagram.

• Click the **Up** arrow to move the selected component up one position in the list and one position to the left in the preview diagram.
• Click the **Down** arrow to move the selected component down one position in the list and one position to the right in the preview diagram.
• Click the **Remove** button to remove the selected component from the line style.

Control the appearance of the selected component. The Length, Spacing, and Text Height values are all subject to the current Drawing Scale. See “Line Weights and Scaling” on page 992.

• Specify the **Length** of a selected Dash or Text component when printed. If the Length exceeds that required by a Text component, empty space is added on each side of the text.
• Specify the **Spacing** of the selected component by defining the length of an empty space to the component’s right.
• Type the **Text** of a selected Text component.
• Specify the **Text Height** of a selected Text component. Each text component can have its own height.

Color Chooser>Select Color Dialog

The **Color Chooser** dialog is opened by selecting **Tools> Color Chooser**. The similar **Select Color** dialog can be opened by clicking on the Color bar that can be found in many dialogs throughout the Windows version of the program.

Text inserted into a line style uses the font and transparency setting of the Text Style of the layer that it is on when assigned to an object. See “Text Styles” on page 398.

Mouse over a Color bar to display a tool tip reporting the selected color’s RGB values.

In the Mac version, the standard **Colors** dialog, or Color Picker, is used instead.
The currently selected color displays in the rectangle at the lower center of the dialog. There are a number of ways to select a color in this dialog:

1. Click in any one of the Basic colors boxes to select it.
2. Click anywhere in the color spectrum area to select a color.
 - The location of the selected color is identified by crosshairs.
 - Click anywhere in the vertical bar or drag the arrow to adjust the selected color’s Luminosity and RGB values.
3. Define the color by specifying its Hue, Saturation, and Luminosity (HSL) or its Red, Green, and Blue (RGB) values.
 - Specify the color’s Alpha channel percentage, which is its degree of transparency. 100% is totally transparent. Only available when specifying a custom Toolbar Button/Image Background color for a Color Theme. See “Colors Panel” on page 82.
4. Click in one of the Custom colors boxes to either select it or to specify it as the box for a new custom color to be defined.
 - Click the Add to Custom Colors button to add the selected color to the Custom Colors group.
5. Click the Color Chooser Eyedropper, then click anywhere on your monitor to select the color displaying at that location.

You can select a color from any program window. Before opening the Color Chooser dialog, make sure the desired color can be seen on screen.

- Click Create Material to add the color to the User Catalog in the library. The new material’s name is “Custom Color” followed by its RGB values. Only available when the dialog was opened by selecting Tools > Color Chooser.

If the Select Color dialog was opened via another dialog panel, click OK to apply the currently selected color to the object’s line or fill style, or to the material’s pattern color.
Just as the methods used to create different objects in Chief Architect are similar, the options for moving, rotating, resizing, and otherwise editing them are also alike.

Edit handles allow objects to be resized, relocated, or rotated using the mouse. Edit toolbar buttons and the contextual menus access edit tools relevant to the selected object(s). Most objects have a specification dialog that allows you to edit it in ways that are specific to that type of object.

The editing characteristics common to most objects are described in this chapter. Unique, object-specific editing behaviors and the specification dialogs are covered in their respective chapters.

Chapter Contents

- Defaults, Preferences, and Edit Behaviors
- Selecting Objects
- Selecting Multiple Objects
- Editing Line-Based Objects
- Editing Arc-Based Objects
- Editing Open Polyline-Based Objects
- Editing Closed Polyline-Based Objects
- Editing Box-Based Objects
- Editing Spline-Based Objects
- Editing Circles, Ovals and Ellipses
- Editing Multiple Objects
- Moving Objects
- Aligning Objects
- Resizing Objects
- Reshaping Objects
- Rotating Objects
- Reflecting Objects
- Converting Objects
- Transform/Replicate Object Dialog
- Edit Area Tools
- Stretch CAD
- Trim and Extend
- Union, Intersection, and Subtraction
- Eyedropper and Painter Tools
- Style Palettes
- Matching Properties
- Deleting Objects
- Delete Objects Dialog
- Undo and Redo

Defaults, Preferences, and Edit Behaviors

The same defaults and preference settings that affect how objects are drawn also influence how they can be edited. See “Defaults and Preferences” on page 129.
In addition, there are six **Edit Behavior** modes that determine how edit handles affect an object, and may also affect how objects are drawn. The currently active edit behavior is a global preference setting, affecting all plan and layout files.

Two of these modes, **Default** and **Alternate**, are useful for most drawing and editing needs and can be considered primary editing modes. Default mode, in particular, accesses the most commonly used behaviors and is the best choice in most circumstances. When an Edit Behavior other than Default is active, its icon displays near the mouse pointer.

The other four modes, **Move**, **Resize**, **Concentric** and **Fillet**, offer special editing behaviors that may be useful only in certain situations and can be considered secondary.

Each edit behavior can be temporarily enabled using the different buttons on your mouse or by pressing the keyboard keys associated with each. See “Using Input Devices” on page 26 and “Hotkeys” on page 114.

You can also specify which edit behavior mode is active when the left mouse button is used in the **Preferences** dialog, by selecting **Edit > Edit Behaviors**, or by clicking the corresponding toggle button, which can be added to your toolbar. See “Behaviors Panel” on page 96.

Default

The **Default** mode is one of the primary edit behavior modes. It offers access to the most commonly used edit behaviors and should be selected as your preference in most situations.

- **Drawing** - Standard click and drag drawing behavior is enabled. See “Creating Objects” on page 134.

- **Resize/Reshape** - Default allows you to adjust the angle of any corner of a polyline without affecting adjacent corners, changing the object’s shape.

- **Move** - Default allows you to move objects orthogonal, or at a right angle, to any of their edges.

- **Rotation** - In Default mode, objects snap at Allowed Angles as they are rotated.

You can temporarily enable the **Default** edit mode when another mode is active by pressing Alt + Z or Alt + / while performing an edit or drawing operation.

Alternate

The **Alternate** mode is the second primary edit behavior mode. When this mode is active, the Alternate Alt icon displays near the mouse pointer.

- **Drawing** - Continuous drawing behavior is enabled. See “Clicking and Dragging” on page 134.

- **Resize/Reshape** - Alternate allows you to keep the angle between adjacent edges fixed when a corner edit handle is moved. Instead, adjacent corners move and adjacent edges lengthen or shorten.

Note: Regardless of which Edit Behavior is active, the Default behavior is restored when you close the program.
Defaults, Preferences, and Edit Behaviors

Alternate edit behavior

• Alternate allows you to drag an end handle on an open polyline to change it from a line to an arc or vice versa.

• Alternate overrides the Lock Center setting of arc-based objects.

• Movement - Alternate allows you to move objects at Allowed Angles when Angle Snaps are enabled, or orthogonal to any of its edges when they are not. See “Angle Snaps” on page 132.

• Rotation - Alternate snaps objects at Allowed Angles as they are rotated.

You can temporarily enable the Alternate edit mode when another mode is active by pressing Alt or using the right mouse button while performing an edit or drawing operation.

Move

The Move mode allows you to move an object using edit handles that would otherwise be used for resizing, as well as with the Move handle. When this mode is active, the Move icon displays near the mouse pointer.

• Drawing - Standard click and drag drawing behavior is enabled.

• Resize/Reshape - Move allows you to move the selected object when any edit handle is used.

• Movement - Move mode allows you to move objects at Allowed Angles.

• Rotation - In Move mode, objects snap at Allowed Angles as they are rotated.

You can temporarily enable the Move edit mode when another mode is active by pressing Z or / while performing an edit or drawing operation.

Resize

The Resize edit behavior allows you to rescale an object. As you drag a corner edit handle of an object, you get an exactly scaled version of the original. For example, you can resize an object to 50% of its original size while maintaining the same proportions. When this mode is active, the Resize icon displays near the mouse pointer.

• Drawing - Standard click and drag drawing behavior is enabled.

• Resize/Reshape - Resize allows you to keep the angle between adjacent edges fixed when a corner handle is moved.

• Movement - Resize allows you to move an object orthogonal, or at a right angle, to any of its edges.

• Rotation - In Resize Mode, objects snap at Allowed Angles as they are rotated.

You can temporarily enable the Resize edit mode when another mode is active by pressing X or the period key, or using the X2 button on a five-button mouse while performing an edit or drawing operation. See “Using Input Devices” on page 26.

Concentric

The Concentric mode allows you to resize objects so that the distance moved by each edge is the same. For example, you can resize an irregularly shaped polyline so that each edge is exactly ten feet in from the original position, which is useful for creating site plans with setbacks. When
this mode is active, the Concentric icon displays near the mouse pointer.

- **Drawing** - Standard click and drag drawing behavior is enabled.
- **Resize/Reshape** - Concentric allows you to resize an irregularly-shaped polyline so that each edge is moved the same distance from its original location.

In Concentric mode, objects resize in Concentric increments specified in the Preferences dialog. See “Behaviors Panel” on page 96.

When the Concentric Jump distance is set at 0", objects resize according to the Snap Unit specified in the Plan Defaults dialog. See “Grid Snaps” on page 133.

You can temporarily enable the Concentric edit mode when another mode is active by pressing C or the command key, or using the X1 button on a five-button mouse while performing an edit or drawing operation. See “Using Input Devices” on page 26.

Fillet

The Fillet mode allows you to add a fillet, or curve, at any corner of an object. Dragging a corner edit handle adjusts the fillet radius at that corner. When this mode is active, the Fillet icon displays near the mouse pointer.

- **Drawing** - Standard click and drag drawing behavior is enabled.
- **Resize/Reshape** - Fillet allows you to create a fillet at by dragging a corner edit handle inward.

In some cases, the Concentric and Resize edit behaviors have the same result, such as when a circle is resized. Usually, though, the two behaviors are different because concentric resizing does not maintain the original ratio between an irregular polyline’s edges.
Selecting Objects

• **Rotation** - In Move mode, objects snap at Allowed Angles as they are rotated.

The **Fillet** edit behavior adjusts all the corners of a box at once. The radius of each corner is the same.

Fillet does not have an effect on circles, ovals, ellipses or arc segments.

You can temporarily enable the **Fillet** edit mode when another mode is active by pressing **F** while performing an edit or drawing operation.

Connect CAD Segments

Typically, when two CAD objects share the same properties and Endpoint Snaps are enabled, they can be snapped end-to-end to form a polyline. **Connect CAD Segments** controls whether CAD objects with the same properties can be snapped together to form polylines. It also controls whether spline segments can be snapped together. See “Polylines” on page 243 and “Splines” on page 249.

Select CAD Segments also affects stairs, ramps, and road objects. See “Stairs, Ramps, and Landings” on page 545 and “Roads, Driveways and Sidewalks” on page 927.

When **Connect CAD Segments** is disabled, the **Connect CAD Segments** icon displays near the mouse pointer and CAD objects cannot form polylines. See “Pointer Icons” on page 28.

Select **Edit> Edit Behaviors> Connect CAD Segments** to toggle this behavior on or off. You can also turn **Connect CAD Segments** on or off in the Preferences dialog. See “CAD Panel” on page 93.

Rotate/Resize About Current Point

Objects can be rotated or resized about either their own centers or the current CAD point. See “The Current Point” on page 230.

Select Objects

“Select” refers to selecting an object for editing. An object must be selected before it can be edited.

In order for an object to be selected, it must be both unlocked and visible in the current view. See “Layers” on page 142.

When an object is selected, it displays edit handles and a selection fill color. See “Colors Panel” on page 82.

In 3D views, a selected object will also display lines representing the selected edge or surface. The size of the edit handles does not change as you zoom in or out and is set in the Preferences dialog. See “Edit Panel” on page 95. To prevent them from stacking on one another, some edit handles may not display as you zoom away from the selected object.

When an object is selected, its edit toolbar also displays, typically at the bottom of the Chief Architect program window just above the Status Bar. See “The Edit Toolbar” on page 29.

Information about the selected object or objects may also display in the Status Bar. See “The Status Bar” on page 33.

A selected object remains selected until another object is selected, a different tool is activated, the Esc key on the keyboard is pressed, or any two mouse buttons are pressed at the same time.

Select Objects

With the exception of temporary CAD points, any object created using Chief Architect can be selected using the **Select Objects** tool. Select **Edit> Select Objects**, click the toolbar button or press the Space bar on your keyboard to activate this tool, then click on an object or its label to select it. See “Object Labels.”

You can also select objects or open context sensitive menus using the right mouse button when any tool is active.
By default, you can select an object by clicking within 12 pixels of it. You can adjust this distance by changing the Snap Distance in the Preferences dialog. A lower value, for example, can be helpful for working with small objects but can also make it very difficult to select larger objects. See “Snap Properties Panel” on page 97.

Selecting Similar Objects

If a tool other than Select Objects is active, you can only select objects of that type using the left mouse button. For example, if the Straight Exterior Wall tool is active, you can only select walls using the left mouse button.

This can be useful for selecting an object when many objects of a different type occupy the same space in plan view.

Objects can be selected using the right mouse button, regardless of which tool is active.

Right-Clicking

Regardless of which tool is active, you can select an eligible object by right-clicking on it once. When you right-click to select an object a contextual menu also appears, displaying the object’s edit tools. You can turn contextual menus on or off in the Preferences dialog. See “Contextual Menus” on page 30.

If a drawing tool is active and you right-click to select an object, you can unselect it by left-clicking in an empty space in the drawing area. Although a drawing tool is active, it is not used. If you then left-click a second time, the active tool will be used.

Selected Edge

When you click on a polyline- or box-based object, the edge that you click nearest becomes the selected edge and displays an edit handle larger and of a different color than those on other edges. The handle on this edge may also display at the point where you clicked to select it. You can specify the Selected Edge Handle Fill color in the Preferences dialog. See “Colors Panel” on page 82.

This edge can be edited on the Selected Line or Selected Arc panel of the object’s specification dialog, as well as using a variety of edit toolbar buttons. It can also be moved using dimensions. See “Moving Objects Using Dimensions” on page 365, “Line Panel” on page 234 and “Arc Panel” on page 241.

The Start and End points of a CAD-based object’s selected edge or of a wall can be indicated by an S and an E when the object is selected. These Start and End indicators can be helpful when editing the selected edge in the object’s specification dialog, and their display can be turned on and off in the Preferences dialog. See “Edit Panel” on page 95.

Disconnect Edges

Polyline-based objects are composed of lines and arcs that are connected end to end. The individual edges of open and closed polylines can be selected and edited independently of the object’s other edges when Disconnect Edges is in use. Select CAD> Lines> Disconnect Edges to enable this ability.

Disconnect Edges also affects terrain paths and molding polylines, but does not affect Walkthrough Paths, Connect Electrical or Sprinkler splines, or closed polyline-based objects such as slabs and roof planes.

To use Disconnect Edges

1. Select CAD> Lines> Disconnect Edges.
2. Click on an individual edge of an eligible polyline-based object to select it.
Selecting Multiple Objects

Multiple objects can be selected and edited in groups. The options available for editing them will vary depending on the type or types of objects selected. See “Editing Multiple Objects” on page 191.

Marquee Select

Groups of objects can be selected by holding down either the Shift or Ctrl key when the Select Objects tool is active and then dragging a marquee around the objects to be selected.

When using the marquee-select method, both CAD and architectural objects included in the marquee are selected. To remove an object from the selection set, hold down the Ctrl key and click on it.

If an object is selected and a selection marquee is drawn around it using the Ctrl key, that object becomes deselected. If the Shift key is used instead, the original object remains selected and the other objects are added to the selection set.

You can also separate the selected edge of an open or closed polyline from the rest of the polyline by clicking the Disconnect Selected Edge edit button. See “Selected Edge” on page 168.

Selected Side

Most architectural objects can be selected in 3D views. When selected, the outline of their bounding box displays, and edit handles are located on the side where you clicked to select the object. The edit handles can be used to move, resize, or rotate the object in different directions, depending on which side is selected. Depending on which side is selected, the available edit handles may vary, as well.

Select Next Object

If there is more than one object in a particular space, it may be difficult to select the desired object. When a nearby object is selected, click the Select Next Object edit button or press the Tab key until the desired object becomes selected. This function cannot be applied to groups of selected objects.

The Shift key can be used to marquee-select objects of a similar type when the drawing tool used to create those objects is active.

To marquee-select objects by type

1. Select a drawing tool used to create the type of object you wish to select: for example, the Hinged Door tool.
2. Hold down the Shift key, then click and drag a rectangular selection marquee in the drawing area.
3. When you release the mouse button, objects of the selected drawing tool’s type - here, door objects - located in the marquee will be selected.

You can specify whether objects must be totally contained in or intersected by the marquee, or whether an object’s center point must be contained in the marquee, in the Preferences dialog or using the Selection Mode buttons, which can be added to your toolbars. See “Edit Panel” on page 95.
To make marquee selection easier, you can turn off the display of objects you do not want to include in your selection set. See "Layers" on page 142.

Marquee Select Similar

The Marquee Select Similar edit tool lets you group-select objects in the current plan view or CAD Detail that are similar to the selected object(s).

To use Marquee Select Similar

1. In plan view, select one or more objects, then click the Marquee Select Similar edit button.

2. The Restrictive Selection toggle controls whether objects are selected by similar type(s) only, or if additional attributes are taken into account.
 - Restrictive Selection is disabled by default, so objects of the same type will be selected.
 - Click the Restrictive Selection edit button to toggle it on and select only objects with additional attributes like materials in common.

3. Click and drag a rectangular selection marquee in the drawing area to select similar objects within its area.

4. Alternatively, click the Select All Similar edit button to select all similar objects in the current view.

The Marquee Select Similar tool is not available for all object types in all views. For example, it is not available for wall framing in plan view, although it is in Wall Detail views.

Shift and Ctrl Select

You can select a group of objects by adding them to the selection set one by one. Select an object, hold down either the Shift or Ctrl key, and click additional objects to select them.

More than one type of object can be selected using this method, but the ability to edit the group-selected items is limited to attributes that all selected objects have in common.

To remove an object from a selection set, click on it once more with the Ctrl key pressed.

The Shift and Ctrl keys can be used to select multiple items in a variety of contexts, such as: the Library and Project Browsers, lists in dialog boxes, and files to be imported. They can also be used to marquee-select objects in plan view. See Marquee Select, above.

Select All

Select Edit> Select All to select all objects drawn on the current floor, in the current cross section/elevation view or CAD Detail window, or on the current layout page.

Edit Area Tools

The Edit Area Tools allow you to define an area of your plan and select the objects within that area for editing. See “Edit Area Tools” on page 209.

Using a Fence

The Fence Select edit tool allows you to group-select multiple CAD and CAD-based objects in contact with the selected CAD line, arc, polyline or spline.

Using a Fence to make a group-selection can be helpful in a number of situations, for example:
 - When many CAD objects must be selected, particularly when they occupy the same area.
 - When a selection marquee would be the wrong shape or include too many objects.
 - When a selection group needs to be selected more than once.

The Fence Select edit tool cannot be used to select architectural objects - only CAD and CAD-based objects. See “Architectural vs CAD Objects” on page 129.

Fences are often used with the Trim Objects and Extend Objects edit tools. See “Trim and Extend” on page 212.

To Fence Select a group of objects

1. Draw a CAD line, arc, open polyline, closed polyline or spline that crosses or touches all the objects you wish to group-select.
2. Click the **Fence Select** edit button.
3. The originally selected object serves as a fence to select the objects it touches, while becoming deselected itself.
4. You can hold either the Shift or Ctrl key and click objects to add or remove them from the selection set.

Editing Line-Based Objects

Objects are considered line-based when they can be edited similar to CAD lines using their edit handles.

CAD lines, framing members, straight walls and railings, straight stairs, and straight roads are examples of line-based objects.

Most line-based objects can be connected to other like objects to form polylines or polyline-based objects provided that they are on the same layer and have identical attributes such as line color and arrow specifications. See “Editing Open Polyline-Based Objects” on page 177 and “Editing Closed Polyline-Based Objects” on page 180.

Some objects, notably walls, have line-based editing behavior only when selected on certain surfaces. See “Editing Walls” on page 280.

Wall openings such as doors and windows have line-based editing behavior in plan view only but cannot be rotated, reversed or converted to an arc. See “Editing Doors” on page 407 and “Editing Windows” on page 436.

Match Properties

Rooms, cabinets, windows and doors on the current floor can be selected based on a set of attributes that you specify using the **Match Properties** edit tool. See “Match Properties” on page 219.

Using the Edit Handles

When selected, a typical line-based object displays six edit handles: a Move handle, two Extend/Change Angle handles, two Same Line Type handles, and a Rotate handle.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

Move

- Click and drag the Move handle to move the object according to the currently active **Edit Behavior**. See “Defaults, Preferences, and Edit Behaviors” on page 163.
- Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.

Rotate

- The **Rotate** handle is used to rotate the object, either about its center or about the current CAD point. See “Rotating Objects” on page 203.
Extend/Change Angle

- Drag a square end handle parallel to the selected line to change its length.
- Drag a square end handle at an angle to the selected line to change its angle. When Angle Snaps are on, the line snaps to Allowed Angles. See “Angle Snaps” on page 132.
- Right-click and drag it to change the adjacent line into an arc, or vice versa. See “Alternate” on page 164.

Same Line Type

- Drag a diamond-shaped end handle in any direction to draw a new line that shares the original’s color, weight, line style, and layer. See “Same Line Type Edit Handles” on page 234.

Adjust Width

Some line-based objects, such as stairs and roads, have additional handles that allow the width of the object to be adjusted.

- Click and drag a small, round Expand handle to increase or decrease the object’s width. By default, objects are resized in 1” increments. This Snap Unit is defined in the Plan Defaults dialog. See “General Plan Defaults Dialog” on page 77.

Using Dimensions

Dimensions can be used to position line-based objects relative to other objects. See “Moving Objects Using Dimensions” on page 365.

Dimensions cannot, however, be used to adjust the length of line-based objects, or the width of line-based objects such as stairs.

Using Extension Line Snaps

Extension line snaps can be useful when editing line-based objects. See “Extension Snaps” on page 131.

Using the Specification Dialog

Line-based objects can be edited using their specification dialogs. See “Line Specification Dialog” on page 234.

Using the Edit Toolbar

A selected line-based object can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected line-based object:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.
- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.
- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.
- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.
- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.
- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.
- Click the Make Parallel/Perpendicular edit button to make the selected object(s) parallel or perpendicular to a straight edge. See “Using Make Parallel/Perpendicular” on page 197.
- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.
- Click the Center Object edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.
- Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.
- Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.
• Click the Break edit button to add a new corner or pivot point to the selected object. See “Break” on page 200.

• Click the Complete Break edit button to break the selected object into two separate objects. See “Break” on page 200.

• Click the Reverse Direction edit button to reverse the direction of the selected object(s). See “Reverse Direction” on page 205.

• Click the Convert Polyline edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

• Click the Revision Cloud(s) Around Objects edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

• Click the Change Line/Arc edit button to change a line-based object to an arc, or vice versa. See “Change Line/Arc” on page 201.

• Click the Fence Select edit button to use the selected object(s) as a selection fence. See “Using a Fence” on page 170.

• Click the Object Layer Properties edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

• Click the Intersect/Join Two Lines edit button, then click on a non-parallel line or arc to join the two objects. See “Intersect/Join Two Lines” on page 201.

• Click the Fillet Lines edit button, then click on a non-parallel line or arc to create an additional arc connecting the two. See “Fillet Lines” on page 201.

• Click the Chamfer Lines edit button, then click an edge adjacent to the selected edge to chamfer the corner between them. See “Chamfer Lines” on page 202.

• Click the Extend Object(s) edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212. Not available for Sun Angles or North Pointers.

• Click the Trim Object(s) edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212. Not available for Sun Angles or North Pointers.

• Click the Align/Distribute Objects edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

• Click the Align/Distribute Along Line edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.

Editing Arc-Based Objects

Objects are considered arc-based when they can be edited similar to CAD arcs using their edit handles.

CAD arcs, curved walls and railings, curved stairs, and curved roads are examples of arc-based objects.

Most arc-based objects can be connected to other like objects to form polylines or polyline-based objects provided that they are on the same layer and have identical attributes such as line color and arrow specifications. See “Editing Open Polyline-Based Objects” on page 177 and “Editing Closed Polyline-Based Objects” on page 180.

Some objects, notably curved walls, have arc-based editing behavior only when selected on certain surfaces. See “Editing Walls” on page 280.
Other objects, such as curved stairs and roads, have additional edit handles that allow you to concentrically adjust the object’s width.

The currently active **Arc Creation Mode** determines how an arc-based object is drawn. Once an arc is drawn, the active Arc Creation Mode does not affect it. See “Drawing Arcs - Arc Creation Modes” on page 237.

Using the Edit Handles

When selected, a typical arc-based object displays seven edit handles.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

- **Move**
 - Two Move edit handles allow the arc to be relocated without changing its shape. One is located at the center of the chord and the other, at the arc center.
 - If you would like to snap one of these center points to another point, use that handle when moving the arc. See “Aligning Arc Centers” on page 198.
 - Click and drag the Move handle to move the object according to the currently active **Edit Behavior**. See “Defaults, Preferences, and Edit Behaviors” on page 163.
 - Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.

- **Rotate**
 - The **Rotate** handle is used to rotate the arc, either about its center or about the current CAD point. See “Rotating Objects” on page 203.

- **Extend**
 - The end edit handles expand or contract the arc when moved along the arc radius or chord.
 - If you follow the path of the arc, the end edit handles allow you to adjust the arc length.
 - The angle formed by the center point of the arc and its two endpoints is referred to as the Included Angle. If **Angle Snaps** are on, the Included Angle of the arc, as measured in degrees, can be rotated at Allowed Angles. See “Angle Snaps” on page 132.
 - Right-click and drag it to change the adjacent arc into a line, or vice versa. See “Alternate” on page 164.

- **Resize**
 - Drag the small, round **Resize** edit handle to change the radius and included angle of the arc while maintaining its center.
Reshape

- Drag the small triangular Reshape handle to change the length and location of the center without moving the endpoints.

Reshape edit handle

- If the object has a locked center, the Reshape edit handle does not display. See “Using Lock Center” on page 176.

Same Line Type

- Drag a diamond-shaped end handle in any direction to draw a new line that shares the arc’s color, weight, line style, and layer. See “Same Line Type Edit Handles” on page 234.

Adjust Width

Some arc-based objects, such as stairs, have additional handles that allow the width of the object to be adjusted.

Adjust Width

- Click and drag a small, round edit handle to increase or decrease the object’s width. By default, objects are resized according to the Snap Unit defined in the Plan Defaults dialog. See “General Plan Defaults Dialog” on page 77.

Using Dimensions

Dimensions can be used to position arc-based objects. Dimension lines typically locate tangent extension lines and any extension lines that may be parallel to those lines rather than the arc itself. See “Moving Objects Using Dimensions” on page 365.

Using Extension Line Snaps

Extension line snaps can be useful when editing arc-based objects. See “Extension Snaps” on page 131.

Using the Specification Dialog

Arc-based objects can be edited using their specification dialogs. See “Arc Specification Dialog” on page 240.

Using the Edit Toolbar

A selected arc-based object can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected arc-based object:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.

- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.

- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.

- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.

- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.

- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.

- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.

- Click the Center Object edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.

- Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.

- Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.
• Click the Break edit button to add a new corner or pivot point to the selected object. See “Break” on page 200.

• Click the Complete Break edit button to break the selected object into two separate objects. See “Break” on page 200.

• Click the Reverse Direction edit button to reverse the direction of the selected object(s). See “Reverse Direction” on page 205.

• Click the Convert Polyline edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

• Click the Revision Cloud(s) Around Objects edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

• Click the Change Line/Arc edit button to change an arc-based object to a line, or vice versa. See “Change Line/Arc” on page 201.

• Click the Convert Curve to Polyline edit button to convert the selected arc into a polyline. See “Convert Curve to Polyline” on page 202.

• Click the Lock Center edit button to lock the selected arc-based object’s center. See “Using Lock Center” on page 176.

• Click the Make Arc Tangent edit button to adjust the arc and attached line(s) so they transition smoothly. See “Using Make Arc Tangent” on page 198. Only available when a selected arc is attached on one or both ends to another line or arc.

• Click the Fence Select edit button to use the selected object(s) as a selection fence. See “Using a Fence” on page 170.

• Click the Object Layer Properties edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

• Click the Intersect/Join Two Lines edit button, then click on a non-parallel line or arc to join the two objects. See “Intersect/Join Two Lines” on page 201.

• Click the Fillet Lines edit button, then click on a non-parallel line or arc to create an additional arc connecting the two. See “Fillet Lines” on page 201.

• Click the Chamfer Lines edit button, then click an edge adjacent to the selected edge to chamfer the corner between them. See “Chamfer Lines” on page 202.

• Click the Extend Object(s) edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212.

• Click the Trim Object(s) edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212.

• Click the Align/Distribute Objects edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

• Click the Align/Distribute Along Line edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.

Arc Centers and Ends

When working with arc-based objects or circles, it can be helpful to see their center points. Similarly, when snapping arcs together to form a polyline, seeing their endpoints can be helpful. Select View> Arc Centers and Ends to toggle the display of both on the current floor. You can also turn on their display in the CAD Defaults dialog. See “CAD Defaults Dialog” on page 226.

Arc-based objects can be aligned using their center points. See “Aligning Arc Centers” on page 198.

Using Lock Center

Click the Lock Center edit button to lock or unlock the selected arc-based object’s center. When an arc’s center is locked, it cannot be moved except by using one of its Move edit handles or when the Alternate edit behavior is enabled.

An arc-based object with a locked center lengthens and shortens along its curve when it is resized. When this is not possible, its radius changes. In either case, its center remains locked in the same place.
Locked-center arcs do not display a **Reshape** edit handle when selected. See “Using the Edit Handles” on page 174.

When it is part of a polyline, a locked-center arc resizes along its arc rather than its chord when an adjacent line or arc is moved. Thus, the radius remains constant for an unlocked center arc, while the center does not change for a locked-center arc.

Editing Open Polyline-Based Objects

Open polyline-based objects are composed of individual line- and arc-based objects that are connected at their end points but do not form an enclosed area. See “Polylines” on page 243.

Objects are considered open polyline-based when they can be edited similar to open CAD polylines using their edit handles.

Open CAD polylines, connected walls, stairs, and connected roads are examples of open polyline-based objects.

For information about editing closed polyline-based objects, see “Editing Closed Polyline-Based Objects” on page 180.

Locked-center_arcs_displaying_reshape.png

Using the Edit Handles

A polyline can be composed of many segments. See “Polylines” on page 243.

When selected, an open polyline-based object displays a Move handle, a Rotate handle, a Reshape handle at the intersection of each segment, and an Extend handle at each end.

Each straight, line-based segment also has a Move edit handle along its length.

Each curved, arc-based segment has its own Move handle at the center of its chord, a Resize handle and, if it has an unlocked center, a Reshape handle. See “Editing Arc-Based Objects” on page 173.

When a polyline is selected, the edge that you click nearest is called the selected edge, and certain operations affect only this edge. The Move handle of the selected edge is larger than that of other edges. It displays along the length of a line segment, or at the center of the chord on an arc segment. See “Selected Edge” on page 168.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

Editor behavior depends on the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.
Move

- Click and drag the Move handle to move the object according to the currently active Edit Behavior.
- Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.

Rotate

- The Rotate handle is used to rotate the object, either about its center or about the current CAD point. Its position varies depending on which edge is currently selected. See “Rotating Objects” on page 203.

Extend

- Click and drag an Extend handle to lengthen or shorten the unconnected end of the selected line or arc segment, or to change the radius of the selected arc. See “Editing Arc-Based Objects” on page 173.
- Right-click and drag it to change the adjacent line into an arc, or vice versa. See “Alternate” on page 164.

Reshape

- Click and drag a Reshape edit handle to change the angle and/or length of the segments on either side of it, or the size of the object, depending on the currently active Edit Behavior.

Move Line Segment

- The Move Line Segment edit handle is found on straight segments of open polylines and moves the straight section according to the currently active Edit Behavior. Adjacent segments may extend or contract in their original directions to maintain their connections.

Move Arc

- Click and drag the Move Arc edit handle to change the radius and/or chord length or position, depending on the currently active Edit Behavior, and whether the arc has a locked center. Adjacent segments may extend, contract, or change angle to maintain their connections.

Resize Arc

- Click and drag the Resize Arc edit handle to change the radius, chord length and chord position of the arc segment, depending on the currently active Edit Behavior and whether the arc has a locked center. Adjacent segments may extend, contract, or change angle to maintain their connections.

Same Line Type

- Drag a diamond-shaped end handle in any direction to draw a new line that shares the original polyline’s color, weight, line style, and layer. See “Same Line Type Edit Handles” on page 234.

Adjust Width

Some open polyline-based objects, such as stairs and roads, have additional handles that allow the width of the object to be adjusted.

- Click and drag a small, round edit handle to increase or decrease the object’s width. By default, objects are resized in 1” increments. This Snap Unit is defined in the Plan Defaults dialog. See “General Plan Defaults Dialog” on page 77.

Using Dimensions

Dimensions can be used to move or reshape polyline-based objects. See “Moving Objects Using Dimensions” on page 365.
Using Extension Line Snaps
Extension line snaps, especially tangent snaps, can be useful when editing polyline vertices. See “Extension Snaps” on page 131.

Using the Specification Dialog
Open polyline-based objects can be edited using their specification dialogs. See “Polyline Specification Dialog” on page 244.

Using the Edit Toolbar
A selected open polyline-based object can be edited in a variety of ways using the buttons on the edit toolbar.

179

The following toolbar buttons may display on the edit toolbar for a selected open polyline-based object:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.
- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.
- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.
- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.
- Click the Disconnect Selected Edge edit button to disconnect the selected edge of the polyline, turning it into a separate object. See “Disconnect Edges” on page 168.
- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.
- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.
- Click the Make Parallel/Perpendicular edit button to make the selected straight edge parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197. Not available when the selected edge is an arc.
- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.
- Click the Add to Library edit button to add the selected object(s) to the library. See “Add to Library” on page 700.
- Click the Center Object edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.
- Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.
- Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.
- Click the Break edit button to add a new corner or pivot point to the selected object. See “Break” on page 200.
- Click the Complete Break edit button to break the selected object into two separate objects. See “Break” on page 200.
- Click the Reverse Direction edit button to reverse the direction of the selected object(s). See “Reverse Direction” on page 205.
- Click the Close Polyline edit button to convert the selected open polyline into a closed polyline. See “Using Close Polyline” on page 180.
- Click the Convert to Spline edit button to change the selected polyline into a spline. See “Splines” on page 249.
- Click the Convert Polyline edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.
• Click the **Record Walkthrough Along Path** edit button to record a walkthrough video of your model along the path defined by the selected polyline. See “Walkthrough Paths” on page 870.

• Click the **Convert Curve to Polyline** edit button to convert the selected arc into a polyline. See “Convert Curve to Polyline” on page 202. Only available when the selected edge is an arc.

• Click the **Lock Center** edit button to lock the center of the selected curved edge. See “Using Lock Center” on page 176. Only available when the selected edge is an arc.

• Click the **Make Arc Tangent** edit button to adjust the selected curved edge and attached edge(s) so they form a smooth shape. See “Using Make Arc Tangent” on page 198. Only available when the selected edge is an arc attached on one or both ends to another line or arc.

• Click the **Fence Select** edit button to use the selected object(s) as a selection fence. See “Using a Fence” on page 170.

• Click the **Object Layer Properties** edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

• Click the **Intersect/Join Two Lines** edit button, then click on a non-parallel line or arc to join the two objects. See “Intersect/Join Two Lines” on page 201.

• Click the **Fillet Lines** edit button, then click on an adjacent edge to create an arc connecting the two. See “Fillet Lines” on page 201. Cannot be used if the adjacent edge is an arc.

• Click the **Chamfer Lines** edit button, then click on an edge adjacent to the selected edge to chamfer the corner between them. See “Chamfer Lines” on page 202.

• Click the **Extend Object(s)** edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212.

• Click the **Trim Object(s)** edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212.

• Click the **Align/Distribute Objects** edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

• Click the **Align/Distribute Along Line** edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.

Using Close Polyline

An open polyline-based object can be converted into a closed polyline using the **Close Polyline** edit tool. This tool adds an edge to the open polyline, connecting its two ends and closing the gap between them. **Close Polyline** is not enabled when **Connect CAD Segments** is enabled. See “Disconnect Edges” on page 168.

Editing Closed Polyline-Based Objects

Closed polyline-based objects are composed of individual line- and arc-based objects joined end-to-end and forming an enclosed area. See “Polylines” on page 243. Objects are considered closed polyline-based when they can be edited similar to closed CAD polylines using their edit handles.

Closed CAD polylines, slabs and roof planes are examples of closed polyline-based objects.

Some objects, notably walls, have closed polyline-based editing behavior only when they are selected on certain surfaces in 3D views. See “Editing Walls” on page 280.

For information about editing open polyline-based objects, see “Editing Open Polyline-Based Objects” on page 177.
Other objects, such as connected road segments, have additional edit handles that allow you to concentrically adjust the width of all segments of the object.

If Connect CAD Segments is disabled, clicking on a polyline edge selects the individual edge rather than the entire polyline. See “Disconnect Edges” on page 168.

Using the Edit Handles

A polyline can be composed of many segments. See “Polylines” on page 243.

When selected, a closed polyline-based object displays a Move handle, a Rotate handle, and a Reshape handle at the intersection of each segment.

Each straight, line-based segment has a Move edit handle along its length.

Each curved, arc-based segment has its own Move handle at the center of its chord, a Resize handle and, if it has an unlocked center, a Reshape handle. See “Editing Arc-Based Objects” on page 173.

When a polyline is selected, the edge that you click nearest is called the selected edge, and certain operations affect only this edge. The Move handle of the selected edge is larger than that of other edges. It displays along the length of a line segment, or at the center of the chord on an arc segment. See “Selected Edge” on page 168.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

The behavior of the edit handles may depend on the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

Move

- Click and drag the Move handle to move the object according to the currently active **Edit Behavior**.
- Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.

Rotate

- The Rotate handle is used to rotate the object, either about its center or about the current CAD point. Its position varies depending on which edge is currently selected. See “Rotating Objects” on page 203.

Reshape

- Click and drag a Reshape edit handle to change the angle and/or length of the segments on either side of it, or the size of the object, depending on the currently active **Edit Behavior**.

Move Line Segment

- The Move Line Segment edit handle is found on straight segments of closed polylines and moves the straight section according to the currently active **Edit Behavior**. Adjacent segments may extend or contract in their original directions to maintain their connections.
Move Arc

- Click and drag the Move Arc edit handle to change the radius and/or chord length or position, depending on the currently active Edit Behavior and whether the arc has a locked center. Adjacent segments may extend, contract, or change angle to maintain their connections.

Resize Arc

- Click and drag the Resize Arc edit handle to change the radius, chord length and chord position of the arc segment, depending on the currently active Edit Behavior and whether the arc has a locked center. Adjacent segments may extend, contract, or change angle to maintain their connections.

Reshape Arc

- Click and drag the Reshape Arc edit handle to change the radius of the arc without moving its end points. Only available if the arc has an unlocked center.

Using Dimensions

Dimensions can be used to move or reshape closed polyline-based objects. See “Moving Objects Using Dimensions” on page 365.

Using Extension Line Snaps

Extension line snaps, especially tangent snaps, can be useful when editing polyline vertices. See “Extension Snaps” on page 131.

Using the Specification Dialog

Closed polyline-based objects can be edited using their specification dialogs. See “Polyline Specification Dialog” on page 244.

Using the Edit Toolbar

A selected closed polyline-based object can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected closed polyline-based object:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.

- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.

- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.

- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.

- Click the Disconnect Selected Edge edit button to disconnect the selected edge of the polyline, turning it into a separate object. See “Disconnect Edges” on page 168.

- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.

- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.

- Click the Make Parallel/Perpendicular edit button to make the selected straight edge parallel or perpendicular to another straight edge by either rotating the selected edge or the entire polyline. See “Using Make Parallel/Perpendicular” on page 197. Not available when the selected edge is an arc.

- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.

- Click the Add to Library edit button to add the selected object(s) to the library. See “Add to Library” on page 700.

- Click the Center Object edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.

- Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.

- Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.
• Click the **Break** ✂️ edit button to add a new corner or pivot point to the selected object. See “Break” on page 200.

• Click the **Complete Break** ✅ edit button to break an edge of the selected object into two separate objects. See “Break” on page 200.

• Click the **Reverse Direction** ⏬ edit button to reverse the direction of the selected object(s). See “Reverse Direction” on page 205.

• Click the **Convert to Spline** 🌟 edit button to change the selected polyline into a spline. See “Splines” on page 249.

• Click the **Union** 🔩 edit button to join two or more objects. See “Union, Intersection, and Subtraction” on page 213. Not available for objects specified as holes.

• Click the **Intersection** 🌟 edit button to create a new object defined by the areas shared by the original objects. See “Union, Intersection, and Subtraction” on page 213. Not available for objects specified as holes.

• Click the **Subtract** 🔨 edit button, then click a second object to remove the area shared by both objects. See “Union, Intersection, and Subtraction” on page 213. Not available for objects specified as holes.

• Click the **Convert Polyline** 🌟 edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

• Click the **Revision Cloud(s) Around Objects** 🌟 edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

• Click the **Change Line/Arc** ⬇️ edit button to change a line-based polyline edge to an arc, or vice versa. See “Change Line/Arc” on page 201.

• Click the **Convert Curve to Polyline** ✎️ edit button to convert the selected arc into a polyline. See “Convert Curve to Polyline” on page 202. Only available when the selected edge is an arc.

• Click the **Lock Center** 🔓 edit button to lock the center of the selected curved edge. See “Using Lock Center” on page 176. Only available when the selected edge is an arc.

• Click the **Make Arc Tangent** 🔓 edit button to adjust the selected curved edge and attached edge(s) so they form a smooth shape. See “Using Make Arc Tangent” on page 198. Only available when the selected edge is an arc attached on one or both ends to another line or arc.

• Click the **Fence Select** 🧵 edit button to use the selected object(s) as a selection fence. See “Using a Fence” on page 170.

• Click the **Object Layer Properties** 🌟 edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

• Click the **Record Walkthrough Along Path** 🌟 edit button to record a walkthrough video of your model along the path defined by the selected polyline. See “Walkthrough Paths” on page 870.

• Click the **Intersect/Join Two Lines** 🔨 edit button, then click on a non-parallel line or arc to join the two objects. See “Intersect/Join Two Lines” on page 201.

• Click the **Fillet Lines** ⬇️ edit button, then click on an adjacent edge to create an arc connecting the two. See “Fillet Lines” on page 201. Cannot be used if the adjacent edge is an arc.

• Click the **Chamfer Lines** 🔨 edit button, then click an edge adjacent to the selected edge to chamfer the corner between them. See “Chamfer Lines” on page 202.

• Click the **Extend Object(s)** 🔨 edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212.

• Click the **Trim Object(s)** 🔨 edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212.

• Click the **Align/Distribute Objects** 🔨 edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

• Click the **Align/Distribute Along Line** 🔨 edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.
• Click the **Create Hole** edit button, then click and drag to draw a rectangular hole in the selected object.

Polyline Holes

Most closed polyline-based objects can contain one or more holes. There are several ways to create a hole; the methods available may vary depending on the object type.

• Some closed polyline-based object drawing tools have an associated Hole drawing tool.

• Many closed polyline-based objects have a **Hole in** check box on the **GENERAL** panel of their specification dialog that will convert the object into a hole if it is located within a larger object of the same type.

• Click the **Create Hole** edit button, then click and drag to draw a rectangular hole in the selected object. If the selected object has an associated Hole tool or Hole in check box, the **Create Hole** will create an object of that type; if the selected object does not, a standard closed polyline will be created.

• Using the **Convert Polyline** tool, a CAD Polyline can be converted into a variety of different types of objects, some of which may contain holes. If the selected CAD polyline contains any holes, those holes will be converted to holes in the converted object, when appropriate. See “Convert Polyline” on page 205.

• A CAD Polyline can be converted into a hole in a floor, ceiling, or roof assembly using the **Convert Polyline** tool.

Bear in mind that by definition, a hole cannot exist where its containing object does not. It must be drawn entirely within the extents of its containing object without touching or crossing over an edge.

A few closed polyline-based objects cannot have holes: notably, Molding Polylines and Rope Lights.

Editing Box-Based Objects

Objects are considered box-based when they can be edited similar to CAD boxes using their edit handles.

Box-based objects are similar to closed polyline-based objects, but must always have four sides with right-angled corners.

In addition to the CAD Box tools, Text objects, many library symbols, CAD blocks, pictures and images are examples of box-based objects.

Using the Edit Handles

When selected, a box-based object displays ten edit handles. Unlike polylines, boxes must always have four sides with right-angled corners.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

- The behavior of the edit handles may depend on the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

- Click and drag the **Move** handle to move the object according to the currently active **Edit Behavior**. See “Defaults, Preferences, and Edit Behaviors” on page 163.
• Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.

• The four **Resize** handles located at each corner are used to increase or decrease the size of the object.

• The four **Extend** handles display along each edge. If you select an object on an edge, the Extend handle displays at the point where you clicked; otherwise, it displays at the center of the edge.

• The triangular **Rotate** handle located near the selected edge of the object is used to rotate it either about its center or the current CAD point. The pointer changes to a circular arrow when moved over this handle. See “Rotating Objects” on page 203.

Using Dimensions

Dimensions can be used to move or reshape box-based objects. See “Moving Objects Using Dimensions” on page 365.

Using the Specification Dialog

Box-based objects can be edited using their specification dialogs. See “Box Specification Dialog” on page 247.

Using the Edit Toolbar

A selected box-based object can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected box-based object:

• Click the **Select Next Object** edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.

• Click the **Open Object** edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.

• Click the **Copy/Paste** edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.

• Click the **Delete** edit button to delete the selected object(s). See “Deleting Objects” on page 220.

• Click the **Transform/Replicate Object** edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.

• Click the **Multiple Copy** edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.

• Click the **Make Parallel/Perpendicular** edit button to make the selected straight edge parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197. Not available when the selected edge is an arc.

• Click the **Point to Point Move** edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.

• Click the **Center Object** edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.
• Click the **Reflect About Object** edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.

• Click the **View Drawing Group Edit Tools** edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.

• Click the **Convert Polyline** edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

• Click the **Revision Cloud(s) Around Objects** edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

• Click the **Extend Object(s)** edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212.

Editing Spline-Based Objects

A Spline is a curve that passes smoothly through a set of points, or vertices. Splines are typically used in situations where an irregular, free-flowing curve is needed.

Objects are considered spline-based when they can be edited similar to CAD splines using their edit handles. See “Splines” on page 249.

Sprinkler lines, spline terrain curbs, spline terrain walls and both round and kidney-shaped terrain features are spline-based objects. See “Terrain” on page 899.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

![The behavior of the edit handles](image)

Move

- Click and drag the Move handle to move the object according to the currently active **Edit Behavior**. See “Defaults, Preferences, and Edit Behaviors” on page 163.

- Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while...
dragging. See “Unrestricted Movement” on page 193.

Rotate
- Click and drag the Rotate edit handle to rotate the entire spline.

Vertex
- The Vertex edit handles display along the spline at each vertex. Click and drag a Vertex edit handle to change the length, angle and curve of adjacent segments without affecting other vertices.

Same Line Type
- Drag a diamond-shaped end handle in any direction to draw a new spline segment that shares the original spline’s color, weight, line style, and layer. See “Same Line Type Edit Handles” on page 234.

Advanced Splines
Additional edit handles, called Control Handles, display beside each spline vertex when Advanced Splines is enabled. See “Advanced Splines” on page 188.

- Click and drag a round Control edit handle to change the angle of the associated tangent line.
- If two tangent lines pass through a vertex, the angle between them remains constant as long as Lock Control Handle Angle is enabled. See “Lock Control Handle Angle” on page 189.

Using the Specification Dialog
Spline-based objects can be edited using their specification dialogs. See “Polyline Specification Dialog” on page 244.

Using the Edit Toolbar
A selected spline-based object can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected spline-based object:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.
- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.
- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.
- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.
- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.
- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.
- Click the Make Parallel/Perpendicular edit button to make the selected spline edge parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197.
- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.
- Click the Add to Library edit button to add the selected object(s) to the library. See “Add to Library” on page 700.
• Click the Center Object edit button to center an object along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.

• Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.

• Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.

• Click the Break edit button to add a new corner or pivot point to the selected object. See “Break” on page 200.

• Click the Complete Break edit button to break an edge of the selected object into two separate objects. See “Break” on page 200.

• Click the Trim Object(s) edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212.

• Click the Extend Object(s) edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212.

• Click the Convert Polyline edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

• Click the Revision Cloud(s) Around Objects edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

• Click the Fence Select edit button to use the selected object(s) as a selection fence. See “Using a Fence” on page 170.

• Click the Convert Spline to Polyline edit button to convert the selected spline into a polyline. See “Convert Spline to Polyline” on page 208.

• Click the Record Walkthrough Along Path edit button to record a walkthrough video of your model along the path defined by the selected polyline. See “Walkthrough Paths” on page 870.

• Click the Object Layer Properties edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

• Click the Advanced Splines edit button to enable advanced spline editing for the selected spline. See “Advanced Splines” on page 188.

• Click the Straighten Spline Segment edit button to straighten a segment of an Advanced Spline. See “Straighten Spline Segment” on page 189. Only available when Advanced Splines is turned on.

• Click the Lock Control Handle Angle edit button to maintain the relative angle between the vertex and its control handles. See “Lock Control Handle Angle” on page 189. Only available when Advanced Splines is turned on.

• Click the Align/Distribute Objects edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

• Click the Align/Distribute Along Line edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.

Advanced Splines

Click the Advanced Splines edit button to display additional edit handles called Control Handles on the selected spline. These edit handles allow you to reshape the spline with more control at each vertex.

The line between the two Control Handles is tangent to the spline’s curvature at the point of the vertex.

• Move a Control Handle around the vertex to change the direction of the spline’s curvature at the vertex point.

• Move a Control Handle away from the vertex to increase the curvature of the spline segment adjacent to that handle, or move it towards the vertex to decrease the curvature.
You can specify that splines be Advanced Splines by default in the Preferences dialog. See “CAD Panel” on page 93.

Straighten Spline Segment

The Straighten Spline Segment edit button allows you to straighten the selected segment of an Advanced Spline between two vertex points.

To use, click on the spline segment that you would like to straighten, then click the Straighten Spline Segment edit button. See “Selected Edge” on page 168.

When a spline segment has been straightened, the Control Handles and tangent lines associated with it are aligned with the segment. If either Control Handle is moved around the vertex, the straightened edge will become curved again.

Lock Control Handle Angle

The Lock Control Handle Angle edit button is available when Advanced Splines is enabled, and is turned on by default. This tool maintains the relative angle between the vertex and its Control Handles.

Click the Lock Control Handle Angle edit button to free the control of the relative edit angles between each vertex and its Control Handles. The Control Handles can now be adjusted independent of one another.

Editing Circles, Ovals and Ellipses

Objects created using the Circle Tools are unusual in that no architectural objects share their functionalities.

Using the Edit Handles

When selected, circles, ovals and ellipses display eleven edit handles.

Unlike Ovals and Ellipses, a Circle cannot be edited into any other shapes; it can only be a circle unless it is converted into a polyline. See “Convert Curve to Polyline” on page 202.

Any action performed using the edit handles can be cancelled by pressing the Esc key or any two mouse buttons at the same time.

The behavior of the edit handles may depend on the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

- **Move**
 - Click and drag the Move handle to move the object according to the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.
 - Movement may be limited or stopped by other objects or Snap Behaviors. Move restrictions can be overridden by holding down the Ctrl key while dragging. See “Unrestricted Movement” on page 193.
Rotate
- Click and drag the Rotate handle of an oval or ellipse to change its orientation.

Reshape
- The eight edit handles beyond the perimeter are Reshape edit handles. Move them in or out to resize and reshape an oval or ellipse.
- Unlike ovals and ellipses, circles cannot be reshaped. When a Reshape handle is dragged on a circle, it is only resized.

Concentric Resize
- The Concentric Resize edit handle displays on the perimeter of a circle between a corner Reshape handle and the center. Click and drag this handle to resize the circle without moving its center point.

Using Dimensions
Dimensions can be used to move or resize circle-based objects. See “Moving Objects Using Dimensions” on page 365.

Using the Specification Dialog
Circles, ovals and ellipses can be edited using their specification dialogs. See “Circle/Oval/Ellipse Specification Dialog” on page 243.

Using the Edit Toolbar
A selected circle, oval or ellipse can be edited in a variety of ways using the buttons on the edit toolbar.

The following toolbar buttons may display on the edit toolbar for a selected circle, oval or ellipse:

- Click the Select Next Object edit button to select nearby objects instead of the selected object. See “Selecting Objects” on page 167.
- Click the Open Object edit button to open the specification dialog for the selected object(s). See “Specification Dialogs” on page 32.
- Click the Copy/Paste edit button to copy the selected object(s) to the system clipboard so they can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.
- Click the Delete edit button to delete the selected object(s). See “Deleting Objects” on page 220.
- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selected object(s). See “Transform/Replicate Object Dialog” on page 208.
- Click the Multiple Copy edit button to make a series of copies at set intervals. See “Multiple Copy” on page 139.
- Click the Make Parallel/Perpendicular edit button to make the selected edge parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197.
- Click the Point to Point Move edit button to accurately move the selected object(s). See “Using Point to Point Move” on page 193.
- Click the Center Object edit button to center an object along a wall within a room or relative to
a cabinet fixture. See “Using Center Object” on page 197.

- Click the Reflect About Object edit button to reflect the selected object(s) about another object. See “Reflecting Objects” on page 204.

- Click the View Drawing Group Edit Tools edit button to modify the selected object’s place in the drawing order. See “Drawing Group Edit Tools” on page 153.

- Click the Extend Object(s) edit button to lengthen other object(s) until they intersect the selected object. See “Trim and Extend” on page 212. Not available for ellipses.

- Click the Trim Object(s) edit button to shorten the length of object(s) intersected by the selected object. See “Trim and Extend” on page 212. Not available for ellipses.

- Click the Convert Polyline edit button to convert the object into a special polyline-based object. See “Convert Polyline” on page 205.

- Click the Revision Cloud(s) Around Objects edit button to create a revision cloud around each of the selected object(s). See “Revision Clouds” on page 247.

- Click the Convert Curve to Polyline edit button to convert the selected circle, oval or ellipse into a polyline. See “Convert Curve to Polyline” on page 202.

- Click the Align/Distribute Objects edit button to specify how the selected objects are distributed. See “Align/Distribute Objects” on page 194. Only available when multiple objects are selected.

- Click the Object Layer Properties edit button to access and edit layer information about the selected object. See “Object Layer Properties” on page 150.

- Click the Align/Distribute Along Line edit button, then click on a line-based object align the selected object(s) relative to that line. See “Align/Distribute Along Line” on page 195.

Editing Multiple Objects

There are a number of options for accurately and efficiently editing multiple objects at once. See “Selecting Multiple Objects” on page 169.

Dynamic Defaults

Dynamic defaults are one useful way to apply certain attributes to multiple objects of the same type throughout a plan. Dynamic defaults are found in the defaults dialogs for a variety of different architectural objects, and when these default values are changed, all objects that are set to use them throughout the current plan will update automatically. Dynamic defaults are particularly valuable for applying critical defaults like ceiling heights and floor structure. See “Dynamic Defaults” on page 67.

In the Specification Dialog

When multiple objects are selected, the Open Object edit button is often available. The settings available in a shared specification dialog will vary, depending on the types of objects that are selected. If the objects are of the same type, their shared specification dialog will have many of the settings that their individual specification dialogs have; if they are not similar, the dialog may have only a few settings. When multiple objects are selected, their shared specification dialog may also have settings in a “No Change” state. See “Specification Dialogs” on page 32.

Using the Edit Toolbar

Group-selected objects can also be edited using the buttons on edit toolbar. The available tools will vary, depending on which types of objects are selected.

Object Painter

The Object Eyedropper tool allows you to apply selected attributes of one object to other, similar objects. See “Object Eyedropper” on page 219.
Moving Objects

Objects can be moved using the edit handles as well as a variety of edit tools. Multiple selected objects can also be moved as a group. See “Selecting Objects” on page 167.

Using the Edit Handles

Select an object, then click the Move edit handle and drag it to a new location. When your pointer is over the Move handle, it displays a four-headed arrow.

As an object is moved, it jumps at set increments when Grid Snaps are enabled. See “Grid Snaps” on page 133.

When Object Snaps are enabled, a selected object snaps to its original location if it passes over that location while being moved.

The behavior of the Move edit handle varies depending on the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

• If the Default, Resize, Concentric or Fillet edit behavior is active, the object moves orthogonal, or at a right angle to, any of its edges.

• If the Alternate edit behavior is active, the selected object(s) can be moved at Allowed Angles if Angle Snaps are enabled, or orthogonal to any of its edges if they are not. See “Alternate” on page 164.

• If the Move edit behavior is active, the selected object(s) can be moved by clicking and dragging any edit handle that would otherwise be used for resizing. See “Move” on page 165.

You can temporarily slow the movement of your mouse as you drag an edit handle by holding down the Shift key on your keyboard.

Bumping/Pushing

When Edit> Snap Settings> Bumping/Pushing is enabled, architectural objects will bump into and can push one another as they are moved. This setting also affects CAD and CAD-based objects with CAD Stops Move and/or Wall Stops Move enabled. See “Line Style Panel” on page 235.

When an object bumps into another object while it is being moved, it stops. If you do not release the mouse button and continue to drag, however, the selected object resumes movement and continues past the obstructing object.

Instead of dragging through and past obstructing objects, you can instead push them. To do this, bump an object into an obstructing object and release the mouse button. Then, click and drag the Move edit handle a second time in the same direction.

Walls, wall openings, cabinets, furnishings and fixtures, and CAD and CAD-based objects are examples of objects that can bump into as well as push other objects.

By default, Bumping/Pushing does not affect objects moved using dimensions or the Enter Coordinates dialog. See “Moving Objects Using Dimensions” on page 365 and “Entering Coordinates” on page 135.

The Maximum Bump Distance, which is the distance you must drag to override bumping, is set in the Preferences dialog. Bumping/Pushing for Type-in Movement can also be enabled there. See “Snap Properties Panel” on page 97.

Certain types of objects, notably roof planes, and objects on locked layers can be bumped but cannot be pushed. See “Layer Display Options Dialog” on page 144.

CAD Stops Move/Wall Stops Move

CAD and CAD-based objects can be set to stop at other CAD objects and/or at walls as they are being moved. See “Line Style Panel” on page 235.

Some objects, such as cross boxes, framing members and insulation, are automatically set to stop when moved against other CAD objects.

CAD Stops Move and Wall Stops Move do not function if Bumping/Pushing is turned off.
Unrestricted Movement

Many objects have restrictions placed on their movement by their own properties or specification settings. Architectural objects, for example, bump into other 3D objects as they are being moved when Bumping/Pushing is enabled.

CAD-based objects can be set to stop at other CAD objects or at walls. See “Line Style Panel” on page 235.

Other move restrictions are activated by the Snap Settings. See “Snap Behaviors” on page 130.

These restrictions can be overridden when necessary by holding down the Ctrl key while dragging to move an object.

To move an object freely

1. Select the object.
2. Hold down the Ctrl key.
3. Click the Move edit handle and drag it to the new location.

You can also press the Ctrl key while dragging an object’s Move handle to override move restrictions.

Nudging

You can use your keyboard to move a selected object or objects by single Snap Grid increments in 2D and 3D views. This is referred to as nudging. See “Grid Snaps” on page 133.

By default, the Nudge commands are not assigned hotkeys and the arrow keys are programmed to nudge a selected object. If you press an arrow key when no object is selected, you will instead pan the view window. See “Panning the Display” on page 127.

If you wish, you can program assign hotkeys to the Nudge commands. When Nudge hotkeys are assigned, they cannot also be used to pan the display. See “Hotkeys” on page 114.

In Plan View

To nudge an object in plan view, select it and press any of the four arrow keys: Up, Down, Left, or Right. These directions are relative to the Snap Grid: if Rotate Plan View is used to rotate plan view, the definitions of up, down, left, and right are affected. See “Rotate Plan View” on page 121.

In 3D Views

To nudge an object in camera views, overviews, and cross section/elevation views, you can program the keys of your choice for use as nudging hotkeys. See “Hotkeys” on page 114.

In 3D views, nudging is relative to the selected surface. If, for example, you select the front of a cabinet in 3D and nudge it to the left, it will move to the left in plan view. If you instead select the back of a cabinet in 3D and nudge it to the left, it will move to the right in plan view.

When multiple objects are selected, the surface that was clicked on last is considered the selected surface. When nudged, all selected objects will move relative to that surface. See “Shift and Ctrl Select” on page 170.

If an object is rotated, the directions that it can be nudged in 2D are not affected; however, in 3D, they are. If, for example, a cabinet is rotated 45°, it will nudge to the left as defined by the Snap Grid in plan view. When nudged in 3D, however, it will move at a 45° angle to the Snap Grid: or parallel to the selected surface.

Using Point to Point Move

The Point to Point Move edit button allows a selected object or group of objects to be accurately moved.

To use Point to Point Move

1. Select one or more objects that you would like to move, then click the Point to Point Move edit button.
2. The mouse pointer displays the Point A icon. Click on a point that you want to accurately reposition.
3. An extension line extends from Point A to the mouse pointer, which now displays the Point B icon.
4. Click on the point in the plan where you would like the selected point to be relocated when it is moved.
5. The selected object(s) are moved so that they maintain their position relative to the point.
Point to Point Move can be used with the Copy/Paste edit button. See “To use point to point copy” on page 140.

Point to Point Move can also be used with the Edit Area tools. See “Edit Area Tools” on page 209.

Center Object

The Center Object edit button allows you to move walls, cabinets and other objects so that they are centered along a wall within a room or relative to a window or cabinet.

Move to Framing Reference

Framing members can be positioned relative to a Framing Reference using the Move to Framing Reference edit tool. See “Framing Reference Marker” on page 631.

Using Dimensions

Objects or the selected edges of some objects can be moved using dimensions. See “Moving Objects Using Dimensions” on page 365.

Aligning Objects

It is often important to align objects such as text boxes, roof plane edges, or walls, or to align objects on different floors. There are several methods to choose from.

Align/Distribute Objects

Select two or more objects and click the Align/Distribute Objects edit button to open the Align/Distribute Objects dialog and specify how to align or distribute the selected objects vertically and/or horizontally.

When Bumping/Pushing for Type-in Movement is checked in the Preferences dialog, adjacent objects can be pushed when an object is moved using dimensions.

Enter Coordinates

Objects or the selected edges of some objects can be moved using the Enter Coordinates dialog. See “Entering Coordinates” on page 135.

To push additional objects using the Enter Coordinates dialog, check Bumping/Pushing for Type-in Movement in the Preferences dialog, then bump an object into another object. Click and drag a second time to begin pushing and press the Tab key to open the Enter Coordinates dialog.

Using the Transform/Replicate Object Dialog

Objects and groups of objects can be moved relative to themselves or an absolute location using the Transform/Replicate Object dialog. See “Transform/Replicate Object Dialog” on page 208.

Note: By default, objects moved using either the Enter Coordinates dialog or dimensions are not subject to Bumping/Pushing. See “Bumping/Pushing” on page 192.
Specify what edges or points on the selected objects to **Move Objects Vertically to**.

- **Select Don’t Move Vertically** to make no changes to the vertical alignment of the selected objects.
- **Select Top Edges** to move the selected objects so their top edges are aligned. The object with the highest top edge in the selection set does not move.
- **Select Centers** to move the selected objects so their centers are aligned vertically. The object with the center closest to the vertical center of the selection set does not move.
- **Select Bottom Edges** to move the selected objects so their bottom edges are aligned. The object with the lowest bottom edge in the selection set does not move.
- **Select Space Evenly** to produce consistent vertical spacing between the top and bottom edges of the objects in the selection set. The highest and lowest objects on screen do not move and the ones in between move up or down as needed. Only available if three or more objects are selected.
- **Select Distribute Centers Evenly** to produce consistent on-center vertical spacing between the objects in the selection set. The highest and lowest objects on screen do not move and the ones in between move up or down as needed. Only available if three or more objects are selected.

Specify what edges or points on the selected objects to **Move Objects Horizontally to**.

- **Select Don’t Move Horizontally** to make no changes to the horizontal alignment of the selected objects.
- **Select Left Edges** to move the selected objects so their left edges are aligned. The object in the selection set with the leftmost edge does not move.
- **Select Centers** to move the selected objects so their centers are aligned horizontally. The object with the center closest to the horizontal center of the selection set does not move.
- **Select Right Edges** to move the selected objects so their right edges are aligned. The object in the selection set with the rightmost edge does not move.
- **Select Space Evenly** to produce consistent horizontal spacing between the left and right edges of the objects in the selection set. The left- and rightmost objects on screen do not move and the ones in between move left or right as needed.
- **Select Distribute Centers Evenly** to produce consistent on-center horizontal spacing between the objects in the selection set. The left- and rightmost objects on screen do not move and the ones in between move left or right as needed.

Align/Distribute Along Line

Select one or more objects, click the **Align/Distribute Along Line** edit button, then click on a line or line-based object to open the **Align To Line** dialog and specify how to align the selected objects relative to the line.

Align/Distribute Along Line is available in all views for most CAD objects. For architectural objects, it is only available in plan view.
Specify the **Alignment** to apply to the selected object(s) relative to the line.

- Select **None** to make no changes to the alignment of the selected objects.
- Select **Centers** to move the selected objects so their centers are aligned with the line.
- Select **Closest Edges** to move the selected objects so the edges closest to the line are aligned with the line.

Specify the **Distribution** of the selected objects relative to the line.

- Select **None** to make no changes to the spacing of the selected objects.
- Select **Space Evenly** to produce consistent spacing between the edges of the objects in the selection set in the same direction as the line. The outermost objects in the group do not move and the ones in between move as needed.
- Select **Distribute Centers Evenly** to produce consistent on-center spacing in the same direction as the line between the objects in the selection set. The outermost objects in the group do not move and the ones in between move as needed.

Specify, too, how the first and last objects align with the line’s endpoints. These options are only available if three or more objects are selected.

- Select **Distribute To Endpoints** to position the first and last objects in the array so they align with the line’s endpoints.
- Select **Distribute Between Endpoints** to position the first and last objects in the array so inside the line’s endpoints, spaced as though there were additional objects aligned with the endpoints.

Using the Mouse Pointer Crosshairs

Objects can be aligned by eye using the mouse pointer crosshairs as a reference. This method can help you draw, place and edit objects quickly, easily, and with reasonable accuracy, but is not necessarily as accurate as some of the other approaches described here. See “Crosshairs” on page 27.

The mouse pointer crosshairs can be turned on and off and their size and aperture set in the **Preferences** dialog. See “Edit Panel” on page 95.

Using Snap Settings

With **Object Snaps** on, you can snap the edge of a selected object to that of another. Select an edge of an object. Drag it to the edge of another object to reveal an Object Snap point, then release the mouse.

With **Grid Snaps** on and **Angle Snaps** off, select the left side of the object, and drag from the center move handle. This snaps the selected side to the grid.

When both **Grid Snaps** and **Angle Snaps** on, objects snap at increments equal to the **Snap unit** specified in the **Plan Defaults** dialog rather than onto the grid itself. This does not align objects to the grid unless they were already snapped to the grid. See “Snap Behaviors” on page 130.

Using Dimensions

Create a temporary or manual dimension relative to an object such as a wall or line, and relocate the objects to the same dimension. See “Moving Objects Using Dimensions” on page 365.

CAD Stops Move/Wall Stops Move

CAD and CAD-based objects can be aligned using another CAD object or a wall as a guide. Check the **CAD Stops Move** and/or **Wall Stops Move** boxes in the objects’ specification dialogs, then move them until they bump into the CAD object or wall that you wish to use as a guide for alignment. See “Line Style Panel” on page 235.
Using Make Parallel/Perpendicular

The **Make Parallel/Perpendicular** edit button allows you to make a selected object parallel or perpendicular to any straight line or edge. If you select an edge of a polyline-based object, adjacent edges extend or contract to maintain contact, but other edges remain unchanged. The selected edge rotates about its endpoint if selected near the end, or about its center if you click within its middle third.

The **Make Parallel** edit button displays for a selected CAD block instance when a line, including a straight polyline edge, or box edge within a block instance, straight polyline edge is selected. The entire block is rotated to make the selected line or edge perpendicular or parallel to the item subsequently clicked on.

A few objects, such as camera symbols, are not eligible to be used as an axis for the **Make Parallel/Perpendicular** tool.

To use Make Parallel/Perpendicular

1. Select an object such as a roof plane on the edge that you would like to make parallel or perpendicular to another object.
 - Click near the center of the edge to rotate it about the center.
 - Click near an end to rotate the edge about that end.
2. Click the **Make Parallel/Perpendicular** edit button.
3. Click on a straight edge of an eligible object such as a wall.
4. If the first object is within 45° of parallel to the second object, it is made parallel. Otherwise, it is made perpendicular to the second object.

You can also make the selected edge parallel by rotating the entire object. See “Make Parallel/Perpendicular with Polyline-Based Objects” on page 204.

Using Center Object

The **Center Object** edit button can be used to center a variety of objects either relative to another object or between two points. Center Object can be used to center architectural objects in floor plan, cross section/elevation, and 3D views. It can also be used to center CAD objects in plan view, layout, and CAD Details.

A few objects, such as camera symbols, are not eligible to be used as a centering axis.

To center an object

1. Select an object.
2. Click the **Center Object** edit button.
3. Move the mouse pointer over the object you would like to center the selected object relative to.
 - As the pointer passes over an eligible object, it becomes highlighted and a dashed centering axis line displays.
4. When the desired centering axis displays, click once to center the selected object along that axis line.

To center an object in a room

1. Select an object such a cabinet.
2. Click the **Center Object** edit button.
3. Move the mouse pointer in the room that you would like to center the selected object relative to.
 - As you move the pointer, a centering axis will display along the wall it is closest to.
 - The selected object does not have to be inside a room in order to be centered relative to that room.
4. When a centering axis displays along the correct wall, click once.
5. The object is moved perpendicular to the centering axis.

If you click outside an exterior wall instead of clicking inside, the selected object is centered along...
the edge of the Exterior Room. See “The Exterior Room” on page 318.

Using Point to Point Center

The **Point to Point Center** edit button can be used to center an object between two points.

To center an object between two points

1. Select an object and click the **Center Object** edit button.
2. Click the **Point to Point Center** edit button.
3. The mouse pointer displays the Point A icon. Move the mouse pointer over one of the points you want to center the selection between and click once.
 - Object Snaps like the Center, Midpoint or Endpoint of an object can be used, although any point in the drawing area is valid. See “Object Snaps” on page 131.
4. An extension line extends from Point A to the mouse pointer, which now displays the Point B icon.
5. When the mouse pointer is over the second centering point, click once more.
6. When the two centering points are defined, a set of temporary CAD points are created, identifying the points that the selected object can be moved to.
 - When the extension line is either horizontal or vertical, two CAD points are created.
 - If the line is angled, five CAD points are created.
7. Move your mouse pointer over a CAD point and click one more time to move the selected object to that location.

Using Make Arc Tangent

If a selected arc is attached on one or both ends to another line or arc, the **Make Arc Tangent** edit button displays. Click this button to adjust the arc and attached lines so they transition smoothly.

To use Make Arc Tangent

1. Select an arc-based object attached to like objects on one or both ends.
2. Click the **Make Arc Tangent** edit button.
 - If the arc is attached to an object on one end, it will adjust so that it is tangent to that object.
 - If the arc is attached to objects on both ends, the **Radius of Tangent Arc** dialog opens.
3. The radius from the center of curvature to the middle of the arc-based object displays.
 - If the objects attached to each end of the arc are parallel to one another, this value displays for reference only.
 - Keep this radius or change it, and click **OK**.
4. The arc and attached segments adjust so that the arc radius matches the target as closely as possible and the arc is made tangent to the attached segments.

Aligning Arc Centers

The center points of circles and arc-based objects can be aligned, even if the objects are on different floors, when the Reference Display is turned on and **Arc Centers and Ends** is toggled on. Note that Arc Centers and Ends is a floor-specific toggle. See “The Reference Floor” on page 543 and “Arc Centers and Ends” on page 176.

To align center points easily, it is helpful to turn on **Object Snaps** and turn off **Angle Snaps**. See “Object Snaps” on page 131 and “Angle Snaps” on page 132.
Aligning Objects on Different Floors

Objects on different floors can be aligned with one another using Object Snaps and the Reference Display. See “Object Snaps” on page 131 and “The Reference Floor” on page 543.

Resizing Objects

Objects can be resized using the edit handles, specification dialogs, and the Transform/Replicate Object dialog.

Using the Edit Handles

Depending on the currently active Edit Behavior, the end, corner and/or side edit handles can be used to resize a selected object. See “Defaults, Preferences, and Edit Behaviors” on page 163.

When the Concentric edit behavior is active, dragging an object’s corner or end handle resizes it according to the Concentric Jump value set in the Preferences dialog. See “Concentric” on page 165.

Objects can be resized about either their center points or the current CAD point. See “Behaviors Panel” on page 96.

To override any movement restrictions caused by snap settings or the presence of other objects, press the Ctrl key while dragging an edit handle.

As an object is resized, any dimensions indicating its size will update to reflect your changes. You can use dimensions as references to help you achieve the correct size for most objects.

You can temporarily slow the movement of your mouse as you drag an edit handle by holding down the Shift key on your keyboard.

Using the Specification Dialog

Most objects can be accurately resized in their specification dialogs. Some objects, such as images and some symbols, have a Retain Aspect Ratio option that lets you easily resize the object without distorting its shape. See “Specification Dialogs” on page 32.

Using Dimensions

Many objects can be resized by selecting an edge and then moving that edge using dimensions. See “Moving Objects Using Dimensions” on page 365.

Walls can also be resized using dimensions; however, it is important to understand that the selected edges of other objects cannot be resized using dimensions - they can only be moved. To resize an edge, select an adjacent edge and move that edge instead.

Using the Transform/Replicate Object Dialog

Most objects can be resized about either their centers or an absolute point using the Transform Replicate Object dialog. See “Transform/Replicate Object Dialog” on page 208.

Reshaping Objects

There is a variety of ways to reshape objects using the edit handles, specification dialogs and edit toolbar buttons.

Some objects, notably circles and box-based objects, cannot be reshaped - only resized. See “Resizing Objects” on page 199.

Using the Edit Handles

Depending on the Edit Behavior in use, the end, corner and/or side edit handles can be used to reshape a selected object. See “Defaults, Preferences, and Edit Behaviors” on page 163.

When a line-based, arc-based, or open polyline-based object is selected, you can right-click and drag an end handle to change a line into an arc or vice versa. This behavior does not apply to closed polylines.

To override any movement restrictions caused by snap settings or the presence of other objects, press the Ctrl key while dragging an edit handle.

You can temporarily slow the movement of your mouse as you drag an edit handle by holding down the Shift key on your keyboard.
Using the Specification Dialog

A variety of CAD and CAD-based objects can be reshaped by editing values on either the SELECTED LINE or SELECTED ARC panel of their specification dialogs. See “Polyline Specification Dialog” on page 244.

Using Dimensions

Both temporary and manually drawn dimensions can be used to increase or decrease the distance between the edge a line- or polyline-based object and another, parallel edge or line.

Angular Dimensions can be used to adjust the angle where two polyline segments meet. See “Using Angular Dimensions” on page 203.

Break

The Break edit tool can be used to break an individual line-, arc-, or spline-based object into two segments. The edges of a polyline-based object can also be broken.

The Break edit tool can also be used to create stepped cross section cutting planes. See “Stepped Cutting Planes” on page 788.

5. If you want, you can click the Corner Edit Handles edit button to toggle off their display.
6. Click the edge to create a new corner edit handle at that location and two separate edges on either side of that handle.
7. If you enabled Sticky Mode, continue clicking to place additional breaks.
8. Click the Main Edit Mode edit button or press the Esc key to return to the selected object’s main edit toolbar.

If you click and drag one of the edit handles on either side of the partial break, the edge moves at a right angle to itself and another edge forms, connecting the moved edge with the one on the other side that does not move.

You can remove an edge from a polyline-based object by clicking and dragging a corner handle until it snaps to an adjacent corner handle.

When a complete break is created, the object or edge is totally severed at that point.

With the exception of framing members, complete breaks cannot be created on CAD-based architectural objects. In the case of framing members, only complete breaks can be created.

To create a complete break

1. Click the object, object edge, or object center-line that you want to break into two segments.
2. Click the Break edit button.
3. Click the Complete Break edit button.
4. If you would like to create more than one complete break, click the Sticky Mode edit button.
5. If you would like to move the edges of the object as you add breaks, click the Edge Edit Handles edit button to toggle on their display.
6. If you want, you can click the Corner Edit Handles edit button to toggle off their display.
7. Click on an edge to create a complete break at that location.
8. If you enabled Sticky Mode, continue clicking to place additional breaks.

Note: The Break edit button is not available for box-based objects, objects created with the Circle Tools, North Pointers, Sun Angles, Joist Direction Lines, or some architectural objects such as stairs and trusses.
9. Click the **Main Edit Mode** edit button or press the Esc key to return to the selected object’s main edit toolbar.

The edge that you clicked on will be divided into two separate sections, one of which will be selected. You can now move or edit the selected edge completely independent of the object or edge on the other side of the break. Click on the other edge to select it instead.

When **Object Snaps** are enabled, breaks can be placed at snap locations such as midpoints. See “Object Snaps” on page 131.

To remove a break from an edge

1. Make sure that **Object Snaps** are enabled.
2. Select the object that has a break that you want to remove.
3. Click on the corner edit handle associated with the break that you want to remove and drag it to an adjacent corner handle.
4. When you see an **Endpoint** snap indicator, release the mouse button. The handle that you selected will be removed.

Change Line/Arc

Select an individual line-based or arc-based object or a segment of a polyline-based object and click the **Change Line/Arc** edit button to convert the selected segment from a line to an arc or vice versa.

Make Parallel/Perpendicular

The **Make Parallel** edit button can be used to reshape a polyline by making a selected edge parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197.

Intersect/Join Two Lines

The **Intersect/Join Two Lines** edit tool allows you to connect two non-parallel line- and/or arc-based objects or to join two edges of an open or closed polyline-based object. The lines or edges will shorten or lengthen as need to intersect at a point and join. If one or more edges exists between the two polyline edges, they will be removed.

To use Intersect/Join Two Lines

1. Click on a line, arc, or polyline segment that you would like to connect to another line or segment.
2. Click the **Intersect/Join Two Lines** edit button.
3. Click on the other line or polyline edge.
4. If there are intervening polyline edges, a message will confirm that you would like them to be removed. Click **Yes**.

Fillet Lines

The **Fillet Lines** edit tool allows you to replace the angled corner where two polyline edges meet with an arc or to join two non-parallel line-based objects with an arc.

If one or both of the two objects is an arc, both will extend or contract as needed to become connected. No additional arc is created.

To use Fillet Lines

1. Click on a line or polyline segment that you would like to connect to another line or segment with a fillet, or arc.
2. Click the **Fillet Lines** edit button, then click the **Fillet Radius** edit button.
3. In the **Set Fillet Radius** dialog, specify the desired **Fillet Radius** and click OK. If this value is 0, no fillet will be created.
4. To apply the specified radius to all corners of a selected polyline, click the **Fillet All Corners** edit button. If the selected polyline is a Custom Countertop or Molding Polyline, any corners that touch a wall will not be filleted by this tool.

5. To apply a fillet to more than one corner of the selected polyline, click the **Sticky Mode** edit button.

6. Click on the line or polyline segment that you want the selected line or edge to connect to with a fillet.

7. If you enabled **Sticky Mode**, continue clicking on edges to create additional fillets.

8. Click the **Main Edit Mode** edit button or press the Esc key to return to the selected object’s main edit toolbar.

Once two lines are filleted, the arc between them can be edited. See “Editing Arc-Based Objects” on page 173.

Chamfer Lines

The **Chamfer Lines** edit tool allows you to create a straight corner bevel of a specified size connecting any two non-parallel lines or polyline edges. It can also be used to extend an arc so that it joins to another arc or line.

If one or both of the two objects is an arc, both will extend or contract as needed to become connected. No additional chamfer is created.

The **Chamfer Lines** edit tool is used much the way the **Fillet Lines** edit tool is. See “To use Fillet Lines” on page 201.

Close Polyline

An open polyline-based object can be converted into a closed polyline using the **Close Polyline** edit tool. See “Using Close Polyline” on page 180.

Simplify Polyline

The **Simplify Polyline** edit button is available for an open or closed polyline or polyline-based object with a segment that is unusually short and can cause problems when editing the polyline’s shape. Click this edit button to remove the segment.

Convert Curve to Polyline

The **Convert Curve to Polyline** edit button allows you to convert a selected arc- or circle-based object to a polyline composed of line segments. Not available for some architectural objects such as walls or stairs.

To convert curve to polyline

1. Select an arc-based object or circle.
2. Click the **Convert Curve to Polyline** edit button.
3. In the **Convert Curve to Polyline** dialog, specify the number of sides you would like the converted arc or circle-based object to have.

• The initial values in this dialog may vary depending on the type of object selected.
4. Click **OK** to convert the selected arc or circle-based object into a polyline with the specified number of edges.

Convert to Spline

Click the **Convert to Spline** edit button to convert the selected polyline-based object into a spline. See “Convert to Spline” on page 202.

Union, Intersection, Subtract

Closed polyline-based objects can be reshaped using the **Union**, **Intersection**, and **Subtract** tools.
Rotating Objects

Objects can be rotated using the edit handles as well as a variety of edit tools. Multiple selected objects can also be rotated as a group. See “Selecting Objects” on page 167.

By default, an object or group of objects rotate about the center point of the selection set. You can instead specify that objects rotate about the current CAD point. See “The Current Point” on page 230.

Using the Edit Handles

Select an object, then click the triangular Rotate edit handle and drag it in any direction. When your pointer is over the Rotate handle, it displays a curved arrow.

The angles of line-based objects can also be changed by dragging an end handle in a direction other than parallel to the object. The object rotates about the opposite end point. See “Editing Line-Based Objects” on page 171.

When Angle Snaps are enabled, objects snap to Allowed Angles as specified in the Plan Defaults dialog as they are rotated. See “Angle Snaps” on page 132.

To override any movement restrictions caused by snap settings or the presence of other objects, press the Ctrl key while dragging an edit handle.

You can temporarily slow the movement of your mouse as you drag an edit handle by holding down the Shift key on your keyboard.

Using the Specification Dialog

The exact angle of some objects such as lines, arcs, walls and the selected edges of polylines can be specified on either the GENERAL panel, SELECTED LINE panel, or SELECTED ARC panel of that object’s specification dialog. See “Polylime Specification Dialog” on page 244.

Rotate/Resize About

Objects can be rotated or resized about either their own centers or the current CAD point. See “The Current Point” on page 230.

You can specify which behavior is used by selecting Edit> Edit Behaviors> Rotate/Resize About Current Point. When this option is selected, objects rotate about the current CAD point; when it is not selected, object rotate about their centers.

The Rotate/Resize About behavior can also be specified in the Preferences dialog. See “Behaviors Panel” on page 96.

Entering Coordinates

Objects can be rotated by entering coordinates or a distance and angle in the Enter Coordinates dialog. See “Entering Coordinates” on page 135.

Using Angular Dimensions

Angular Dimensions are useful for adjusting the angles of a variety of objects with straight edges. See “Angular Dimensions” on page 356.

To change an angular dimension

1. Draw an Angular Dimension between the objects you want to move.
 - Begin and end as close as possible to the two objects you wish to locate.
2. Select the edge that you want to move.
3. Click the dimension value to open the Set Angular Dimension dialog.
 - The Previous Value is indicated degrees, minutes and seconds.
4. Enter a value in the **New Value** field.

5. Select **Rotate Edge** to move the selected edge when **OK** is clicked or select **Rotate entire polyline** to rotate the entire object the selected edge is a part of, maintaining the Previous Value of the angle.

6. Click **OK** to apply the change.

When an entire polyline is rotated using the **Set Angular Dimension** dialog, it rotates around the vertex of the angle.

Make Parallel/Perpendicular with Polyline-Based Objects

The **Make Parallel/Perpendicular** edit button usually adjusts the angle of a selected polyline edge. See “Using Make Parallel/Perpendicular” on page 197.

Reflecting Objects

There are several ways to reflect an object, group of objects, or an entire plan about an axis or another object. Either the original object(s) or copies of the original(s) can be reflected.

Reflect About Object

A selected object or objects can be reflected about another object, regardless of its angle, using the **Reflect About Object** edit tool.

Line-based objects are often used for reflecting a selection, but most objects have an axis that can be used.

- When an open or closed polyline-based object is used as the reflective object, the edge that is clicked on acts as the axis.
- When a circle or box-based object such as a CAD box or cabinet is used as the reflective object, the axis runs down the center of the object from back to front.

- In 3D views, architectural objects can only be reflected about a vertical axis - not a horizontal axis.
- A few objects, such as camera symbols, are not eligible to be used as a reflective object.

To use Reflect About Object

1. Draw a CAD line to act as the reflection line.
2. Select the object(s) to be reflected.
3. Click the **Reflect About Object** edit button.
4. Click the CAD line to reflect the selection about the line.
5. The selection is reflected around the CAD line, and the original is no longer there.

To rotate the entire polyline instead, double-click the **Make Parallel** edit button to open the **Make Parallel** dialog.

Choose to either **Rotate Selected Edge Only**, or **Rotate Entire Polyline**. This setting is global, affecting all files, and is retained during the current program session.

Polylines rotate according to the current **Rotate/Resize About** setting. See “Behaviors Panel” on page 96.

Using the Transform/Replicate Object Dialog

Objects and groups of objects can be rotated to a relative or absolute angle using the **Transform Replicate Object** dialog. See “Transform/Replicate Object Dialog” on page 208.

Using Multiple Copy

A rotated array of copies of the selected object(s) can be created using the **Multiple Copy** edit tool. See “To create an array of copies” on page 139.
To retain a copy of the selected object(s) in the original location, click the Copy/Paste edit button before clicking the Reflect About Object button.

Using Transform/Replicate Object

Objects and groups of objects can also be reflected horizontally or vertically using the Transform Replicate Object dialog. See “Transform/Replicate Object Dialog” on page 208.

Reverse Plan

The Reverse Plan tool is a quick way to mirror a plan so that everything on all floors of the entire plan is swapped left to right.

Converting Objects

CAD objects and many CAD-based objects can be converted into a variety of other types of objects.

CAD to Walls

CAD to Walls allows you to convert a 2D line drawing into a 3D model. Double CAD lines and arcs drawn to represent wall layers and other structural items can be converted to actual Chief Architect walls, railings, windows, or doors. See “CAD to Walls” on page 291.

Convert Polyline

The Convert Polyline edit tool lets you to turn CAD objects into CAD-based architectural objects such as counter tops and stair landings, special polylines such as Materials List Polylines, and a variety of slab, hole and terrain objects.

To convert a CAD object into one of these 3D objects, select the object and click the Convert Polyline edit button to open the Convert Polyline dialog.

If the selected CAD polyline contains any holes, those holes will be converted to holes in the converted object, when appropriate. See “Polyline Holes” on page 184.

Select Tools > Reverse Plan to reflect an entire plan right to left, as though it were reflected about a vertical line.

Reversing a plan rebuilds the entire model and affects views sent to layout.

Reverse Direction

Select a line-based, arc-based or polyline-based object and click the Reverse Direction edit button to reverse its direction. Not available for Terrain Path objects.

Reversing a line or polyline is useful with certain line styles or with an arrow at one end.

CAD Detail from View

Select CAD > CAD Detail from View to create a CAD drawing of the current view. See “CAD Detail from View” on page 256.

CAD Detail from View does not truly convert objects in the current view into CAD objects; instead, it creates a copy of the original view composed of CAD objects instead of architectural objects, leaving the original view intact.
Click the radio button beside one of the objects in this dialog, then click OK. The options that are available will depend on whether a plan view is active or a cross section/elevation view.

1 The **Architectural** settings are only available if the selected polyline is closed. See “Polylines” on page 243.

Slab and **Slab with Footing** - See “The Slab Tools” on page 531.

Hole in Ceiling Platform - Only available when the selected polyline is contained inside a single ceiling platform. See “Floor and Ceiling Platforms” on page 325.

Hole in Floor Platform - Only available when the selected polyline is contained inside a single floor platform.

Hole in Roof/Custom Ceiling - Only available when the selected polyline is contained inside a single roof plane or ceiling plane. See “Roof Hole/Skylight Specification Dialog” on page 613.

Trey Ceiling - See “Trey and Coffered Ceilings” on page 327.

Countertop - See “Custom Countertops” on page 462.

Landing - Not available if the polyline is a spline. See “Landings” on page 554.

Polyline Solid - See “Polyline Solids” on page 732.

Solid Hole - See “Solid Feature” on page 734.

2 **Moldings** -

Molding Polyline - See “Molding Polylines” on page 684.

3D Molding Polyline - See “3D Molding Polyline” on page 684.

3 Most of the **Terrain** options are only available when a Terrain Perimeter is present.

Elevation Line - See “Elevation Lines” on page 902.
Converting Objects

Garden Bed - Only available when the selected object is a closed polyline. See “Terrain Feature Tools” on page 906.

Sprinkler Line - See “Sprinkler Tools” on page 941.
Terrain Break - See “Terrain Breaks” on page 904.
Terrain Feature - Only available when the selected object is a closed polyline. See “Terrain Feature Tools” on page 906.
Terrain Perimeter - See “Terrain Perimeter” on page 900. This option is only available when:
• The polyline is closed
• A terrain perimeter does not yet exist
• Only one polyline is currently selected
The Roads options are only available when a terrain perimeter is present. See “Road Tools” on page 928 and “Sidewalk Tools” on page 929.
Road (Perimeter) - Only available when the selected polyline is closed.
Road (Center Line) - Convert to a road where the polyline represents the center line of the road.
Road Median - This is helpful for creating medians on curved roads.
Road Marking (Perimeter) - Convert to a road marking where the polyline represents the perimeter of the road marking. Only available when the selected polyline is closed.
Road Stripe (Center Line) - Convert to a road stripe where the polyline represents the center line of the road stripe.
Sidewalk (Perimeter) - Convert to a sidewalk polyline where the polyline represents the perimeter of the sidewalk. Only available when the selected polyline is closed.
Sidewalk (Center Line) - Convert to a sidewalk where the polyline represents the center line of the sidewalk.

Revision Cloud - Only available when the selected object is a closed polyline. See “Revision Clouds” on page 247.

The Layer Options for Converted Object let you control which layer the selected object is on once converted. See “Layers” on page 142.
• Select Default Layer for Converted Object Type to put the object on the default layer for its type. That layer is reported in parentheses for reference.
• Select Same Layer as Original Object to keep the object on the same layer it was on before it was converted. That layer is also reported for reference.
• Select Specify Layer to select the desired layer from the drop-down list.
• Click the Define button modify the attributes of the selected layer. See “Layer Display Options Dialog” on page 144.

Click OK to convert the object or objects.
The specification dialog appropriate to the newly converted object opens, allowing you to specify its height, material and other information.

Convert to Plain Polyline

Click the Convert to Plain Polyline edit button to convert a special polyline to a plain 2D CAD polyline. See “Polylines” on page 243.

After a special polyline is converted into a plain polyline, it can be converted into a special polyline of the same or different type.

Bear in mind that some special polylines can only be converted to a plain polyline in the view type that they were created in. If a special polyline is selected and converted in a 3D view, the resulting plain polyline will be created in plan view.

Convert to Solid

Click the Convert To Solid edit button to convert the selected object into a Primitive object, or solid, so that it can be used with other solids to create complex structures. See “Primitive Tools” on page 731.

Convert to Symbol

Create a 3D view of a custom object, then select Tools> Symbol> Convert to Symbol.
to convert the object into a symbol. See “Convert to Symbol” on page 721.

Convert to Spline

Click the **Convert to Spline** edit button to convert some CAD-based objects such as Custom Countertops or splines that have been converted to polylines to spline-based objects. See “Editing Spline-Based Objects” on page 186.

Unlike polylines, splines form smooth curves rather than angled corners where their direction changes. See “Splines” on page 249.

Convert Spline to Polyline

Click the **Convert Spline to Polyline** edit button to convert the selected spline-based object into a polyline.

A curved portion in a spline is represented as a number of smaller straight lines. You can change a spline into a normal polyline that is made up of these straight lines using this edit tool.

Transform/Replicate Object Dialog

Select any object or group of objects and click the **Transform/Replicate Object** edit button to open the **Transform/Replicate Object** dialog.

If multiple options are selected in the **Transform/Replicate Object** dialog, they are performed in the order they appear in the dialog, from top to bottom.

Always double-check values entered in the Transform/Replicate Object dialog. Large offset values, resize factors, or numbers of copies can result in objects that are time-consuming to create or may be off the screen.
Check **Move**, then specify how far or where to move the object(s).

- **Select Relative to Itself** to move the object relative to its current position, then specify the X Delta, Y Delta and Z Delta values, which are the object’s changes in position along each axis.
- **Select Absolute Location** to move the object to an absolute location. You can either specify its X and Y Position, or Angle and Distance, if Polar is checked.
- **Select Relative to Current Point** to move the object relative to the current CAD point. See “Point Tools” on page 229. You can either specify its X Delta and Y Delta, or Angle and Distance, if Polar is checked.

When a CAD-based object is moved to a new floor, only its display in plan view is moved - its physical location in the model remains unchanged. See “Architectural vs CAD Objects” on page 129.

Rotate - Select this option, then specify the Angle to rotate the object(s).

- **Select Absolute Angle** to rotate the object relative to an imaginary horizontal line drawn in the positive X direction from the origin. See “3D Drafting” on page 25.
- **Select Relative Angle** to rotate the object the specified angle relative to its current orientation.

You can also specify the point the selected object(s) rotate about, below.

Resize - Select this option, then specify the Resize Factor in decimals. A resize factor of 2 doubles the size of the object, while a resize factor of 0.5 halves the object’s size. Not available for all objects, including line- and arc-based objects and Primitives.

You can also specify the point the selected object(s) is resized about, below.

Reflect - Select this option, then specify which axis to reflect about.

- **Horizontally** - Select this option to reflect the object horizontally.
- **Vertically** - Select this option to reflect the object vertically.

You can also specify the point the selected object(s) is reflected about, below.

Rotate/Resize/Reflect About - This section is enabled when the Rotate, Resize and/or Reflect functions are selected.

- **X Position** - Specify the X coordinate of the point to perform the selected edit function(s) about when About Absolute Point is selected.
- **Y Position** - Specify the Y coordinate of the point to perform the selected edit function(s) about when About Absolute Point is selected.
- **About Object Center** - Select this option to perform the selected edit function(s) about the object’s center.
- **About Absolute Point** - Select this option to perform the selected edit function(s) about the specified point.
- **About Current Point** - Select this option to perform the selected edit function(s) about the current CAD point.

Edit Area Tools

The **Edit Area Tools** allow you to quickly define an area of your plan and select the objects in that area. Once selected, they can then be repositioned, copied or deleted. Select Edit> Edit Area to access the Edit Area Tools.

Unlike other selection methods, the Edit Area Tools cut walls, railing and fencing where the selection marquee intersects them, allowing you to edit only the selected portion of these objects.

Some objects, such as cabinets, are included in the selection only if more than half of the object is contained within the marquee.

Camera and cross-section/elevation symbols are included in the selection and can be moved with it. While cameras can also be rotated as well as copied, cross section/elevations cannot. See “Editing 3D Views” on page 797.

A few objects, notably CAD points, are not affected by the Edit Area Tools.

The Edit Area tools can cause wide-spread changes across an entire plan and should always be used with caution.
Edit Area
Select Edit > Edit Area > Edit Area and draw a rectangular marquee around the area of the plan to be edited.

Edit Area affects all objects included in the selection marquee that are located on the current floor, regardless of whether they are displaying in plan view or not.

Edit Area Visible
Select Edit > Edit Area > Edit Area Visible and draw a marquee around the area of the plan to be edited.

Edit Area Visible only affects visible objects included in the selection marquee: objects not currently displayed in plan view are unaffected.

Edit Area (All Floors)
Select Edit > Edit Area > Edit Area (All Floors) and draw a marquee around the area of the plan to be edited.

Edit Area (All Floors) affects all objects on all floors of the plan that are included in the selection marquee, regardless of whether they display in plan view.

Edit Area (All Floors) Visible
Select Edit > Edit Area > Edit Area (All Floors) Visible and draw a marquee around the area of the plan to be edited.

Edit Area (All Floors) Visible affects all visible objects on all floors of the plan that are included in the selection marquee. Objects not currently displaying in plan view are not affected.

Edit Area Polyline
If a rectangular marquee’s shape does not allow you to define an area precisely, use a closed polyline instead.

Select a polyline that defines the desired area in plan view and then select one of the Edit Area Tools. The polyline becomes temporarily highlighted and acts as an Edit Area marquee.

Using the Edit Handles
An Edit Area marquee displays edit handles that are similar to those of a closed polyline. See “Using the Edit Handles” on page 181.

- Click the Move edit handle to move the entire selection set. See “Moving Objects” on page 192.
- Click the Rotate edit handle to rotate the entire selection set. See “Rotating Objects” on page 203.
- Click and drag the Reshape and Resize edit handles at each corner and along each edge to adjust the size and shape of the marquee. See “Using the Edit Handles” on page 181.

Adjusting the size or shape of an Edit Area marquee may change which objects are included in the selection set but does not otherwise affect those objects.

Using the Edit Toolbar
A selected Edit Area marquee and/or the objects within it can be edited in a variety of ways using the buttons on the edit toolbar. See “Using the Edit Toolbar” on page 182.

The following toolbar buttons may display on the edit toolbar for an Edit Area marquee:

- Click the Copy/Paste edit button to copy the selection set to the system clipboard so it can be pasted elsewhere. See “Copying and Pasting Objects” on page 136.
- Click the Delete edit button to delete the selection set. See “Deleting Objects” on page 220.
- Click the Transform/Replicate Object edit button to copy, move, rotate, resize, or reflect the selection set. See “Transform/Replicate Object Dialog” on page 208.
- Click the Multiple Copy edit button to make a series of copies of the selection set at regular intervals. Concentric copies are not possible using the Edit Area tools. See “Multiple Copy” on page 139.
- Click the Make Parallel/Perpendicular edit button to rotate the Edit Area marquee and the selection set so that the selected marquee edge is parallel or perpendicular to another straight edge. See “Using Make Parallel/Perpendicular” on page 197.
• Click the **Point to Point Move** edit button to accurately move the selection set. See “Using Point to Point Move” on page 193.

• Click the **Center Object** edit button to center the selection along a wall within a room or relative to a cabinet fixture. See “Using Center Object” on page 197.

• Click the **Reflect About Object** edit button to reflect the selection set about another object. See “Reflecting Objects” on page 204.

• Click the **Allowed Angles** edit button to open the **Place at Allowed Angles** dialog.

Place at Allowed Angles Dialog

If more than one percent of the straight walls included in an Edit Area marquee are not at an Allowed Angle, the **Allowed Angles** edit button displays.

Click the **Allowed Angles** edit button to display the **Place at Allowed Angles** dialog.

Select the first option and click **OK** to rotate the plan so that the largest group of off-angle walls move to an Allowed Angle. This may place this largest group at Allowed Angles, but has two disadvantages.

• First, other groups of off angle walls remain off angle.

• Second, any walls that were at an allowed angle before this action will move to an off angle. The dialog shows how much (weighted by length) of the selected walls are in each category.

Select the second option and click **OK** to add new entries to the Allowed Angles list and allow new walls to be placed at these angles. Walls already at Allowed Angles remain so. See “Angle Snaps” on page 132.

Select the third option and click **OK** to do nothing, which is the same as clicking **Cancel**.

You may want to rotate the majority of the walls to one of the normal allowed angles. Then, use an **Edit Area** tool to select everything again and select the second option to provide new angle entries to cover the remaining walls.

Stretch CAD

The **Stretch CAD** tool allows you to reshape or move a variety of CAD-based objects using a temporary closed polyline.

To use the Stretch CAD tool

1. Select **Edit > Stretch CAD**.
2. Click and drag to draw a rectangular polyline through the CAD objects that you would like to stretch.
3. You can edit the shape of the Stretch CAD polyline so that it intersects the objects you want to stretch along the desired planes. See “Editing Closed Polyline-Based Objects” on page 180.

• An edge of the polyline must extend through each of the objects that you would like to stretch.

• The opposite polyline edge should be located outside of those objects.

4. When the Stretch CAD polyline’s shape and position meet your needs, click and drag its Move edit handle.

5. As you drag, intersected objects will either stretch, contract, or move.

Not all CAD-based objects can be reshaped using the **Stretch CAD** tool:

• Road and Text objects are examples of objects that can be moved but not reshaped by this tool.
Stairs, Ramps, and Sun Shadows are examples of objects that are not affected by this tool at all.

Trim and Extend

The Extend Object(s) and Trim Object(s) edit tools allow you to lengthen or shorten a variety of CAD objects and framing members. See “Editing Framing” on page 648.

When either the Extend Object(s) or Trim Object(s) edit buttons are clicked, its edit mode is enabled and three new edit buttons display on the edit toolbar.

• Click the Sticky Mode edit button to remain in the current mode and edit multiple objects or select multiple fences.
• Click the Select Fence edit button, then click an object to use it as a fence. See “Using a Fence” on page 170.
• Click the Main Edit Mode edit button or press the Esc key to return to the selected object’s main edit toolbar.

If you did not do a fence selection and then immediately click either Extend Object(s) or Trim Object(s) after returning to the Main Edit Mode, Sticky Mode is still enabled.

Note: Trim Objects and Extend Objects cannot be used to modify closed polyline-based objects. See “Editing Closed Polyline-Based Objects” on page 180.

Trim Objects

Lines, arcs, open polylines, circles and framing items can be trimmed. The trimming, or cutting, object may be any CAD object, a group of CAD objects, or even a CAD block. Select the trimming object(s) and click the Trim Object(s) edit button.

The Trim Object(s) edit tool can be used in three different ways:
• Individually clicking on objects to be trimmed.
• Selecting objects to be trimmed using a fence. See “Using a Fence” on page 170.
• Selecting objects to be trimmed using a temporary fence.

To trim by clicking
1. Draw the cutting line(s) or polyline(s) through the objects to be trimmed.
2. Select the cutting line(s) and click the Trim Object(s) edit button.
3. Click the Sticky Mode edit button if you wish to click multiple objects to trim them.
4. Click each segment intersected by a cutting line one-by-one to trim it back to the cutting line.

To trim using a fence
1. Draw the cutting line(s) or polyline(s) through the objects to be trimmed.
2. Draw a fence through the object segments to be trimmed. Be sure that the fence intersects the objects on the side of the cutting line(s) that you want to edit. See “Using a Fence” on page 170.
3. Select the cutting line(s) and click the Trim Object(s) edit button.
4. Click the Sticky Mode edit button if you wish to trim objects using multiple fences.
5. Click the Select Fence edit button.
6. Click the fence(s) to trim the object segments intersected by the fence.

To trim using a temporary fence
1. Draw the cutting line(s) or polyline(s) through the objects to be trimmed.
2. Select the cutting line(s) and click the Trim Object(s) edit button.
3. Click the Sticky Mode edit button if you wish to trim objects using multiple temporary fences.
4. Click and drag a temporary line to act as a fence, trimming the object segments intersected by it. Be sure to draw this fence on the side of the cutting object(s) that you wish to edit.
Extend Objects

Lines, arcs, open polylines, and framing items can also be extended to any CAD object, group of CAD objects, or a CAD block.

As with Trim Objects, there are three ways to use Extend Objects:

• Individually clicking on objects to be extended.
• Selecting objects to be extended using a fence.
• Selecting objects to be extended using a temporary fence.

To extend by clicking

1. Draw the boundary line(s) or polyline(s) you want the objects to extend to.
2. Select the boundary line(s) and click the Extend Objects edit button.
3. Click the Sticky Mode edit button if you wish to extend multiple objects.
4. Click an object that you would like to extend to the boundary line(s).

To extend using a fence

1. Draw the boundary line(s) or polyline(s) you want the objects to extend to.
2. Draw a fence through the objects to be extended. See “Using a Fence” on page 170.
3. Select the boundary line(s) and click the Extend Objects edit button.
4. Click the Sticky Mode edit button if you wish to extend objects using multiple fences.
5. Click the Select Fence edit button.
6. Click the fence to extend the objects segments intersected by the fence until they meet the boundary line(s).

To extend using a temporary fence

1. Draw the boundary line(s) or polyline(s) you want the objects to extend to.
2. Select the boundary line(s) and click the Extend Objects edit button.
3. Click the Sticky Mode edit button if you wish to extend objects using multiple temporary fences.
4. Click and drag a temporary line to act as a fence, trimming the object segments intersected by it.

Union, Intersection, and Subtraction

New closed polyline-based objects and solids can be created based on existing closed polyline-based objects of the same type or solid objects. The Polyline Union, Polyline Intersection and Polyline Subtraction edit tools are provided for this purpose.

Note: The Polyline Union Intersection and Subtraction edit tools are not available for objects specified as holes, such as Slab Holes or Custom Countertop Holes.

Polyline Union

Use the Polyline Union edit button to combine two or more closed polylines or solids into a single object.

The following example shows three closed polylines and the single polyline that results when the three are merged using the Polyline Union edit button.

There are two methods of combining closed polylines or solids using the Polyline Union edit button: the single selection and group selection methods.

Begin by creating two or more overlapping objects of the same type. If one object is a countertop, for example, the others should be countertops, as well.
If the original objects do not overlap, they will either not produce a new object or will be duplicated on top of themselves.

To use the single selection method

1. Select a single closed polyline or solid object.
2. Click the Polyline Union edit button.
3. Click another closed polyline or solid.
4. If the object is a polyline, a message box will let you choose to either retain or delete the original objects.
5. A new polyline of the same type as the originals is created and is selected. Its shape is defined by the boundaries of the original objects. If the original objects were retained, it is superimposed over them and can be moved.

To use the group selection method

1. Group-select two or more closed polylines or solid objects.
2. Click the Polyline Union edit button.
3. If the object is a polyline, choose to retain or delete the original objects in the dialog that opens.
4. A new object of the same type as the originals is created, is selected, and is superimposed over the originals if they were retained.
5. A new object of the same type as the originals is created and is selected. Its shape is defined by the area shared by the original objects and, if the originals were retained, it is superimposed over them and can be moved.

This second method allows you to combine more than two polylines simultaneously.

Note: If the original objects do not overlap, the Union edit tool duplicates them and then either deletes or retains the originals.

Polyline Intersection

Use the Polyline Intersection edit button to create a single polyline based on the overlap area of two or more closed polyline-based objects or solids.

The following shows two polylines and the single polyline that results when the Polyline Intersection edit tool is used.

There are two methods of combining closed polylines or solids using the Polyline Intersection edit button: the single selection and group selection methods. The second method allows you to work with more than two objects simultaneously.

Begin by creating two or more overlapping objects of the same type. If one object is a countertop, for example, the others should be countertops, as well.

If the original objects do not intersect, no new object is created.

To use the single selection method

1. Select a single closed polyline or solid object.
2. Click the Polyline Intersection edit button.
3. Click another closed polyline or solid.
4. If the object is a polyline, choose to retain or delete the original objects in the dialog that opens.
5. A new object of the same type as the originals is created and is selected. Its shape is defined by the area shared by the original objects and, if the originals were retained, it is superimposed over them and can be moved.

To use the group selection method

1. Group select two or more closed polylines or solid objects.
2. Click the Polyline Intersection edit button.
3. If the object is a polyline, choose to retain or delete the original objects in the dialog that opens.
4. A new object of the same type as the originals is created, is selected, and is superimposed over the originals if they were retained.
Polyline Subtraction

Use the Polyline Subtraction edit button to subtract the area of one object that overlaps another object of the same type to create a third, new object.

There is one method for using the Polyline Subtraction edit button.

To use the Polyline Subtraction edit tool

1. Draw two or more closed polyline-based objects or solids that overlap. One object can be completely enclosed by another.
2. Select one or more of these objects that you want to remove a portion from as defined by the area shared in common with the remaining, unselected object.
3. Click the Polyline Subtraction edit button and then click the unselected object.
4. If the object is a polyline, choose to retain or delete the original objects in the dialog that opens.
5. A new object of the same type as the originals is created, is selected, and is superimposed over the originals if they were retained.

Note: If the original objects do not overlap, the Polyline Subtraction edit tool duplicates the first object selected and then either deletes or retains it.

Eyedropper and Painter Tools

There are a number of tools in Chief Architect that allow you to apply attributes to objects by clicking on them.

- The Eyedropper tools allow you to load attributes from one object and apply them to other objects.
- The Painter tools allow you to apply attributes to one or more objects. Depending on the tool, attributes may be loaded from another object using an Eyedropper tool or selected from a dialog.
- Some object attributes can also be replaced directly from the library. See “To replace an inserted object” on page 706.
- The Match Properties and Apply Properties edit tools allow you to apply attributes from a selected object to other objects. See “Matching Properties” on page 219.

Attributes cannot be either loaded from or painted onto objects on locked layers or on layers that are not set to display. They can be used to modify automatically generated objects such as roof planes and framing; however, the associated Auto Rebuild function will be turned off. See “Auto Rebuild” on page 136.

Eyedropper Tools

The Eyedropper tools allow you to select attributes from one object and apply them to other objects. There are four Eyedropper tools in the program:

- Material Eyedropper.
- Object Eyedropper.
- Fill Style Eyedropper.
- Layer Eyedropper.

To use an eyedropper tool

1. Select the Eyedropper tool that you want to use and notice that the mouse pointer displays an eyedropper icon.
2. Move the mouse pointer over an object in the current view. If the object is eligible for use with the selected Eyedropper:
 - It will become highlighted in the view.
 - The left side of the Status bar will report information about that object or the attribute that the Eyedropper can load from it.
3. Click once to load the object’s attributes so they can be applied to other, similar objects.

4. Notice that your mouse pointer now displays a spray can icon. This means that the Painter tool associated with the selected Eyedropper is now active.

5. Depending on the tool in use, additional buttons may now display on the edit toolbar. Select the option or options that you need:
 - The Painter Mode buttons. See “Painter Modes” on page 216, below.
 - Blend Colors with Materials. See “Material Painter Tools” on page 759.
 - Select Properties to Paint. See “Object Eyedropper” on page 219.

6. Move your mouse pointer over an object that is similar to the one selected in step 2. If it is eligible to receive the loaded attribute(s):
 - It will become highlighted in the view.
 - The left side of the Status bar will report information about the attribute to be painted or loaded.

7. Click on an eligible object to apply the specified attributes to it as well as to any other identical objects, depending on which Painter Mode is active.

8. Continue clicking to apply attributes until the Esc key is pressed or another tool is activated.

 Painter Tools

The Painter Tools let you apply attributes to a wide variety of objects by clicking on them. When a Painter tool is active, the mouse pointer will display a spray can icon. There are a number of ways to load attributes into a Painter tool.

- Click on an object using any Eyedropper tool to load its attribute(s). The associated Painter tool will become active, ready to paint the loaded attributes.
- Select a material or fill style in the Library Browser and move the mouse pointer into the current view window. If that item can be applied in the current view type, the associated Painter will be active and you can apply the selection to eligible objects in that view.
- When you select the Material Painter tool, the Select Material dialog will open, allowing you to choose a material from the library. See “Select Material Dialog” on page 762.
- When you select the Fill Style Painter tool, the Select Library Object dialog will open, allowing you to choose a fill style from the library. See “Select Library Object Dialog” on page 705.
- When you select the Layer Painter tool, The Select Layer dialog will open, allowing you to choose a layer. See “Select Layer Dialog” on page 149.
- When you activate the Object Painter, click the Select Properties to Paint button to open the Select Properties to Load dialog and select the attributes that you want apply to other objects. See “Matching Properties” on page 219.
- When you select a Style Palette in the User Catalog of the Library Browser. See “Style Palettes” on page 217.

Once a Painter tool is loaded, simply click on an object to apply the selected attributes. See “To use the Material Painter tool” on page 759.

 Painter Modes

There are five Painter Modes that control how broadly or narrowly a selected Painter tool will apply an attribute or attributes to objects in the current plan. These modes are listed in the same submenu as the associated Eyedropper and/or Painter tool. When a Painter tool is active, they are also found on the edit toolbar. In both locations, a small check mark will display at the lower left of the active Mode’s button icon.

Depending on the type of object attributes have been loaded from, not all Object Painter Modes may be available. The Layer Painter does not have Painter Modes: it always paints individual target objects one at a time.

Rather than modify instances of an object type, the Material Painter Modes replace instances of a material based on the selected scope.

- **Object Mode** applies attributes to or replaces a material on individual target objects, one at a time. All instances of the original material on a target object are replaced by the one being painted.
• Marquee Mode is available in plan view and CAD Details for the Style Palette Painter, Fill Style Painter, and Object Painter tools. To use this mode, click and drag a marquee around the objects you would like to paint instead of clicking on them.

• Room Mode applies attributes to a target object as well as to all instances of that object type in the same room with a single click. All instances of the original material throughout the room are replaced by the one being painted.

• Floor Mode applies attributes to a target object as well as all instances of that object type on the same floor with a single click. All instances of the original material on the current floor are replaced by the one being painted.

• Plan Mode applies attributes to a target object as well as all instances of that object type in the entire plan with a single click. All instances of the original material throughout the plan are replaced by the one being painted.

• An additional mode, the Material Painter Component Mode, is available for the Material Painter only. See “Material Painter Modes” on page 760.

Chief Architect will remember your Painter Mode selection until you quit the program. The next time you launch the program, Object Mode will be active.

Style Palettes

A Style Palette is a collection of object properties that you can use to quickly change the appearance of doors, windows, cabinets, Custom Countertops and Backsplashes, any of these objects included in Architectural Blocks, and/or rooms in a plan as a group. These objects are referred to collectively as Style Palette Objects. Style Palettes can potentially modify a large number of object properties, allowing you to make considerable changes to a plan’s appearance very quickly. They can be used in plan view, but are particularly effective in camera views.

Style Palettes are saved in the library, making them available for use in any plan. See “Adding Library Content” on page 700.

To use the Style Painter

1. Select a Style Palette in the Library Browser. See “Assigned Items” on page 705.

2. Move your mouse pointer into the active plan or camera view window and notice that it displays a spray can icon.

3. Select the desired Painter Mode:
 • Object Mode applies relevant properties to an individual Style Palette Object.
 • Marquee Mode applies relevant properties to Style Palette Objects located inside of a marquee that you draw in plan view.
 • Room Mode applies relevant properties to all Style Palette Objects in a room.
 • Floor Mode applies relevant properties to all Style Palette Objects on the current floor level.
 • Plan Mode applies relevant properties to all Style Palette Objects in the current plan file.

4. Apply the properties of the selected Style Palette to objects in the current plan:
 • If you selected Marquee Mode, click and drag a rectangular marquee around the objects you that would like to apply the selected Style Palette’s properties to.
 • For all other Painter Modes, click on a door, window, cabinet, Custom Countertop, Custom Backsplash or room surface to apply properties according to the active Painter Mode.

Creating a Style Palette

There are three ways to create a Style Palette:

• Select a door, window, cabinet, any combination of these objects, or a room, and click the Add Object(s) to Style Palette edit button. In the Add to Style Palette dialog, click the Create New button. A new Style Palette with the selected objects loaded into it is created. The Add Object(s) to Style Palette edit button is also available in the contextual menu for Style Palette Objects in the Library Browser. See “Using the Contextual Menus” on page 693.

• Right-click on the User Catalog or a folder within it and select New> Style Palette from the contextual menu. A new, blank Style Palette is created.
• You can also create a copy of an existing Style Palette in the library and then customize it.

Using Style Palettes

In order to apply a particular property using a Style Palette, two conditions must be met:

• The object saved in the Style Palette must have that property set in its specification dialog. The easiest way to do this is to select an object that has the desired attributes and then click the **Add Object(s) to Style Palette** edit button.

• The Style Palette must be set to apply that property when the Style Painter is used.

You can make changes to both the properties of a Style Palette’s objects and which of those properties will be applied using the Style Painter in the Style Palette Dialog.

While most object properties are eligible to be applied using Style Palettes, a few are not, for example: waterfall edges on Custom Countertops. In addition, interior and exterior door properties are only applied to doors of the same Type as the one in the selected Style Palette.

Style Palette Specification Dialog

To open the **Style Palette Specification** dialog, right-click on a Style Palette in the User Catalog and select **Open Object** from the contextual menu. This dialog also opens when you add an object to a Style Palette.

1. Type a short, descriptive **Style Palette Name** in the text field.

2. The **Objects in Style Palette** are listed in a table and can be managed here.

 • Select an object type from the **Add Object** drop-down list. When all Style Palette Objects are already represented in the Style Palette, this option will not be available.

 • Select an item in the **Object** column to display it in the preview pane to the right.

3. Click in the **Open Object** column to open the specification dialog for the object in that row and make changes to its properties. See “Specification Dialogs” on page 32.

 • When a check mark is present in the **Use Object** column for an object, its properties will be applied to objects of the same type when the Style Painter is used. When no check mark is present, objects of that type are unaffected when the Style Painter is used. Click in this column to add or remove the check mark for any of the objects in the table.
Matching Properties

A variety of attributes can be used to identify and select similar objects, and can be copied from one object to another as well.

Match Properties

The Match Properties edit tool allows you to quickly select all objects in the current view that share the same set of specified attributes as the selected object. This tool is available in plan view and CAD Details only.

Apply Properties

The Apply Properties edit tool can be used to apply the selected attributes to any other objects in the current view that do not yet share them.

Apply Properties becomes available only after the Match Properties edit tool has been used to select a group of objects sharing the same attributes.

To use the Match and Apply Properties tools

1. In plan view or a CAD Detail, select an object with attributes that you would like to apply to other like objects in the current view.
2. Click the Match Properties edit button.
3. In the Match Properties dialog, check the box beside each attribute that you want to apply to other similar objects and click OK. See “Match Properties Dialog” on page 219.
4. All objects sharing all of the specified attributes become selected.
5. Click the Apply Properties edit button, then either:
 - Click on a like object that is not highlighted to apply the specified attributes to it and add it to the selection set.
 - Click and drag a rectangular selection marquee. Any like objects within its area will receive the specified attributes and be added to the selection set.
6. You can continue clicking on objects until the Esc key is pressed or another tool is activated.

Object Eyedropper

Select Tools> Object Painter> Object Eyedropper to apply the attributes of one object to other, similar objects. The Object Eyedropper functions like other Eyedropper tools. See “To use an eyedropper tool” on page 215.

When the Object Painter is active, you can specify which attributes are loaded by clicking the Select Properties to Paint edit button.

Match Properties Dialog

Select an object and click the Match Properties edit button to open the Match Properties dialog.

The settings in this dialog are also found in the Select Properties to Load dialog. To open this version of the dialog, select the Object Eyedropper tool, click on an object, and then click the Select Properties to Paint edit button. See “Object Eyedropper” on page 219.

This dialog is also similar to the Set Properties dialog. To open this version, click a Set Properties button in the Style Palette Specification dialog. See “Style Palettes” on page 217.
Filter the attributes that display in the list below by typing in the **Search** field.

- When all or part of a keyword is typed in the Search field, this list is divided into two categories: Found Properties which match your Search criteria followed by the remaining Other Properties.
- Click the **Clear** button on the right side of the Search field to remove anything typed in this field.

A list of the selected object’s Properties and the associated Values displays here. The available Properties vary, depending on the type of object selected.

- Check the box beside a Property to apply its Value to similar objects. In the **Match Properties** dialog, checking boxes also allows you to select objects that share the same attributes when you click **OK**.
- Click the **Select All** button to select all Properties, regardless of whether they are shown in the list or not.
- Click the **Clear All** button to deselect all Properties, regardless of whether they are shown in the list or not.

Deleting Objects

Objects can be deleted in a variety of ways:

- Select an object or group of objects, then click the **Delete** edit button, select **Edit> Delete** from the menu, or press the either the Delete or Backspace key on your keyboard.
- Line items can also be group-selected and then checked or unchecked together. See “Shift and Ctrl Select” on page 170.

The **Select** and **Clear Transferrable** buttons are available when the Search field is empty, above.

- Click the **Select Transferrable** button to select all items that can be transferred to other objects. Non-transferrable properties are not selected.
- Click the **Clear Transferrable** button to deselect all items that can be transferred to other objects. Non-transferrable properties may remain selected.

The **Select** and **Clear Found** buttons are available when there is text in the Search field.

- Click the **Select Found** button to select all items shown in the search results.
- Click the **Clear Found** button to deselect all items shown in the search results.

A few Properties can only be used for selecting objects and cannot be loaded from one object to another. These Properties display in the **Match Properties** dialog followed by an asterisk but do not display in the **Select Properties to Load** dialog at all.

- Entire categories of objects can be deleted using the **Delete Objects** dialog.
- Objects are deleted if the floor they are placed on is deleted. See “Deleting Floors” on page 541.
If an object has a line with arrow attached to it, the line with arrow is deleted if the object is deleted. To prevent the arrow from being deleted, drag the attached end away from the object before deleting it.

A variety of objects in the program can be generated automatically, including roofs, the foundation, and framing. Automatically generated objects cannot be deleted unless the automatic creation option is disabled.

Objects such as roofs, framing, and Auto Exterior Dimensions that are set to automatically rebuild or refresh cannot be deleted while that behavior is enabled. Automatically generated objects cannot be deleted unless the automatic creation option is disabled.

Deleting Polyline Edges

There are number of different ways to delete individual edges of polyline-based objects:

- Select **Connect CAD Segments**. Select the edge and delete. See “Disconnect Edges” on page 168.
- Drag a corner handle until it overlaps an adjacent corner handle to remove the edge between them and merge them into a single handle.
- Create a complete break at both ends. Select the edge and delete. See “To create a complete break” on page 200.
- The Fillet Lines and Chamfer Lines tools can be used to delete polyline edges. See “Reshaping Objects” on page 199.

Delete Surface

In any 3D view, select 3D> **Delete Surface**, then click a surface in the view to temporarily remove the surface from the current view without permanently affecting the object. See “Delete 3D Surface” on page 792.

Delete Objects Dialog

Select **Edit> Delete Objects** to use the Delete Objects dialog to delete all objects of one or more specified types in one room, on the current floor, or on all floors in the plan.

The **Delete Objects** dialog only deletes objects in plan view - it does not delete CAD objects or schedules drawn in cross section/elevation views or CAD Details. If this dialog is opened while a camera view is active, CAD objects and schedules cannot be deleted.
Select a **Delete Scope**:

- Choose **All Floors** to delete objects on all floors in the current plan.
- Choose **All Rooms on This Floor** to delete objects in all rooms on the current floor.
- Choose **Single Room** to delete objects only in rooms on the current floor that you specify.
- Click the **Select All** button to check the boxes beside all of the categories.
- Click the **Clear All** button to uncheck the boxes beside all of the categories.

Specify which types of architectural **Objects** you want to delete.

Specify which types of **CAD** objects you want to delete. See “CAD Objects” on page 225.

Specify which types of **Framing** objects you want to delete. See “Framing” on page 625.

Specify which types of **Schedules** you want to delete. See “The Schedule Tools” on page 506.

Specify which kinds of **Walls** you want to delete. See “Walls, Railings, and Fencing” on page 261.

To use the Delete Objects dialog

1. Specify the **Delete Scope** as **Single Room**, **All Rooms On This Floor**, or **All Floors**.
2. Click **Select All** to check all the boxes or **Clear All** to uncheck all boxes.
3. Check the box for each category of objects you want to delete.
 - Check the box beside any heading to select all of the categories within it; clear the box beside a heading to deselect all of its categories.
4. Check the box for each subcategory of objects that you want to delete.
• If “Roof Planes” cannot be selected, they may be locked. See “Editing Roof and Ceiling Planes” on page 594.

5. When the scope is set to **Single Room**:
 • Move your cursor into the drawing area and click in a room of the plan to delete objects of the selected type within that room without closing the dialog.
 • Only objects with their center point located in the room are deleted.

6. If you select **All Rooms On This Floor** or **All Floors**, you do not need to click in plan view. The **Delete** button becomes available, and clicking it closes the dialog and deletes the specified objects.

Undo and Redo

The **Undo** and **Redo** commands allow you to both undo the last action performed, as well as redo actions that were recently Undone.

The 50 most recent actions can be Undone or Redone, depending on your settings in the **Preferences** dialog. See “General Panel” on page 85. Actions that can be Undone and Redone include creating, editing, and deleting objects as well as the Delete, Rename, and Copy actions in the Project Browser.

To Undo an action, select **Edit > Undo**, click the **Undo** button, or press Ctrl + Z on your keyboard.

The Redo command is only available after Undo has been used. To Redo an Undone action, select **Edit > Redo**, click the **Redo** button or press Ctrl + Y on your keyboard.

It is important to note that **Undo** and **Redo** do not affect all actions in the program, including:

• Save and Save As. See “Saving, Exporting, and Backing Up Files” on page 42.
• Changes made in the Library Browser. See “The Library Browser” on page 691.
• Changes made in a dialog while the dialog box is open. See “Dialogs” on page 30.
• Changes made to lights using the **Adjust Lights** dialog. See “Adjust Lights Dialog” on page 820.
• Changes made to Note Types in the **Note Type Management** dialog. See “Note Type Management Dialog” on page 396.
• Changes made to the display by panning the display or zooming in or out. See “Undo Zoom” on page 126.
• Changes made to the position of a camera, or its Rendering Technique. See “Editing 3D Views” on page 797.
With the 2D Computer Aided Design (CAD) tools included in Chief Architect, you can add details to views of your 3D model to create complete working drawings. Custom details can be created, saved, and used in other plans.

The CAD Tools are used to add information to 2D views of your model. CAD objects do not affect 3D objects or display in camera views or overviews, but they can be used to add details to layout pages, plan views and cross section/elevation views.

CAD polylines can be converted to 3D objects such as countertops and terrain data, and shown in 3D views. See “Convert Polyline” on page 205.

CAD objects are edited much like other objects in Chief Architect. See “Editing Objects” on page 163.

Chapter Contents

• CAD Defaults and Preferences
• The CAD Drawing Tools
• Point Tools
• Line Tools
• Line Specification Dialog
• Arc Tools
• Drawing Arcs - Arc Creation Modes
• Arc Specification Dialog
• Circle Tools
• Circle/Oval/Ellipse Specification Dialog
• Polylines
• Polyline Specification Dialog
• Box Tools
• Box Specification Dialog
• Revision Clouds
• Revision Cloud Specification Dialog
• Splines
• Displaying CAD Objects
• CAD Blocks
• CAD Block Management
• CAD Block Specification Dialog
• CAD Details
• CAD Detail Specification Dialog
• Plot Plans and Plan Footprints
• Plan Footprint Specification Dialog

CAD Defaults and Preferences

CAD Defaults can be accessed by selecting Edit> Default Settings from the menu and expanding the CAD category.

The behavior and appearance of CAD objects are also affected by settings on the CAD, LINE PROPERTIES, SUN ANGLE, BEHAVIORS, and SNAP PROPERTIES panels of the Preferences dialog. Unlike default settings, preference settings are global, affecting all plan and layout settings. See “Preferences Dialog” on page 79.
Revision Cloud Defaults

Settings in the Revision Cloud Defaults dialog determine the initial appearance of Revision Clouds. The settings in this dialog are similar to those in the Revision Cloud Specification dialog. See “Revision Cloud Specification Dialog” on page 248.

Revision Clouds can support multiple Saved Defaults. In order to open the defaults dialog for this tool, you must first open its Saved Defaults dialog and choose an available saved defaults setup. See “Multiple Saved Defaults” on page 67.

CAD Defaults Dialog

The settings in the CAD Defaults dialog control the basic appearance of CAD objects. This dialog can also be opened by clicking the CAD Defaults button, which can be added to the toolbars. See “To add a button to a toolbar” on page 109.

Each plan file has multiple CAD Defaults dialogs: one affecting all plan views, one for every cross section/elevation view, and one for every CAD Detail and Wall Detail. Each layout file has its own CAD Defaults, as well. Each set of CAD Defaults can be accessed by opening the CAD Defaults dialog from within that view.

The CAD Defaults dialog cannot be opened when a camera view or overview is active.

Note: Although there are multiple CAD Defaults dialogs in each plan file, only one layer can be specified as the Current CAD Layer at any given time. When a new Current CAD Layer is selected, the change affects all views and view types.

1. Select the Current CAD Layer from the drop-down list. See “Current CAD Layer” on page 250.

2. Specify the Displayed Line Length Format, which controls the appearance of line length indicators. These only display when Show Length is checked in an object’s specification dialog. See “Line Style Panel” on page 235.

3. A preview of the current line length format displays here.

4. Click the Define button to open the Displayed Number Style dialog and edit the displayed line length format.

Display Line Angles as:

- Specify the format to use when Show Angle is checked in an object’s specification dialog. See “Line Style Panel” on page 235.

Line angles can be displayed using three basic methods:

- Degrees/Minutes/Bearings - Measured counterclockwise from a line drawn horizontally to the right of the angle’s vertex. Useful for most drawing tasks. Select the level of accuracy that you require.

- Quadrant Bearings - Measured from a vertical line representing North/South, Quadrant Bearings use directional bearings in their measurements. Useful for site drawings.
• **Azimuth Bearings** - Measured from a line drawn straight up from the angle’s vertex (i.e., North on a site plan). Useful for site drawings, Azimuth Bearings use degrees, minutes, and seconds in their measurements.

Select any combination of the available Options.

Displayed Line Length Dialog

The settings in the *Displayed Line Length* dialog control the appearance of CAD line length indicators, when set to display. See “Show Length and Angle” on page 250.

To access this dialog, click the Define button under the *Displayed Line Length Format* heading in the *CAD Defaults* dialog.

The settings here are similar to those found on the DIMENSION FORMAT panel of the *Room Label Defaults* dialog and the FORMAT panels of the *Dimension Defaults* dialog. See “Primary Format Panel” on page 344.

Specify the numbering **Format** for CAD line length indicators.

- Select the **Units** of measurement to be used by line length indicators from the drop-down list.

- Check **Unit Indicators** to display the unit of measurement along with the dimension number.

- Check **Leading Zeros** to display the zero before a decimal less than 1 or to display 0’ or 0” when the ft-in or ‘-” unit formats are used.

- Check **Trailing Zeros** to display trailing zeros at the end of decimal values.

- Check **Thousands Separator** to use a thousands separator for values greater than 999.

- Select the **Use Comma** or **Use Dot** radio button to use a comma or a dot as the thousands separator. See “Region and Language Settings” on page 66.

- Select the **Use Space** radio button to use a space as the thousands separator.

Specify the degree of **Accuracy** used by dimension numbers. When Smallest Fraction is selected, additional settings are available, below.

- Select the **Decimal Places** radio button for length indicators in decimal format. In the text field, specify the number of decimal places to use, from 0 to 20. If 0 is used, no decimal places are used.

- Select the **Smallest Fraction** radio button for length indicators using whole numbers and fractions. In the text field, specify the largest denominator to use, from 1 to 128. If 1 is entered, whole numbers are used. When Smallest Fraction is selected, the settings that follow are available:

 - Uncheck **Show Denominator** to turn off the display of fraction denominators used by line length indicators. Denominators are typically only turned off when eighths are desired.

 - Uncheck **Reduce Fractions** to always use the denominator specified above. When checked, the

...
lowest possible denominator will be used and the two options below will be available.

- Select the **Greatest Common Divisor** radio button to reduce fractions using the largest value that divides equally into the numerator and the denominator specified above. This option is best for fractional inches.

- Select the **Closest Fraction** radio button to reduce fractions without referring to the denominator specified above. Not recommended when fractional inches are used.

A value of 0.33333 is represented by the fraction 5/16 when Greatest Common Divisor is used and the Smallest Fraction denominator is 16. When Closest Fraction is selected, this value is represented by 1/3.

The CAD Drawing Tools

The CAD Tools are available in the CAD menu and on the toolbars.

Point Tools

Select CAD > Points to access the Point Tools.

The **Place Point**, **Input Point**, **Point Marker**, and **Delete Temporary Points** tools can be used to create or remove snap points for a variety of purposes. See “Point Tools” on page 229.

Line Tools

Select CAD > Line to access the Line Tools.

The **Draw Line**, **Input Line**, **Line With Arrow**, **Sun Angle**, and the **North Pointer** allow you to create various types of lines. See “Line Tools” on page 231.

Arc Tools

Select CAD > Arcs to access the Arc Tools.

The **Draw Arc**, **Input Arc**, and the **Arc With Arrow** tools allow you to create arcs. See “Arc Tools” on page 239.

Box Tools

Choose CAD > Boxes to access the Box Tools.

The **Rectangular Polyline**, **Regular Polygon**, **Box**, **Cross Box**, and **Insulation** tools allow you to create a variety of polyline and box objects. See “Box Tools” on page 246.

- Select the **Closest Fraction** radio button to reduce fractions without referring to the denominator specified above. Not recommended when fractional inches are used.

A value of 0.33333 is represented by the fraction 5/16 when Greatest Common Divisor is used and the Smallest Fraction denominator is 16. When Closest Fraction is selected, this value is represented by 1/3.

Circle Tools

Select CAD > Circles to access the Circle Tools.

The **Circle**, **Circle About Center**, **Oval**, and the **Ellipse** tools are discussed in detail later in this chapter. See “Circle Tools” on page 242.

Revision Cloud

Select CAD > Revision Cloud, then click and drag to draw a rectangular shape with edges that display a series of arcs. See “Revision Clouds” on page 247.

Spline

A Spline is a curve that passes smoothly through a set of points. Select CAD > Spline to draw connected line segments that form a spline. See “Splines” on page 249.

Once created, a spline can be selected and edited. See “Editing Spline-Based Objects” on page 186 and “Polyline Specification Dialog” on page 244.

Dimension Tools

Select CAD > Dimensions or CAD > Automatic Dimensions to access the manually drawn and Automatic Dimension Tools. The **Dimension Tools** can be used with CAD and architectural objects and are discussed in their own chapter. See “Dimensions” on page 341.

Text Tools

Select CAD > Text to access the Text Tools. The Text Tools are discussed in their own chapter. See “Text, Callouts, and Markers” on page 371.
Current CAD Layer

Select CAD> Current CAD Layer to change the current default CAD layer. See “Current CAD Layer” on page 250.

Auto Detail

Select CAD> Auto Detail while a cross section view is active to automatically generate CAD objects for commonly detailed structural components. See “Auto Detail” on page 789.

Point Tools

Select CAD> Points to access the Point Tools. Temporary points created using the Place Point and Input Point tools and permanent Point Markers can be used with Object Snaps to accurately position a variety of objects. See “Object Snaps” on page 131.

The size of temporary points is specified in the Preferences dialog. See “Snap Properties Panel” on page 97.

Place Point

Select CAD> Points> Place Point, then and click in the drawing area to place a temporary CAD point at that location. Temporary CAD points can be used for a variety of purposes: for example, as an anchor for snapping objects to a precise location. The Current CAD Point can be used for additional tasks. See “The Current Point” on page 230.

Input Point

Temporary CAD points can be placed with precision by entering coordinates. See “3D Drafting” on page 25.

To use the Input Point tool

1. Select CAD> Points> Input Point to open the New CAD Point dialog.
2. Select a Location option, and enter the desired location of the point.
3. Click OK to close the dialog and create the new point. The new point becomes the Current Point and is highlighted. See “The Current Point” on page 230.
4. Alternatively, click Next to create the new point but remain in the New CAD Point dialog and create additional points. As each is created, it becomes the Current Point.

New CAD Point Dialog

1. The location of the Current Point displays here. If no CAD points are present, the origin (0, 0) displays. See “The Current Point” on page 230.
2. Specify the location of the New Point.

- **Absolute Location** - Define the point in X Position (horizontal) and Y Position (vertical) coordinates, relative to the origin at (0,0).
- **Relative to Current Point** - Define the new point in X and Y coordinates that are relative to the Current Point, as though that point was at (0,0). Only available when a Current Point exists.
- Check Polar to define the new point by its Distance and Angle from the Current Point rather than in X and Y coordinates. This is helpful when creating a plot plan. See “Plot Plans and Plan Footprints” on page 900.

The position of the New Point is defined here. The options available depend on the method chosen to define it, above.

- **X Position** and **Y Position** coordinates relative to (0,0) are entered if the Absolute Location method is specified.
- **X Position** and **Y Position** coordinates relative to the Current Point are entered if the Relative to Current Point method is specified.
• **Distance** and **Angle** from the Current Point are entered if the Relative to Current Point: Polar method is specified.

• Click **Next** to create the new point without exiting the dialog so you can input data for the next point. The newly created point becomes the Current Point.

Point Markers

Use a permanent **Point Marker** as a snap point for dimension lines and other CAD objects. Select **CAD > Points > Point Marker** and click in the view to place a permanent point marker. Point markers display as a simple cross, with or without a text label. They can be opened for specification and modified to include a label or alter their attributes.

You can also place Point Markers using the **Marker** tool, which lets you specify the marker label and type. See “Markers” on page 393.

Point Markers are also created when the **Point to Point Dimension** tool is used or when a dimension line is copied and pasted independent of the objects it locates. See “Point to Point Dimensions” on page 357.

Delete Temporary Points

All temporary points in the current view can be deleted at once using **CAD > Points > Delete Temporary Points**. In plan view, Delete Temporary Points will delete all temporary points on all floors.

You can also press the **Delete** key when nothing is selected to delete the points one by one; however, **Delete Temporary Points** can save time when there are many points.

The Current Point

In any view and on any floor, there may be multiple temporary CAD points. The Current Point is either the most recently created or most recently selected temporary CAD point. The Current Point has a variety of uses:

• As the starting point for objects as they are drawn by entering data. See “Entering Coordinates” on page 135.

• As the point about which objects are rotated. See “Rotating Objects” on page 203.

• To indicate the points at which roof planes can join. See “To find roof plane intersection points” on page 595.

When multiple temporary points are on-screen, the Current CAD Point is highlighted so it can be easily identified.

To delete the Current Point

1. Make sure no other objects are selected by clicking the **Select Objects** button. You can also press the Esc key to deselect any selected objects.

2. Press the Delete key on the keyboard to delete the Current Point. The temporary point created prior to this one becomes the new Current Point.

3. If you continue pressing the Delete key, temporary points will be deleted in the reverse order that they were created.

Move Point Dialog

A CAD Point can be repositioned relative to itself, another point, or a CAD object such as a line using the **Move Point** dialog. When a Point is moved, it becomes the Current Point.

For example, you can locate the point exactly one-quarter the distance along a given line, or exactly 6 inches from one end. This new location can then be used for the start point of a new line or other purpose.
To reposition a CAD Point, double-click on it using the Select Objects tool. That point becomes the Current Point, and the Move Point dialog opens.

The **Current Location** of the selected point displays at the top of the dialog for reference.

Specify the **New Location** of the point.

- **Absolute Location** - Define the new location in X (horizontal) and Y (vertical) Position coordinates, relative to the origin at (0,0).
- **Relative to Itself** - Define the new location in X and Y Position coordinates relative to the current location, as though that point were the origin.
- **Relative to Previous Point** - Define the new location relative to the point that was the Current Point prior to this one, as though that point was the origin. Only available if the selected point is located on a CAD object.
- Check **Polar** to define the new location’s Distance and Angle from the previous point instead of using X and Y coordinates. Only available if Relative to Itself or to Previous Point is selected above.

- **Along Line** - Define the new location relative to the edge of a nearby CAD object. This option is enabled only when the point is located near a CAD object and refers to the end nearest to the point’s original location.
- Check **Percentage (%)** to specify the Along Line value as a percentage of the total line or arc length rather than as a distance. 0% moves the point to the closest end of the nearest edge, 50% to the midpoint, and 100% to the other end. Negative numbers and percentages greater than 100 are allowed.
- Specify the new position of the point here. The options here depend on the method chosen to define the New Location.
- **X Position** and **Y Position** coordinates are entered if the Absolute Location method is specified or if either Relative method is used with Polar unchecked.
- **Distance** and **Angle** are entered if either Relative method is specified when Polar is checked.
- **From Edge** - When the Along Line method is used, specify the distance of the point’s New Location to the end of the CAD object’s edge that it was originally closest to. When **Percentage (%)** is checked, enter this value as a percentage instead.

If the point is near an arc, **Along Line** is measured along the curve.

If the point is near a box or polyline, **Along Line** is measured along the nearest side just as it does with an individual line or arc.

If the point is near an oval or circle, **Along Line** is measured along an (invisible) axis line that the item was originally drawn along.

Line Tools

Select **CAD> Draw Lines** to display the Line Tools.

If **Object Snaps** and **Connect CAD Segments** are enabled, you can connect the ends of two lines and/or arcs to form a single entity called a polyline. See “Polylines” on page 243.

Draw Line

There are three methods that you can use to draw lines with the **Draw Line** tool. The standard method is to select **CAD> Lines> Draw Line**, then click and drag from beginning to end.
An alternative method that allows you to draw multiple lines is also available. See “Alternate” on page 164.

To draw continuous lines

1. Select **CAD> Lines> Draw Line**.
2. Press the Alt key on your keyboard (or use the right mouse button) and click and drag to draw a line. You can also toggle to alternative mode.
3. Move your cursor to a new location in the drawing area and click once. A new line is drawn beginning at end of the previous line.
 - Provided that **Connect CAD Segments** is toggled on, a polyline will be formed. See “Connect CAD Segments” on page 167.
4. To stop, press Esc on your keyboard or press two mouse buttons at the same time.

By default, this continuous drawing behavior will turn off when a closed shape is created. You can specify that this behavior remain on in the **Preferences** dialog. See “Behaviors Panel” on page 96.

In addition, you can select a line style in the Library Browser and then click and drag in the drawing area to draw lines using that line style. See “Line Styles” on page 157.

If you double-click the Draw Line tool, the **Input Line** dialog will open.

Input Line

CAD lines can also be created using absolute values entered with the keyboard by selecting **CAD> Lines> Input Line**. This method is slower but more precise than using the mouse and is ideal when the desired length and angle of each line is known, such as with property lines.

Before any line is drawn using this method, a starting point must be defined. If a starting point has not been defined, Chief Architect assumes a starting point of 0,0.

To use the Input Line tool

1. Select **CAD> Points> Place Point** then click the screen to place a CAD point. This is the Current Point, and is the start point for the new line. See “The Current Point” on page 230.
2. Select **CAD> Lines> Input Line** to open the **New CAD Line** dialog.
 - The **New CAD Line** dialog can also be opened by double-clicking the **Line Tools** parent button.
3. If necessary, specify the start point.
4. Specify the method used to define the location of the End Point, then define the End Point.
5. Click **OK** to close the dialog and draw the line, or click **Next** to draw the line but remain in the **New CAD Line** dialog and draw additional lines.

Note: If you accidentally click **OK** instead of **Next** and need to continue drawing a polyline using the **New CAD Line** dialog, select the Input Line tool again and continue.

New CAD Line Dialog

1. The X Position (horizontal) and Y Position (vertical) coordinates of the start point for the new line display here. They can also be changed, if you wish.
2. The new line’s **End Point** is defined here.
 - Begin by specifying how you want to define the line **End Point Location**.
 - **Absolute Location** - Define the end point of the new line in X Position (horizontal) and Y Position (vertical) coordinates, relative to (0,0).
 - **Relative to Start Point** - Define the end point of the new line in X and Y coordinates that are relative to the line’s Start Point, as though it were at (0,0).
 - Check **Polar** to define the End Point of the new line by its Distance and Angle from the Start Point.
Point rather than in X and Y coordinates. This is helpful when creating a plot plan. See “Plot Plans and Plan Footprints” on page 900.

- **Relative to Previous Line** - Define the End Point of the new line by its Distance and Angle relative to the end of the last line drawn, as though that line’s angle were at 0° and its End Point, at (0,0).
- **X Position** (horizontal) and **Y Position** (vertical) coordinates relative to (0,0) are entered if the Absolute Location method is specified.
- **X Position** (horizontal) and **Y Position** (vertical) coordinates relative to the start point are entered if the Relative to Start Point method is specified.
- **Distance** and **Angle** from the start point are entered if the Relative to Start Point: Polar method is specified.
- **Distance** and **Angle** from the start point are entered if the Relative to Previous Line method is specified.
- Click Next to create the line without exiting the dialog so you can input data for the next line. The start point of the next line is the end point of this line.

Enter Coordinates

Similar to **Input Line**, lines can also be specified by pressing the Tab key on the keyboard when a line is in the process of being drawn. This opens the **Enter Coordinates** dialog. See “Entering Coordinates” on page 135.

Line With Arrow

Create a line or polyline with an arrow on one or both ends by selecting **CAD> Lines> Line With Arrow**, then clicking and dragging in the drawing area. The initial attributes of the line’s arrow are set in the **Arrow Defaults** dialog. See “Arrow Defaults” on page 372.

As with other lines, lines with arrows can be edited after they are created and connected to form polylines provided that they share the same layer and style attributes. See “Editing Line-Based Objects” on page 171 and “Line Specification Dialog” on page 234.

You can also create arcs with arrowheads. See “Arc with Arrow” on page 240.

North Pointer

The **North Pointer** tool is used to define the direction of true north in a plan. The direction of north does not affect the orientation of the Snap and Reference grids, but it does determine the direction of bearing information as well as how shadows and conditioned area totals are calculated. See “North Pointer” on page 823.

If a **North Pointer** is not used, north is assumed to be straight up on screen in plan view.

Sun Angle

Sun Angles let you specify the date, time, latitude, and longitude that the program uses when calculating the angle of the Generic Sun as
well as the direction and length of sun shadows. See “Sun Angles and Shadows” on page 823.

Same Line Type Edit Handles

A new CAD line can also be drawn using the Same Line Type edit handles on an existing CAD object. The start point of the new line is located at one end of the existing object and shares its line color, weight, style, and its layer. If the object has an arrow, its attributes are also inherited. See “Line Style Panel” on page 235 and “Arrow Panel” on page 236.

The Same Line Type edit handles are available for CAD lines, arcs, open polylines, and splines, but not for closed CAD shapes or CAD-based architectural objects. They can be turned off in the Preferences dialog if you wish. See “CAD Panel” on page 93.

When Connect CAD Segments is disabled, the new CAD line will snap to the existing object, forming an open polyline or spline. When Connect CAD Segments is enabled, on the other hand, the two will remain separate objects.

Disconnect Edges

Select CAD > Lines > Disconnect Edges, then click on the edge of a polyline-based object to disconnect that edge from the rest of the polyline. See “Disconnect Edges” on page 168.

When Connect CAD Segments is toggled off, CAD objects will not join to form a single polyline, either as they are drawn or when edited. See “Polylines” on page 243.

Line Style Management

The Line Style Management dialog allows you to manage the line styles saved in the current plan or layout file. Select CAD > Lines > Line Style Management to access this dialog. See “Line Style Management” on page 157.

Line Specification Dialog

Select a CAD Line, Line With Arrow, or Text Line With Arrow and click the Open Object edit button to open the Line Specification dialog.

The settings on the panels in this dialog are found in the specification and defaults dialogs for a variety of different objects in the program.

Line Panel

The information on the LINE panel of the Line Specification dialog is similar to that found on the SELECTED LINE panels of various specification dialogs in the program.
Lock - These lock options control how changing properties on this dialog affect the line.

- Select **Start** to keep the start of the line fixed when changing the length, angle, and end.
- Select **End** to keep the end of the line fixed when changing the length, angle, and start.
- Select **Center** to keep the center of the line fixed. Changing the length of the line moves the start and end of the line equally. Changing the angle rotates the line around the center.
- Select **Length/Angle** to keep the length and angle of the line segment fixed. Moving the start or end moves the other end so the length and angle of the line do not change.

When editing a polyline, moving the Start of a line segment moves the end of the previous connected line, if there is one. Similarly, moving the End of a line segment moves move the start of the next connected line, if there is one.

1. Specify the **Length** and **Angle** of the selected line.
2. Specify the X and Y coordinates of the line’s **Start Point**. Not available when the Start or Center Point is locked.
3. Specify the X and Y coordinates of the line’s **End Point**. Not available when the Center or End Point is locked.

The format used here can be changed by clicking the **Num Style** button. See “Dialog Number/Angle Style Dialog” on page 105.

Line Style Panel

The **Line Style** panel is found in the specification dialogs for many different objects. The settings here control the appearance of the lines and/or arcs that make up an object. Depending on the type of object selected, some settings may not be available. See “Line Styles” on page 157.

Line Options -

- Check **Show Border** to display a border around the selected Picture file. Not available for other object types. See “Pictures” on page 858.
- Specify the **Layer** that the selected object should be located on. Check **Default** to use the default layer for the selected object’s type or choose a layer from the drop-down list. If the selected object is an automatically generated dimension line, frieze molding, or shadow board that has been edited, Default will be unchecked.
- Click the **Define** button to open the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.
- Specify the line **Color** used to represent the selected object. Check **By Layer** to use the color assigned to the object’s layer or click the Color button.
bar to select a different color. See “Color Chooser/Select Color Dialog” on page 160.

- Specify the line Style used to represent the selected object. Check By Layer to use the line style assigned to the object’s layer or click the drop-down list or Library button to select a different style. The items in the drop-down list can be managed in the Line Style Management dialog. See “Line Style Management” on page 157.
- Define the Line Weight or check By Layer to use the Line Weight assigned to the object’s layer. See “Line Weights” on page 992.

Select the desired Display Options. These options not available for CAD Box- or CAD Circle-based objects, or for Material Regions, North Pointers, or Sun Angles.

• Check Show Length to show the length of each line centered above the line.
• Check Show Angle to show the angle of each line centered below the line. If the object is an arc, it’s radius will also display.

The Length and Angle formats are specified in the CAD Defaults dialog. See “CAD Defaults Dialog” on page 226.

• Uncheck All Angles to show only those angles that are neither horizontal nor vertical. This is automatically checked when Show Angle is checked.
• Check Reverse Angle to reverse the angle by 180°. This may be helpful when showing a line’s bearing, since the direction a line is drawn from start point to end point defines its bearing.

An additional Display Options setting is available In the Picture File, Metafile, and PDF File Box Specification dialogs. See “Pictures, Images, and Walkthroughs” on page 853.

• Check Show Outline to display the selected object’s border polyline.

Specify which Drawing Group the selected object(s) is in. See “Drawing Groups” on page 153.

Specify the desired Bumping behaviors for the selected object(s). These options are not available for Primitive objects or Wall Material Regions and only function when Bumping/Pushing is enabled. See “Bumping/Pushing” on page 192.

• Check CAD Stops Move to bump the selected object into other CAD or CAD-based objects as it is moved, and/or to push the other object(s).
• Check Wall Stops Move to stop the selected object when it bumps into a wall. Walls cannot be pushed by other objects. Not available in layout files.

Some objects, notably Joist Direction Lines, do not have the Attach or Auto Position settings. Other objects, including closed polylines, Sprinkler Lines

The ARROW panel is available for any line, arc, open polyline, or spline that can have an arrow: including dimension lines. The defaults for arrows are set in the Arrow Defaults dialog. See “CAD Defaults and Preferences” on page 225 and “Dimension Defaults Dialog” on page 343.

A line, polyline, or spline with an arrow can be attached to other objects. It attaches to a closed polyline-based object along its edges, but can attach to an architectural object anywhere within its 2D symbol in plan view. If an arrow is attached to another object, deleting that object will also delete the arrow.

Some objects, notably Joist Direction Lines, do not have the Attach or Auto Position settings. Other objects, including closed polylines, Sprinkler Lines
and Electrical connections are examples of objects that cannot have arrows at all.

- Check **Include Arrow** to apply an arrow to the tail end of the selected object and enable the settings that follow.
- Select an arrowhead **Style** from the drop-down list or check **Default** to use the default arrowhead. Note that arrows with a white center have a transparent fill.
- Select the **Fill Color** used to fill the arrowhead or check **Default** to use the default fill color.
- Specify a **Size** for the arrow. The Default Size value also affects the size of the start circle for **Running Dimensions**. See “Running Dimensions” on page 357.
- Check **Arrow on Both Ends** to place an arrowhead on both ends of the selected object.
- When **Attach Tail to Other Objects** is checked, the tail end of the arrow will attach to another object when snapped to it, and will maintain its attachment if the object is moved. When this is checked and the arrow is selected, its tail end edit handle will display the Selected Edge Handle Fill color.
- Check **Auto Position Tail** to have the tail end update its position on the object it is attached to if either object is moved. See “Auto Position Arrows” on page 390.
- When **Attach Head to Other Objects** is checked, the head of the arrow will attach to another object when snapped to it, and will maintain its attachment if the object is moved. When this is checked and the arrow is selected, its arrow end edit handle will display the Selected Edge Handle Fill color.
- Check **Auto Position Head** to have the arrow end update its position on the object it is snapped to if either object is moved.

Drawing Arcs - Arc Creation Modes

There are five Arc Creation Modes that control how arcs and arc-based objects are drawn. Each mode allows you to specify a different aspect of the arc, such as its radius or tangent. Select **Edit > Arc Creation Modes** to select a mode.

The program remembers the last creation mode used between sessions. Once drawn, all arcs are edited similarly. See “Editing Arc-Based Objects” on page 173.

Before deciding which Arc Tool or Arc Creation Mode is best for the project at hand, it is helpful to be familiar with the different components that make up an arc.

- The **center** of an arc is the point the arc is drawn about.
- The **radius** is the distance from the center to the arc.
The start is where the arc begins.

The end is where the arc stops.

The chord is the straight line between the start and end point.

A straight line that intersects an arc and is perpendicular to the radius of the arc at that point is tangent to the arc.

Free Form Arc

Free Form Arc mode allows you to define an arc by clicking and dragging along the desired path. There are two methods for using this mode.

To draw a Free Form arc

1. Select CAD> Arcs> Draw Arc, then click at the arc’s start point.
2. Move the pointer along the desired curve while dragging to curve the arc.
3. Release the mouse button at the end point to complete the arc.

To draw continuous Free Form arcs

This mode is useful for making custom revision clouds.

1. Select CAD> Arcs> Draw Arc, then click at the arc’s start point.
2. Press the Alt key on your keyboard and click and drag to draw an arc.
3. Move your cursor to a new location and click. A new arc is drawn that is connected to the end point of the previous arc.

By default, this continuous drawing behavior will turn off when a closed shape is created. You can specify that this behavior remain on in the Preferences dialog. See “Behaviors Panel” on page 96.

Center/Radius/End Arc

Center/Radius/End Arc mode allows you to define the center and radius of an arc, and then its length.

To draw a Center/Radius/End arc

1. Select CAD> Arcs> Draw Arc, then click at the center of the arc and drag to define the radius.
2. Release the mouse button, then move the mouse to the end of the arc and click again.

Start/End/On Arc

Start/End/On Arc mode allows you to define the start and end points of an arc, then adjust the curvature.

To draw a Start/End/On arc

1. Select CAD> Arcs> Draw Arc, then click at the start point of the arc and drag to the end point.
2. Release the mouse button at the end point.
3. Move the mouse to adjust the curvature of the arc, then click to release the mouse and create the arc.

Start/Tangent/End Arc

Start/Tangent/End Arc mode allows you to define the start and end points of an arc, its tangent and its curvature.

To draw a Start/Tangent/End arc

1. Select CAD> Arcs> Draw Arc, then click at the start of the arc and drag a line to define the arc’s tangent at the start point.
2. Release the mouse button.
3. Move the mouse to adjust the length and curvature of the arc, then click to release the mouse and create the arc.

Arc About Center

Arc About Center mode allows you to draw an arc by defining the center and then the start and end points.

To draw an Arc About Center

1. Select CAD> Arcs> Draw Arc, then click once to define the center point.
2. Click and drag from the start point of the arc to its end point.
3. Or, click and drag an arc. The Current Point is used as the center. See “The Current Point” on page 230.
Arc Tools

Select CAD> Arcs to display the submenu of Arc Tools.

Draw Arc

The method used to draw an arc using Draw Arc depends on which Arc Creation Mode is currently active. Once drawn, an arc can be edited. See “Editing Arc-Based Objects” on page 173.

Input Arc

An arc can be drawn to exact specifications using the New CAD Arc dialog.

To use the Input Arc tool

1. Select CAD> Points> Place Point, then click the screen to place a CAD point. This is the Current Point, and will be the start point for the new arc. See “The Current Point” on page 230.

2. Select CAD> Lines> Input Arc to open the New CAD Arc dialog. The New CAD Arc dialog can also be opened by double-clicking the Arc Tools parent button.

3. If necessary, specify the Start Point.

4. Specify the method used to define the arc’s Direction, then define its angle.

5. Define the arc’s Radius. In order to create an arc, a value greater than 0 must be specified.

6. Define the arc’s Extension, or length, using one of the three methods. In order to create an arc, one of these values must be greater than 0, and only one method should be used.

7. Click OK to close the dialog and draw the arc.

New CAD Arc Dialog

The X Position (horizontal) and Y Position (vertical) coordinates of the Start Point for the new arc display here. They can also be changed, if you wish.

Specify how you want to define the arc’s Direction, then specify its angle.

• The Start Direction defines the angle of the tangent from the arc’s start point.

• The Chord Direction defines the angle of the arc’s chord from the start point.

Start Direction = 0° Chord Direction = 45°

The Extension settings control the length of the arc. Define only one:

• The Arc Angle is defined by imaginary lines drawn from the arc center point to its two endpoints.

• The Arc Length is the length of the arc along its curve from one endpoint to the other.
• The **Chord Length** is the length of an imaginary straight line drawn from one arc endpoint to the other.

![Arc Diagram]

![Chord Length = 282 13/16](image1)

Select the direction that the arc curves: either to the **Right/Clockwise** or to the **Left/Counterclockwise**.

Select an arc and click the Open Object edit button to open the **Arc Specification** dialog. You can create an arc with an arrow on one or both ends, using the **Arc With Arrow** tool.

Draw an **Arc With Arrow** like a regular arc. When you release the mouse button, the arc has an arrowhead at the end. The default attributes of the arrow are determined by the settings in the **Arrow Defaults** dialog. See “Arrow Defaults” on page 372.

As with regular arcs, arcs with arrows can be edited after they are created. See “Editing Arc-Based Objects” on page 173 and “Arc Specification Dialog” on page 240.

Continue to draw connected lines and arcs to form a polyline with an arrowhead at the end. The arrowheads display only at the free ends, not where the lines connect. See “Polylines” on page 243.

Lines with arrowheads can also be created. See “Line With Arrow” on page 233.

A line can be converted to an arc or vice versa by selecting the line, pressing and holding down the Alt key, then using the edit handle at either end to bend the line.

Click the Number Style button to change the units used in dialogs. See “Dialog Number/Angle Style Dialog” on page 105.

The settings on the ARC panel are also found on the **SELECTED ARC** panels for many objects.
The **Lock** options control how changing properties in this dialog affects the arc.

- **Start** - Select this option to keep the start fixed when changing the arc, chord, or end.
- **End** - Select this option to keep the end fixed when changing the arc, chord, or start.
- **Center** - Select this option to keep the center of the arc fixed when changing the arc.
- **Arc** - Select this option to keep the arc fixed when changing the arc location.
- **Chord** - Select this option to keep the arc chord fixed when changing the arc radius.

Arc - These parameters define the arc. Various controls are disabled depending on what lock option is used.

- **Center X Point** - Specify the X coordinate for the center of the arc.
- **Center Y Point** - Specify the Y coordinate for the center of the arc.
- **Radius** - The distance between the center of the arc and the arc surface.
- **Start Angle** - Specify the angle that a line drawn from the arc center to the arc start makes with a horizontal line to the right.
- **End Angle** - Specify the angle that a line drawn from the arc center to the arc end makes with a horizontal line to the right.
- **Arc Angle** - The angle between the center of the arc and each end.
• **Arc Length** - The length of the arc along the curve.

• Uncheck **Automatic Facet Angle** to specify the **Facet Angle**, which is the angle at which the surfaces of a curved 3D object are broken in 3D views. The default value is 7.5°; a smaller value produces a smoother curve while a larger value may generate more quickly in 3D views. These settings are only available on the **SELECTED ARC** panel for some CAD-based architectural objects such as Slabs. See “Architectural vs CAD Objects” on page 129.

3 **Start Point** - These values define the start point of the arc. The Position settings are disabled when the Start is locked.

• **Start X Position** - Specify the X coordinate for the beginning of the arc.

• **Start Y Position** - Specify the Y coordinate for the beginning of the arc.

4 **End** - These values define the end point of the arc. The Position settings are disabled when the End is locked.

• **End X Position** - Specify the X coordinate for the end of the arc.

• **End Y Position** - Specify the Y coordinate for the end of the arc.

• **End Direction** - Specify the angle of a tangent line at the end of the arc.

5 **Chord** - These values define the chord of the arc.

• **Chord Length** - The straight line distance between the two ends of the arc.

• **Chord Angle** - Specify the angle of the chord (the imaginary straight line going from the start of the arc to the end of the arc).

Line Style Panel

For information about the **LINE STYLE panel**, see “Line Style Panel” on page 235.

Arrow Panel

For information about the **ARROW panel**, see “Arrow Panel” on page 236.

Circle Tools

Select **CAD> Circles** to access the Circle Tools.

Circles

Draw a **Circle** by dragging across the diameter. If a small circle is needed, draw a larger circle and then resize it.

Use the **Circle Specification** dialog to accurately define size, position and other attributes. See “Circle/Oval/Ellipse Specification Dialog” on page 243.

Draw Circle About Center

Select **CAD> Circles> Circle About Center** to create a circle by dragging the radius out from the center point.

To draw a Circle About Center

1. Click the **Circle About Center** tool.
2. Click the screen to define the center.
3. Drag the radial distance and release the mouse button. If you are using **Object Snaps**, both
the center point and the radius snap to any appropriate nearby CAD object, intersection or point.

Ovals

An Oval is a four-arc approximation of an ellipse. To draw an oval, select CAD > Circles > Oval, then click and drag.

Use the CAD Oval Specification dialog to accurately set the length and width of the oval and other attributes.

Ellipses

An Ellipse is a set of points with a constant combined distance from two points called foci. An ellipse looks like a stretched circle, or a circular surface viewed at an angle.

To draw an ellipse, select CAD > Circles > Ellipse and drag at an angle to define its maximum height and width.

Use the CAD Ellipse Specification dialog to accurately set the length and width of the ellipse and other attributes.

Circle/Oval/Ellipse Specification Dialog

Select a circle, oval or ellipse and click the Open Object edit button to open the CAD Circle, Oval or Ellipse Specification dialog.

The CAD Circle, Oval, and Ellipse Specification dialogs are almost exactly the same. The Oval and Ellipse Specification dialogs have an additional setting for Angle on the GENERAL panel.

General Panel

1. Specify the position of the circle, oval or ellipse’s Center Point.
 - Specify the X Position and Y Position of the center of the circle, oval or ellipse.
 - Specify an oval or ellipse’s Angle. Not available for circles.

2. Size - Specify the Length and Width of an oval or ellipse, or the Diameter and Radius of a circle.

Line Style Panel

For information about the LINE STYLE panel, see “Line Style Panel” on page 235.

Fill Style Panel

For information about settings on this panel, see “Fill Style Specification Dialog” on page 155.

Polylines

A polyline consists of two or more line and/or arc segments that are attached at their endpoints. Select CAD > Boxes > Rectangular Polyline, then click and drag from corner to corner to create a rectangular-shaped, closed polyline. A closed polyline measuring 2’x 2’ (600 mm x 600 mm) can also be created by clicking once while the Rectangular Polyline tool is active.
When **Object Snaps** and **Connect CAD Segments** are enabled, you can also create a polyline by drawing lines and/or arcs end-to-end, allowing the end of each new object to snap to the end of the previous one. See “Defaults, Preferences, and Edit Behaviors” on page 163.

Line- and arc-based objects will only snap together to form a polyline if they are on the same layer and share identical attributes such as color, line style, and arrow specifications.

If one end of the polyline is connected to the other, it becomes a closed polyline. Closed polylines can be assigned a fill pattern and/or turned into special 3D objects such as slabs or countertops that display in 3D views.

Lines and polylines can be distinguished by the edit handles that display when you select each. A line displays an edit handle at each end and one in the middle. If more than three edit handles display, the object is a polyline.

Lines that appear connected to a polyline may prove to be unconnected when selected.

For example, the two polylines in the following image appear identical until their left edges are selected. The polyline on the left reveals that its left edge is not attached. In contrast, the left edge of the polyline on the right is part of the larger polyline unit.

The **Close Polyline** edit tool can be used to connect the edges of an open polyline. This tool adds a segment between the two open ends, closing the gap between them. See “Using Close Polyline” on page 180.

Polylines can be copied, moved, reshaped, or resized as a single unit. Additionally, the individual segments can be edited. See “Disconnect Edges” on page 168.

Once created, polylines can be edited in a variety of ways. See “Editing Open Polyline-Based Objects” on page 177 and “Editing Closed Polyline-Based Objects” on page 180.

Polyline Holes

Closed CAD Polylines and a variety of closed polyline-based architectural objects can contain one or more holes. See “Polyline Holes” on page 184.

Polyline Specification Dialog

Select an open polyline, closed polyline, spline, Sprinkler Line polyline, or Electrical connection and click the **Open Object** edit button to open the **Polyline Specification** dialog.
Polylines Specification Dialog

Polyline Panel

The POLYLINE panel is found in the specification dialogs for a variety of objects throughout the program. It states:

- The total number of Polylines or Holes Selected;
- The Length of an open polyline;
- The Perimeter of a closed polyline;
- The Area of a closed polyline;
- The Volume of a closed polyline;
- The Number of Lines that form an open polyline or the perimeter of a closed polyline or polyline hole;
- The Number of Holes located inside of a closed polyline;
- The Hole Perimeter is the total length of the perimeter(s) of any holes inside of a closed polyline;
- The Hole Area is the total area of the holes inside of a closed polyline.

If the polyline is not closed, the Area and Volume are described as “Not closed”. The Volume of a 2D polyline will always be 0, even if it is closed.

If the selected object is a closed polyline and has any Holes in it, they will be subtracted from the Area value and, if applicable, from its Volume. See “Polylines Holes” on page 184.

If multiple objects of the same type are selected, the combined totals of these values are stated.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is a spline. See “Splines” on page 249.

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

Selected Line Panel

The SELECTED LINE panel is available when the selected edge of the polyline is a line as opposed to an arc and is not available if the selected object is a spline. See “Editing Line-Based Objects” on page 171.

Moving the Start of a line segment moves the end of the previous connected line, if there is one. Similarly, moving the End of a line segment moves the start of the next connected line, if there is one.

This panel is similar to the LINE panel of the Line Specification dialog. See “Line Panel” on page 234.

Selected Arc Panel

The SELECTED ARC panel is available when the selected segment of the polyline is an arc as opposed to a line. It is not available if the selected object is a spline.

This panel is similar to the ARC panel of the Arc Specification dialog. See “Arc Panel” on page 241.

Line Style Panel

This panel is similar to the LINE STYLE panel in the Line Specification dialog. See “Line Style Panel” on page 235.

Fill Style Panel

The FILL STYLE panel is found in the specification dialogs for a variety of objects in the program. See “Fill Style Specification Dialog” on page 155.

Arrow Panel

The ARROW panel is available for most open polylines and splines and is similar to the ARROW panel of the Line Specification dialog. See “Arrow Panel” on page 236.

The ARROW panel is not available for closed polylines, Sprinkler Lines, or Electrical Connections.

Label Panel

Labels for CAD polylines display when the “Polylines, Labels” layer is turned on and use the Text Style assigned to that layer. See “Text Styles” on page 398.

For more information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The COMPONENTS panel is available for a selected Sprinkler Line or Sprinkler Spline. See “Sprinkler Tools” on page 941.
The information on this panel can be used in the materials list. See “Components Panel” on page 959.

Box Tools

Select **CAD> Boxes** to access the Box Tools.

Rectangular Polyline

A Rectangular Polyline can be drawn in either of two ways:

- Click in the drawing area to place a 24” x 24” square polyline at that location.
- Click and drag from corner to corner to draw a rectangle of any size.

Once created, a rectangular polyline can be edited into any shape or converted to a 3D object. See “Editing Closed Polyline-Based Objects” on page 180.

Regular Polygon

You can draw a regular polygon based on the length of a side, or the length of the radius to a vertex or a side. Select your options in the **New Regular Polygon** dialog and click OK, then click in the drawing area to place the polygon.

The settings in this dialog are similar to those in the **Polygon Shaped Rooms** dialog. See “Polygon Shaped Rooms and Decks” on page 272.

Box

Draw a 2D box from the midpoint of one side to the midpoint of the opposite side. The sides of a box can be resized, but a box always has four 90° corners.

Boxes have some unique editing behaviors. See “Editing Box-Based Objects” on page 184.

Cross Box

Use the **Cross Box** tool to create a 2D box with an X-shaped cross in the interior to represent framing in a cross section detail.

In cross section/elevation views, Cross Boxes are used to represent joists and rafters members that are perpendicular to and cut by the camera’s clip plane. See “Cross Section/Elevation Views” on page 787.

Blocking Box

Use the **Blocking Box** tool to create a 2D box with a diagonal line in the interior to represent blocking or bridging in a cross section detail.

Insulation

Use the **Insulation** tool to draw insulation in cross section details. Insulation Boxes are like 2D boxes and Cross Boxes; however, unlike these other types of boxes, Insulation Boxes do not have perimeter lines: only the curves of the insulation pattern.
Box Specification Dialog

Select a CAD box, a framing box, a wall bridging box, a cross box, a blocking box, or an insulation box and click the Open Object edit button to open the Box Specification dialog. See “Box Tools” on page 246.

General Panel

1. Specify a Box Style. Select Normal to specify a normal box, Cross to specify a cross box, or Insulation to specify an insulation box. If multiple CAD boxes are selected, “No Change” may display.

2. Define the Position of the box.
 - Specify the X Position and Y Position of the center of the box.
 - Specify the Angle of the box.

3. Define the Size of the box by specifying its Height and Width.

Line Style Panel

For information about the LINE STYLE panel, see “Line Panel” on page 234.

Fill Style Panel

For information about the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.

Revision Clouds

The Revision Cloud tool allows you to draw a closed polyline with a series of arcs or bulges displaying along each edge. Select CAD > Revision Cloud, then click and drag to draw a rectangular shape with edges that display a series of arcs.

There are several additional ways to create a Revision Cloud:
- Click and drag using the Alternate edit mode to draw the first edge, then click to define the end points of subsequent edges. Click on the start point of the first edge to finish drawing the cloud.
- Create Revision Clouds around one or more selected objects in plan view by clicking the Revision Cloud(s) Around Objects edit button. A separate revision cloud will be drawn around each selected object. This edit tool is also available for CAD objects, text, and dimensions in cross section/elevation views, but not for architectural objects.
- Convert a closed CAD polyline into a Revision Cloud. See “Convert Polyline” on page 205.

Revision Clouds are drawn based on the settings in the Revision Cloud Defaults dialog and are initially placed on the layer specified there. Unlike other CAD objects, they support multiple Saved Defaults.
and can be included in Default Sets. See “Multiple Saved Defaults” on page 67.

Once created, Revision Clouds can be selected and edited much like other closed-polyline based objects. See “Editing Closed Polyline-Based Objects” on page 180.

Unlike other closed polylines, however, the edges of a Revision Cloud can only be seen when it is selected. When it is not selected, only the arcs along its perimeter are visible.

Revision Cloud Specification Dialog

Select one or more Revision Clouds and click the Open Object edit button to open the Revision Cloud Specification dialog.

The settings in the Revision Cloud Defaults dialog are similar to those in the Revision Cloud Specification dialog, but determine the initial settings of revision clouds as they are drawn. See “Revision Cloud Defaults” on page 226.

Cloud Panel

1. Specify how the arcs on the selected revision cloud(s) are sized.
 - Select Automatic Arc Lengths to have the program automatically size the selected cloud’s arcs.
 - Select Average Arc Length to specify the selected cloud’s average arc length, which is measured along its chord.
 - Select Number of Arcs, then specify the number of arcs on the selected cloud.

2. Use the slider bars or text fields to specify the Size Variation of the selected cloud’s arcs.
 - Specify the Length Diversity, which is the maximum amount that a given arc’s length can deviate from the Average Arc Length, specified above.
 - Specify the Minimum Bulge, which is the smallest amount that a given arc can extend out from its center. 0% allows arcs with a radius of 0, essentially flat lines; 50% allows 180° arcs, or half-circles; 100% only allows arcs of about 300°.
 - Specify the Maximum Bulge, which is the largest amount that a given arc can extend out from its center. 100% allows arcs of about 300°; 50% allows 180° arcs; 0% only allows arcs with a radius of 0.
A preview of the selected revision cloud displays on the right side of this panel. See “Dialog Preview Panes” on page 32.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected cloud edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected segment of the cloud edge is an arc as opposed to a line. See “Arc Panel” on page 241.

Splines

A Spline is a curve that passes smoothly through a set of points. Splines are typically used in situations where there is an irregular curve. A contour line is a typical example. Splines are useful wherever a free-flowing curve is needed.

Once created, splines can be selected and edited. See “Editing Spline-Based Objects” on page 186 and “Polyline Specification Dialog” on page 244.

To use the Spline tool

1. Select CAD > Spline.
2. Click and drag to draw the first spline segment just as you would a line. A single spline segment looks identical to a line, in fact. You may need to turn off Angle Snaps to draw freely.
3. Draw the second segment from the end of the first at a different angle. Object Snaps should be on to assure that new segments attach correctly to the ends of previous segments.
4. As soon as two straight spline segments connect end-to-end, the straight segments become a curve that passes through the endpoints defined by the original segments. Each point is called a vertex.
5. Draw a few more segments, connecting each to the free end of a previously drawn segment.
6. Notice as additional segments are drawn that the spline changes the curvature of the previous segment to create a continuous curve between the last three points.
7. Form a closed spline by drawing a segment between its two free ends.
8. The result is an irregular curve that flows smoothly through each vertex.
Spline-based objects will only snap together to form a single spline if they are on the same layer and share identical attributes such as color, line style, and arrow specifications.

Displaying CAD Objects

As with architectural objects, the display of CAD objects is controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

CAD objects can be drawn in plan views, CAD Details, layout, and cross section/elevation views. They are 2D objects only, though, so they cannot be seen in any view other than the one they are drawn in and are never visible in camera views or overviews. See “Architectural vs CAD Objects” on page 129.

Current CAD Layer

When drawn, most CAD objects are automatically placed on the Current CAD Layer. In floor plan and cross section/elevation views, the name of this layer displays on the right side of the Status Bar at the bottom of the screen. See “The Status Bar” on page 33.

Initially, the “CAD, Default” layer is set as the Current CAD Layer, but this can be changed at any time in any of several ways:

• In the CAD Defaults dialog. See “CAD Defaults Dialog” on page 226.

• By selecting CAD> Current CAD Layer from the menu. See “Select Layer Dialog” on page 149.

• Activate a different Default Set. See “Default Sets” on page 71.

Revision Clouds are placed on the layer specified in the Revision Cloud Defaults dialog - not on the Current CAD Layer. See “Revision Clouds” on page 247.

Note: Spline-based objects with the same properties will only snap together when Connect CAD Segments is enabled. See “Connect CAD Segments” on page 167.

You can also convert an open or closed polyline into a spline using the Convert to Spline edit tool. See “Convert to Spline” on page 202.

Saved Plan Views and Default Sets

The Current CAD Layer is among the items associated with Saved Plan Views and Default Sets, both of which can be customized and activated for specific drawing tasks. See “Plan Views” on page 120 and “Default Sets” on page 71.

Drawing Groups

Each object in a plan or layout file is included in a Drawing Group, which influences whether it displays in front of or behind other objects. By default, CAD objects are placed in Drawing Group 21. Their drawing order relative to one another is based on the order in which they were placed: an object will display in front of any objects that were created before it was.

Once created, however, the drawing order of CAD objects can be customized. See “Drawing Groups” on page 153.

Show Length and Angle

You can specify that line segment length and angle display along a CAD line, CAD arc, or along each segment of a CAD polyline. If the segment is an arc, its radius also displays. See “Line Style Panel” on page 235.

The format of the length and angle can be specified in the CAD Defaults dialog. See “CAD Defaults Dialog” on page 226.
Line length and angle indicators use the Text Style assigned to the layer that their CAD object is on. See “Text Styles” on page 398.

Endcaps
Dashed lines often display endcaps, which are dashes of a particular length. You can specify the Printed Length of endcaps in the Preferences dialog. See “CAD Panel” on page 93.

CAD Blocks
A CAD block is a group of 2D CAD objects, text objects, and/or dimensions that have been grouped together so that they behave as a single object. A CAD block can also contain other CAD blocks: these are referred to as “nested”.

CAD blocks can be imported into the program and can also be added to the library. See “Importing and Exporting” on page 879.

Dimension lines can only be included in a CAD block if they reference objects that are also included in the block. They will continue to inherit their attributes from the saved Dimension Defaults that they were associated with before the CAD block was created. See “Dimension Defaults Dialog” on page 343.

With the exception of a few CAD-based objects such as slabs, custom countertops and framing, CAD blocks cannot contain architectural objects. Such objects can instead be blocked as architectural blocks. See “Architectural Blocks” on page 725.

CAD blocks can be selected, moved, rotated and resized much like CAD boxes. They can also be exploded into their individual parts. See “Editing Box-Based Objects” on page 184.

A list of the CAD blocks present in the current file is available in the CAD Block Management dialog. See “CAD Block Management” on page 253.

Make CAD Block
To create a CAD block, group select two or more eligible objects, and then click the Make CAD Block edit button. See “Marquee Select” on page 169.

Eligible CAD block component objects include:
- CAD objects
- Text objects
- Dimension lines
- CAD blocks
- CAD-based objects such as Slabs, Framing, and Custom Countertops.
- Distribution Paths and Regions that have CAD objects as their distributed object.

If the Make CAD Block edit button is not available, then the selection set may contain an object that is not an eligible CAD block component.

Explode CAD Block
When a block is selected, click the Explode CAD Block edit button to separate it into its individual components.

If a CAD block includes nested blocks, these nested blocks are not exploded.

When a selected CAD block is exploded, its definition is not affected: only the instance. See “CAD Block Management” on page 253.

If a block has been resized so that its original aspect ratio is altered, it cannot be exploded. See “CAD Block Specification Dialog” on page 254.

Select Insertion Point
By default, a CAD block has one insertion point located at its center. When placing the CAD block in a drawing or moving it to a new location, you can snap its insertion point to some other snap point for accuracy. See “Object Snaps” on page 131.

In some cases, it may be helpful to position a CAD block using an insertion point other than its center. For example, a CAD block representing a bolt or...
other fastener may be better positioned using the bottom center of its head or washer rather than its center. You can use the Select Insertion Point edit button to replace the insertion point at the center with a different point.

To select an insertion point

1. Make sure that Object Snaps are enabled, then select the CAD block.
2. Click the Select Insertion Point edit button.
3. Click at the location where you would like the insertion point.

The available snap points on a CAD block are located around the perimeter of its bounding box. If you need a different point, place a temporary CAD Point at that location, and then snap to it when creating the insertion point.

A CAD block’s Move edit handle displays at the location of its insertion point. If you place an insertion point at the midpoint of one of the bounding box edges, the Move edit handle may display instead of the Resize handle. CAD blocks also rotate about their insertion point.

A CAD block’s insertion point can also be specified relative to the blocks’ center point in the CAD Block Specification dialog. See “General Panel” on page 254.

Add to Library

Like a variety of other objects, CAD blocks can be added to the library for future use in other files. See “Adding Library Content” on page 700.

Many manufacturers provide CAD details in DXF/DWG format. These drawings can be imported, blocked and added to the library. See “Importing 2D Drawings” on page 882.

If a CAD block contains an object on a custom layer or one that inherits properties from a Saved Dimension Default or Saved Text Style and that CAD block is placed from the library into a plan or layout file:

- That Saved Default, Text Style, or layer will be created in the destination file if it does not already exist.
- If a Saved Default, Text Style, or layer with the same name does exist in the destination file, the object will inherit its attributes from the existing settings.

See “Multiple Saved Defaults” on page 67 and “Layers” on page 142.

Custom 2D Symbols

In plan views, 3D symbols and images are represented by 2D CAD blocks.

You can specify the CAD block used by a symbol in its Symbol Specification dialog. See “2D Block Panel” on page 716.

The CAD block used by images and plant images is specified in the Image Specification dialog. See “Image Panel” on page 856.

If you do not see an existing CAD block that suits your needs, you can create your own. For best results, follow these guidelines:

- The CAD block should have the same X and Y dimensions as the 3D symbol. An incorrect CAD block size will result in inconsistent placement of your symbol.
- It is usually best to build your CAD block with solid filled properties. This keeps background patterns and other objects from showing through. See “Fill Style Specification Dialog” on page 155.
- So that your custom CAD block can be easily identified, it is best to give it a name in the CAD Block Specification dialog. See “General Panel” on page 254.

CAD blocks that have nested blocks within them cannot be assigned to 3D objects or to images.
CAD Block Management

A list of all CAD blocks present in the current plan or layout file can be accessed by selecting CAD> CAD Block Management.

CAD Block Management Dialog

All CAD block definitions saved in the current file are listed here. CAD block definitions that currently have no instance anywhere in the file may be included.

Click on a column header to sort the table by the information in that column. An arrow above a header indicates that it is being used to sort the table, and in which direction it is being sorted.

- Click on the Name of a CAD block definition in the list to select it. The selected line item is highlighted in blue.
- CAD block definitions with at least one instance in the current file have a red plus sign in the Used column.
- Move your mouse pointer over an icon in the Used column for a summary of where the CAD block is in use. See “In Use Line Styles” on page 158 for information about the different icons.
- Unused CAD block definitions with no instances in the current file have no icons in the Used column and can be deleted.
- When Automatically Purge CAD Blocks is unchecked and all instances of a CAD block are removed from the current file, its definition will continue to be saved in the file and will be listed here. Leave this box checked to remove unused CAD blocks from the list.

The buttons on the right side of the list of CAD blocks allow you to manage the items in the list, as well as insert instances into the current view.

1. Select one or more blocks in the list, click the Insert button, then click in the current view to place an instance of the block into that view.
2. Select a block in the list, then click the Rename button to specify a new name for it.
3. Click the Purge button to delete all unused block definitions from the list.
4. Select an unused block and click the Delete button to remove it from the list. Not available for blocks that are Used.
5. Click the Add to Library button to save a copy of the selected block in the User Catalog. See “Adding Library Content” on page 700.

A preview of the selected CAD block displays on the right side of the dialog. See “Dialog Preview Panes” on page 32.

CAD Block Definition

There are two aspects to each CAD block:

- The block definition, which holds information about the block’s component objects.
- The block instance, which holds information about its position, orientation, size, aspect ratio and other settings specific to an individual block placed in a file.

All instances of a given CAD block can have unique positions and sizes; however, the block definition that they share is the same regardless of the floor, view, or layout page that they display in.
Copying a block instance to a completely different file also copies the block definition to that file. If all instances of a CAD block are deleted from a file, its definition will remain saved with the file. To control file size, it is a good idea to regularly purge files of unused CAD blocks or have the program do it for you automatically. Both options are available in the CAD Block Management dialog.

CAD Block Specification Dialog

Select one or more CAD blocks and click the Open Object edit button to open the CAD Block Specification dialog.

General Panel

1. Specify the CAD block’s Name. Not available when multiple CAD blocks are selected. If the CAD block has a copyright, information about it displays here.

This name is listed in the CAD Block Management dialog and is used when you export the block via DXF/DWG, and is also imported with DXF/DWG block definitions.

Unlike other settings in this dialog, which affect only the selected instance of the block, changing the name modifies the actual block definition. See “CAD Block Management” on page 253.

2. Specify the Position and angle of the selected CAD block instance.
 - Specify the X and Y Positions, which are the coordinates of the CAD block’s insertion point.
 - Specify the Angle at which the CAD block instance is placed.

3. Line/Fill Style - Specify how line and fill styles are applied to the selected CAD block instance.
 - Select By Block to use the line and fill styles specified for the selected CAD block instance.
 - Select By Object to use the line and fill styles of the individual objects in the selected CAD block instance.

New block instances use to By Block unless Use ‘By Object’ when creating new CAD blocks is checked.

Underline text that was not present in the original image.
CAD Details

CAD Details are special view windows for drawing, saving and organizing 2D drawings associated with the current plan or layout file, such as site plans and section details. They are listed in the Project Browser and CAD Detail Management dialog, and can be created in both locations, as well. See “Project Browser” on page 56.

Like other views, CAD Details are saved in the file they are created in and can be printed. If saved with a plan file, a CAD Detail can also be sent to layout. See “Sending Views to Layout” on page 965.

2D CAD information can be copied into or out of a CAD Detail window using the group select and copy functions. See “Copying and Pasting Objects” on page 136.

CAD Detail Management Dialog

Select CAD> CAD Detail Management to open the CAD Detail Management dialog.

An alphabetical list of all CAD Details in the current file displays here.
Click on a **CAD Detail Name** in the list to select it. The selected item’s row is highlighted.

If a CAD Detail is currently open, it will have a check mark in the **Open** column.

Click **New** to open the **Create New CAD Detail** dialog. Type a short, descriptive name for the CAD Detail, click **OK**, and a new CAD Detail view window opens.

To rename an existing CAD Detail, select it and click **Rename**.

To create an exact copy of an existing CAD Detail, select it and click the **Copy** button.

To delete a CAD Detail from the list, select it and click **Delete**. The automatically generated Truss Detail cannot be deleted if there are trusses in the current plan. See “Truss Details” on page 659.

To open an existing CAD Detail, select it and click **Open**. CAD Details that are presently open have a check mark to the right of their name.

Special CAD Details

Some CAD details are created automatically by the program. If any roof or floor trusses are present in a plan, the program creates a Truss Detail that includes an editable diagram of each truss type used and a count of each. See “Truss Details” on page 659.

When walls are automatically framed, a Wall Detail is created for each wall. These details are listed in the **Project Browser** rather than in the **CAD Detail Management** dialog. See “In Wall Detail Views” on page 647.

CAD Detail from View

CAD Detail from View is available in all line-based views, including plan view and any 3D view using the Vector View Rendering Technique. See “Rendered and Vector Views” on page 780.

A CAD Detail created using **CAD Detail from View** inherits a variety of settings from the original view, including:

- The layer set used by the original view. See “Layer Sets” on page 147.
- When the original view is a layout page with one or more layout boxes, a new “Layout Box Export Contents” layer is created for the contents of the layout boxes. See “Layout” on page 961.
- The **Dimension Defaults** settings used by the original floor plan or cross section/elevation view. See “Dimension Defaults Dialog” on page 343.
- The rotation of the original view. See “Rotate Plan View” on page 121.
- Any text objects using a specific Text Style in the original view will maintain the same settings in the CAD Detail; however they will use a Custom Text Style.

Camera views and overviews do not have **Dimension Defaults**, so the currently active defaults for plan view are inherited by CAD Details created from these types of views.

CAD Detail Specification Dialog

You can also open this dialog for the currently active view by selecting **Tools> Active View> Edit Active View**.

To open the **CAD Detail Specification** dialog for any CAD Detail, right-click on its name in the Project Browser and select **Open Object** from the contextual menu. See “Project Browser” on page 56.
General Panel

1. Specify the **Name** of the view.

2. **General** -
 - Check **Remember Zoom/Rotation** to maintain the extents of the view and its rotation the next time the view is opened. See “Zoom Tools” on page 126 and “Rotate Plan View” on page 121.
 - Uncheck **Show Color** to turn color off in the selected view. See “Color On/Off” on page 154.

Plot Plans and Plan Footprints

Using the CAD Tools and conventional survey information, you can create an accurate plot plan in plan view or a CAD Detail. See “Site Plans” on page 407 of the Tutorial Guide.

A plot plan can be sent to layout and included in working drawings. See “Dynamic Views” on page 967.

A plot plan can also be converted into a terrain perimeter, allowing you to add elevation data and accurately position buildings for 3D modeling of home and lot.

Plan Footprint

Select **CAD> Plan Footprint** to create a CAD object representing the building footprint in a CAD Detail window. Once the Plan Footprint is created, you can control what information it displays.

To create a Plan Footprint

1. Open the plan view that you want to create a Plan Footprint from.
2. Select **CAD> Plan Footprint**. The program creates a new CAD Detail with the footprint of the current floor.

3. **Selected Defaults Panel**

 The settings on the **SELECTED DEFAULTS** panel control which Saved Defaults and layer settings are used in the view. These settings are also found in the **Active Defaults** dialog. See “Active Defaults Dialog” on page 69.

 - Check **Show Watermark** to display the watermark specified for the current plan file in the selected view. See “Watermarks” on page 994.

 • By default, this new CAD Detail uses the Plan Footprint layer set. You can control what displays in the footprint using the **Layer Display Options** dialog. See “Layer Sets” on page 147.

 • You can also control the appearance of a Plan Footprint in its specification dialog. See “Plan Footprint Specification Dialog” on page 258.

 To insert a plan footprint in a CAD Detail

1. Open the CAD Detail in which you want to insert a Plan Footprint.
2. Select **CAD> Plan Footprint**.
3. Select the floor to use from the drop-down list and click **OK**.
4. The floor plan appears in the CAD Detail window. Select **Window> Fill Window** to center the footprint on screen.
5. The footprint can be rotated and moved anywhere in the window.
If the model consists of several buildings, a footprint is created for each. Moving one footprint automatically adjusts all the footprints in order to maintain their relationship.

If you edit a plan using Reverse Plan or the Edit Area tools, the plan footprint updates automatically.

Dimension lines can be drawn to locate the edges of a plan footprint polyline. Note that if changes to the plan cause the plan footprint polyline to update, any dimension lines that locate it may be deleted as a result. See “Dimensions” on page 341.

Layer Display Options
When you create a plan footprint by selecting CAD> Plan Footprint while in plan view, the default layer set for Plan Footprints is used. See “Layer Set Defaults” on page 147.

When a plan footprint is created by selecting CAD> Plan Footprint while in a CAD Detail, the current layer set is used. See “Layer Set Management” on page 148.

Regardless of the layer set in use, the appearance of objects in a Plan Footprint is controlled in the Layer Display Options dialog. Individual objects are on the same layer as in plan view, while the entire Plan Footprint is on the “CAD, Default” layer. See “Layer Display Options Dialog” on page 144.

Plan Footprint Specification Dialog
Select a plan footprint and click the Open Object edit button to open the Plan Footprint Specification dialog for the selected plan footprint.

General Panel

- Select the Floor Used for Plan Footprint from the drop-down list.
- Check Display Footprint Polyline to draw a polyline around the perimeter of the footprint. This option must be selected if you want to use a fill pattern or specify a line style. Note that the footprint polyline may not be visible if you also have Display Plan Details checked.
- Check Display Plan Details to show the walls and other details as they appear in plan view.
- Check Use Current Layer Set to Display to control what displays in the footprint using Layer Display Options. If you uncheck this box, you lose control of what displays and the program makes the determination for you. See “Layer Display Options” on page 258.

Polyline Panel
The POLYLINE panel states the plan footprint polyline’s Perimeter and its Area. See “Polyline Panel” on page 245.

Line Style Panel
The settings on the LINE STYLE panel will not affect the appearance of the plan footprint unless Display Footprint Polyline is checked on the GENERAL panel.

For information about using the LINE STYLE panel, see “Line Style Panel” on page 235.

Fill Style Panel
The settings on the FILL STYLE panel will not affect the appearance of the plan footprint unless Display
Footprint Polyline is checked on the **GENERAL** panel. For more information about the **FILL STYLE** panel, see “Fill Style Specification Dialog” on page 155.
Chapter 11: Walls, Railings, and Fencing

To draw a wall, select one of the Wall Tools, then click and drag in a line to the approximate length that you want. When you enclose an area with walls, a room is created, complete with floor and ceiling. The Door Tools and Window Tools can be used to add openings, while Dimensions are used to position walls and openings with accuracy.

Walls are the single most important structural component in Chief Architect. They define Rooms, are used to create Foundations, and even influence how Roofs are built. It is helpful to understand how Wall Type Definitions, wall connections, and wall alignment all affect your design.

Chapter Contents

• Wall, Railing, and Fencing Defaults
• Wall Tools
• Railing and Deck Tools
• Fencing Tools
• Exterior and Interior Walls
• Foundation Walls
• Pony Walls
• Railing and Deck Tools
• Room Dividers and Invisible Walls
• Polygon Shaped Rooms and Decks
• Hatch Wall
• Creating Walls
• Connecting Walls
• Displaying Walls
• Measuring Walls
• Editing Walls
• Edit Handles for Walls
• Editing Straight/Curved Wall Combinations
• Aligning Walls
• Roof Directives in Walls
• Attic Walls
• Stepped and Raked Walls
• Double Walls
• CAD to Walls
• Wall Type Definitions
• Wall Type Definitions Dialog
• Exporting and Importing Wall Types
• Wall Specification Dialog
• Railing and Fencing Specification Dialogs
• Wall Hatch Specification Dialog
• Wall Schedules
Wall, Railing, and Fencing Defaults

There are several defaults dialogs for walls. Default Settings can be accessed by selecting Edit -> Default Settings. Click the arrow next to “Walls” to display the walls sub-headings. Select a subheading and click the Edit button to open the Wall Defaults dialog associated with your selection:

The defaults dialog for each wall tool can also be accessed by double-clicking the tool’s toolbar button.

The settings in the various wall defaults dialogs determine what wall types are drawn when the different wall tools are used. It is a good idea to be familiar with these settings and how they relate to your style of building. See “Wall Type Definitions” on page 292.

Set as Default

You can set the attributes for a selected wall in your plan as a default wall type by clicking the Set as Default edit button. See “Set as Default” on page 67.

Which Wall Defaults gets updated depends on the attributes of the selected wall. If the selected wall is specified as:

- A **Foundation** wall, its attributes will become the Foundation Wall Defaults.
- A **Slab Footing**, its attributes will become the Slab Footing Defaults.
- A Railing or Deck Railing that is not specified as **Solid** or set to **Follow Terrain**, its attributes will become the Railing or Deck Railing Defaults.
- A **Solid** Railing or Deck Railing, its attributes will become the Half Wall Defaults.
- A Railing or Deck Railing set to **Follow Terrain**, its attributes will become the Fencing Defaults.
- A wall specified as **Invisible**, its attributes will become the Room Divider Defaults.

If a wall does not have a setting listed above and defines:
- Only interior rooms, its attributes will become the Interior Wall Defaults.
- An exterior room or forms part of the structure’s exterior, its attributes will become the Exterior Wall Defaults.

The Set as Default edit tool is not available for Pony Walls.

General Wall Defaults

The General Wall Defaults dialog controls the general behavior and display attributes of all walls, railings and fencing.

For quick access, the General Wall Defaults button can be added to the toolbar or you can press Alt+Q on your keyboard.

- **Resize About** - These radio buttons determine what part of a wall retains its position when its wall type or wall type definition is changed. See “Resize About” on page 285.

The Resize About location is also where any snap points will be located along a wall as it is drawn or connected to other walls, and is where a wall’s length is measured.

- **Outer Surface** - Snap to and resize about the exterior surface. When a wall is resized, its exterior surface does not move.
- **Main Layer Outside** - Snap to and resize about the outer line of the Main Layer. When a wall is resized, the outer line of its Main Layer does not move. When multiple Main Layers are specified, the outer line of the outermost Main Layer is used.
- **Wall Center** - Snap to and resize about the center line. When a wall is resized, its center line does not move, but wall layers on either side may.
- **Main Layer Inside** - Snap to and resize about the inner line of the Main Layer. When a wall is
resized, the inner line of its Main Layer does not move. When multiple Main Layers are specified, the inner line of the innermost Main Layer is used.

- **Inside Surface** - Snap to and resize about the interior surface. When a wall is resized, its interior surface does not move.

> **Note:** In most circumstances, it is recommended that you Resize About the Main Layer Outside to avoid unexpected results.

2. Check **Show Wall Length When Editing** to display a temporary length dimension when a wall is drawn or edited. Wall length only displays when **Temporary Dimensions** are on. See “Temporary Dimensions” on page 358.

3. The **Automatic Walls** options control the automatic creation of Attic Walls and Room Dividers.

- Uncheck **Auto Rebuild Attic Walls** to prevent Attic walls from automatically generating when the model changes. When checked, Attic Walls are automatically generated. See “Attic Walls” on page 289.

- Uncheck **Connect Island Rooms** to prevent Room Dividers from automatically connecting “island” rooms to the larger structure around them. When checked, Room Dividers are generated to prevent room definition problems. See “Room Definition” on page 313.

- When **Auto Reverse Wall Layers** is checked, walls will automatically reverse their layers to ensure that exterior layers face the exterior of the structure. Uncheck this to leave the orientation of the wall layers unchanged. See “Creating Walls” on page 273.

Exterior and Interior Wall Defaults Dialogs

Specify the initial attributes of walls drawn using the **Exterior** and **Interior Wall** tools in the **Exterior and Interior Wall Defaults** dialogs. See “Wall Tools” on page 265.

The panels in this dialog are the same as their respective panels in the **Wall Specification** dialog. See “Wall Specification Dialog” on page 297.

Foundation Wall Defaults

Specify the initial attributes of walls created by the **Foundation Wall** tool when it is either used manually or when a stem wall or pier foundation is generated in the **Foundation Wall Defaults** dialog. See “Foundation Walls” on page 268.

The **Foundation Wall Defaults** dialog also controls the wall type drawn by the **Retaining Wall** tool. Unlike other walls, Retaining Walls are used to modify your terrain rather than build a structure. See “Terrain Wall and Curb Tools” on page 908.

Footing size and other information used when building stem wall or pier foundations is also specified here. For more information, see “Foundation Defaults” on page 521.

The panels in this dialog are the same as their respective panels in the **Wall Specification** dialog. See “Wall Specification Dialog” on page 297.

Slab Footing Defaults

Specify the initial attributes of walls created by the **Slab Footing** tool when it is either used manually or when a foundation is generated in the **Slab Footing Defaults** dialog. See “Foundation Walls” on page 268.

Footing size and other information used when building a monolithic slab foundation is also specified here. See “Foundation Defaults” on page 521.
Pony Wall Defaults

Specify the initial attributes of walls drawn using the Pony Wall tool. See “Pony Walls” on page 270.

The Display in Plan and Display of Openings in Non-Displayed Parts of Walls settings on the WALL TYPES panel of the Pony Wall Defaults dialog are saved with and can be different in each Saved Plan View. See “Plan Views” on page 120.

The panels in this dialog are the same as those in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Railing and Deck Railing Defaults

Specify the types of railings created when the Railing and Deck Railing tools are used. See “Railing and Deck Tools” on page 266.

The panels in these dialogs are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Note: By default, Railings and Deck Railings are drawn using two separate wall types: “Interior Railing” and “Deck Railing/Fence”. See “Wall Type Definitions” on page 292.

Glass Wall Defaults

Specify the initial attributes of walls drawn using the Straight Glass Wall tool. See “Glass Walls and Half-Walls” on page 265.

The panels in this dialog are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Glass Pony Wall Defaults

Specify the initial attributes of walls drawn using the Straight Glass Pony Wall tool. See “Glass Walls and Half-Walls” on page 265.

The panels in this dialog are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Half-Wall Defaults

Specify the attributes of a solid railing drawn using either the Straight Half Wall or Curved Half Wall tool. See “Glass Walls and Half-Walls” on page 265.

The panels in this dialog are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Fencing Defaults

Specify the initial attributes of walls drawn using either of the Fencing Tools. See “Fencing Tools” on page 268.

The panels in this dialog are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

Room Divider Defaults

Specify the initial attributes of walls drawn using the Room Divider tool. See “Room Dividers and Invisible Walls” on page 271.

The panels in this dialog are the same as their respective panels in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.
Wall Tools

Select **Build> Wall** to access the Wall Tools. The type of wall drawn by each wall tool is specified in its corresponding defaults dialog.

The **Curved Wall** tools are similar to their corresponding **Straight Wall Tools**. Select **Build> Wall** to access these tools as well.

Exterior Walls

The **Exterior Wall** and **Curved Exterior Wall** tools draw walls using the default wall type specified for exterior walls in the **Exterior/Interior Wall Defaults** dialog. See “Exterior and Interior Walls” on page 268.

Interior Walls

The **Interior Wall** and **Curved Interior Wall** tools draw walls using the wall type specified for interior walls. The interior wall type is defined in the **Exterior/Interior Wall Defaults** dialog.

Foundation Walls

The **Foundation Wall** and **Curved Foundation Wall** tools draw foundation walls according to the information specified in the **Foundation Defaults** dialog. Foundation walls normally have a footing and can be drawn on any floor of the model, not just the foundation floor. See “Foundation Walls” on page 268.

The **Slab Footing** tool draws a single-layer concrete wall the same width as that specified for footings in the **Foundation Defaults** dialog. Rooms defined entirely by Slab Footings will have a Ceiling Height of 0 and a Monolithic Slab Foundation specified. See “Foundation Defaults” on page 521.

Pony Walls

A **Pony Wall**, also called a split wall, is defined as a wall with two separate wall types, one for the upper portion and another for the lower portion.

The **Pony Wall** and **Curved Pony Wall** tools draw pony walls using the information specified in the **Pony Wall Defaults** dialog. You can also convert a normal wall into a pony wall and vice versa in the **Wall Specification** dialog. See “Pony Walls” on page 270.

Glass Walls and Half-Walls

The **Straight Glass Wall** tool creates single-layer glass walls that do not cut the surfaces of the floor, ceiling, or adjacent walls. The wall type and other attributes of glass walls drawn with this tool are defined in the **Straight Glass Wall Defaults** dialog. See “Glass Wall Defaults” on page 264 and “Partition Walls” on page 276.

The **Straight Glass Pony Wall** tool creates a pony wall with a glass upper partition. The height and other attributes of walls drawn with this tool are defined in the **Straight Glass Pony Wall Defaults** dialogs. See “Glass Pony Wall Defaults” on page 264.

The **Half-Wall** and **Curved Half-Wall** tools create solid railings: walls that are 36” (900 mm) high topped with a handrail. The height and other attributes of solid railings drawn with this tool are defined in the **Half-Wall Defaults** dialog. See “Half-Wall Defaults” on page 264.

Room Dividers

Room Dividers are Invisible walls with a thickness of 0” (mm) that are used to define separate room areas in a plan. They can display in plan view but not in 3D views. See “Room Dividers and Invisible Walls” on page 271.

Polygon Shaped Room

The **Polygon Shaped Room** tool opens the **New Polygon Shaped Room** dialog, where you can specify the exact size and number of sides of a new polygonal room and then click in plan view to create that room. See “Polygon Shaped Rooms and Decks” on page 272.

Hatch Wall

The **Hatch Wall** tool applies a hatch pattern to a wall that displays in plan views. You must click the wall that you want to apply the hatch pattern to. You can then select the hatch and resize it if you want to only hatch a portion of a wall. See “Hatch Wall” on page 272.
Wall Material Regions

Select **Build > Wall > Wall Material Region** to create an area on a wall that has different materials than the wall. See “Floor and Wall Material Regions” on page 748.

Fix Wall Connections

The **Fix Wall Connections** tool connects walls whose ends are within a few inches of each other but are not connected. See “Fix Wall Connections” on page 276.

Define Wall Types

The **Define Wall Types** tool opens the **Wall Type Definitions** dialog, where wall types can be created, copied and edited. See “Wall Type Definitions Dialog” on page 294.

Library Walls

You can also add a wall to the library, and then draw a new wall in any plan using its wall type and specifications by simply selecting it and then clicking and dragging in the drawing area. See “Adding Library Content” on page 700.

When a new wall is drawn, it inherits the wall type of the library wall. If a wall type of that name already exists in the plan and the two are not identical, a new wall type will be created in that plan, and its name appended with “_2”. See “Wall Type Definitions” on page 292.

Railing and Deck Tools

Railings are a special type of wall that have a specified height rather than building all the way to a room’s ceiling height.

Select **Build > Railing and Deck** to access the **Railing and Deck Tools**. Railings are typically used to define interior spaces, while the various Deck tools are used to define exterior Deck rooms.

With the exception of the Polygon Shaped Deck tool, each of the tools in this family have both Straight and Curved versions, and are created and edited just like walls. See “Creating Walls” on page 273.

To create a break in a railing for a stairway or other access, use a **Doorway**. This keeps the railing continuous and maintains room definition. See “Room Definition” on page 313.

When first drawn, railings are specified as **No Locate**, which prevents **Auto Exterior Dimensions** from locating them. This attribute may also be helpful if you do not want a railing to divide an area into two separate rooms. See “General Panel” on page 297.

The attributes for railings when they are first drawn are defined in the **Railing Defaults** dialog. See “Railing and Deck Railing Defaults” on page 264.

Railings

The **Railing** and **Curved Railing** tools create railings that are primarily used to define interior spaces. The style and height of railings drawn with this tool are defined in **Railing Defaults** dialog. See “Railing and Deck Railing Defaults” on page 264.

Railings are ideal for a number of tasks:

- Creating changes in floor and/or ceiling height. See “Floor and Ceiling Heights” on page 324.
- Creating stairwells. See “Creating a Stairwell” on page 563.

Deck Railing

The **Straight Deck Railing** and **Curved Deck Railing** tools draw decks, complete with framing and bounded by a railing. If a foundation level exists, supports for the deck are also created. See “Decks” on page 323.

When a room is defined using deck railing, its **Room Type** is automatically set to “Deck”. See “Decks” on page 323.
Deck Edges

The Straight Deck Edge and Curved Deck Edge draw decks complete with framing, but without a railing. No deck supports are created.

Polygon Shaped Deck

The Polygon Shaped Deck tool opens the New Polygon Shaped Deck dialog, where you can specify the exact size and number of sides of a new polygonal deck room and then click in plan view to create that deck room. See “Polygon Shaped Rooms and Decks” on page 272.

Railing Types

A variety of railing types can be specified in the Railing and Deck Railing Specification dialogs. See “Rail Style Panel” on page 309. Available types include:

- Baluster creates railings composed of newel posts, balusters, a railing, and an optional bottom rail.
- Solid produces a framed railing wall, or Half Wall. See “Glass Walls and Half-Walls” on page 265.
- If Panels is selected, you can choose a panel style such as cable, glass, or ironwork from the library. See “Newels/Balusters Panel” on page 310.

By default, newels and balusters do not display in plan view, but their display can be turned on. See “Newels/Balusters Panel” on page 310.

Wall Types and Railings

Just like regular walls, railings are assigned a wall type: “Interior Railing”. This wall type has three layers: a framing layer in the middle and a layer of drywall on each side. See “Wall Type Definitions” on page 292.

You can use a different wall type definition for railings if you wish, but bear in mind that this wall type definition determines several important things:

- The railing’s appearance in plan view. See “Displaying Walls” on page 277.
- The actual thickness of Solid railings in 3D views.
- The extent of the floor platform, if a platform edge is defined by the railing is defined by the outer surface of the wall type. See “Floor and Ceiling Platforms” on page 325.
- If the railing is used to create a change in floor height, this wall type controls the structure and position of the partial wall built beneath the railing, if one is required. See “Floor and Ceiling Heights” on page 324.

If the railing is a type other than Solid, its sizing is specified on the Newels/Balusters panel of the Railing Specification dialog, and the railing is centered along the width of the wall type. This will not be evident in plan view unless newels and balusters are set to display.

Deck Railing is also assigned a wall type: “Deck Railing/Fencing”. This wall type has a single framing layer and is recommended for use only with deck railing and fencing.

Railings Over Walls

To produce a railing over a solid wall, specify it as both a Railing and a Pony Wall. See “Pony Walls” on page 270.

To create a solid glass partition over a partial-height wall, specify the “Glass Shower” wall type as the Upper Wall.

To create a glass panel above a half wall

1. Draw a Half Wall and open its specification dialog.
2. On the WALL TYPES panel of the Railing Specification dialog, check the box beside Pony Wall.
3. On the WALL CAP panel, confirm that Full Wall Width is checked.
4. On the RAIL STYLE panel, select Panel and uncheck Include Top Rail, Include Bottom Rail, and Raise Bottom.
5. On the NEWELS/BALUSTERS panel, select “Solid” and adjust the Newels/Posts Width and Spacing values to meet your needs.

6. On the MATERIALS panel, specify a glass material for the Panel component.

Fencing Tools

Fencing is a special type of wall that is designed to follow the terrain rather than define a room with a flat floor platform.

Select Build> Fencing or click the Fencing Tools to access the fencing tools. Fencing automatically follows the shape of the terrain. You can choose to have the fencing follow the terrain smoothly or to have each segment step as it follows the terrain. See “Rail Style Panel” on page 309.

The Fencing and Curved Fencing tools are used to draw fences, which are similar to railings but by default do not define room areas. Fencing is created and edited much like walls and railings, and normally used outside of a building and follows the shape of the terrain. See “Terrain” on page 899.

Define the default fence style in the Fencing Defaults dialog. See “Fencing Defaults” on page 264.

Exterior and Interior Walls

Most walls are drawn using either the Straight Exterior Wall and Straight Interior Wall tools.

Exterior and interior walls can also be drawn using the Curved Exterior Wall and Curved Interior Wall tools.

The only difference between the Exterior and Interior Wall Tools is the wall type used: Exterior Walls use a wall type set up to model a wall with siding, while Interior Walls model interior walls with sheetrock. See “Wall Type Definitions” on page 292.

You can specify the default wall type for each tool in the Exterior/Interior Wall Defaults dialog. See “Exterior and Interior Wall Defaults Dialogs” on page 263.

To draw a wall using a different wall type, you can change the default wall type for either tool in the Exterior and Interior Wall Defaults dialogs. You can also draw a wall using the default type and then change the wall type in the Wall Specification dialog. See “Wall Types Panel” on page 305.

Whether a wall is recognized by the program as an actual exterior or interior wall is based on its position in the model, not by which tool you used to draw the wall.

• Any wall or wall segment that is entirely surrounded by interior room areas is considered to be an interior wall.

• Any wall or wall segment that defines an exterior room or is exposed to the outside of the building is considered to be an exterior wall. See “Room Types and Functions” on page 315.

For some purposes, a wall is considered to be exterior based on whether it forms part of the Thermal Envelope that surrounds the plan’s Conditioned Area. For example, a Framed wall that separates Conditioned Area from Unconditioned Area will have insulation counted in the Materials List. See “Conditioned Area” on page 957.

Foundation Walls

Foundation walls are similar to the interior and exterior walls but also have a footing. Foundation walls can either be created automatically when a foundation floor is created or manually by drawing them using the Straight or Curved Foundation Wall tool. See “Building a Foundation” on page 524.
The initial foundation wall type and footing size are specified in the **Foundation Wall Defaults** dialog. These values can be changed for individual walls in the **Wall Specification** dialog. See “Wall Specification Dialog” on page 297.

You can draw a foundation wall on any floor of a plan, not just on the foundation level. Any wall can be specified as a foundation wall, regardless of the tool used to draw it. See “Foundation Panel” on page 303.

Foundation walls are placed on the “Walls, Foundation” layer by default, but can be put on any layer you choose. In plan view, foundation wall footings are placed on the “Footings” layer and cannot be moved; in 3D views, they are on the “Walls, Foundation” layer. See “Displaying Walls” on page 277.

Slab Footing

The **Slab Footing** tool draws a single-layer concrete wall using the wall type and other attributes specified in the **Slab Footing Defaults** dialog. Slab Footings are used to define Monolithic Slab foundations, garage curbs, and interior footings.

Typically, the wall type should have the same width as that specified for footings. For Garage curbs, the footings should be wider than the wall type. See “Foundation Panel” on page 303.

Rooms defined by walls drawn using this tool will have a Ceiling Height of 0 and a Monolithic Slab Foundation. See “Structure Panel” on page 334.

Foundation Wall Footings

Normally, a foundation wall’s footing is centered on the wall. If you prefer, you can:

- Center the footing on the main wall layer.
- Align the footing along the wall’s exterior.
- Specify an offset, as measured from the wall’s center line.

These offset options are set in the **Wall Specification** dialog. See “Foundation Panel” on page 303.

You can select the footing in 3D views and edit its size and shape using the edit handles. See “Stepped and Raked Walls” on page 289.

Foundation wall footings extend past the end of a foundation wall the same amount that they extend past each side when centered on the wall.

To create a footing that extends more than that amount, create a short segment of foundation wall at that location and specify it as Invisible.

Brick Ledges

Brick ledges can be produced in monolithic slab, stem wall, and grade beam foundations. They do not extend under door openings in monolithic slab foundations.

Brick ledges are represented in plan view:

- In stem wall and grade beam foundations, brick ledge lines are on the “Slabs” layer.
- In monolithic slab foundations, they are on the “Walls, Foundation” layer. See “In Plan View” on page 277.

In order for a brick ledge to be produced, the foundation wall material directly under the brick ledge must be the “Concrete” Structure Type and the wall material that drops into the brick ledge must be the “Masonry” Type. See “Material Structure Types” on page 767.

Additional settings that control whether a brick ledge is produced as well as its size are found in the Wall Type Definition of the wall that is located above the brick ledge. See “Wall Type Definitions” on page 292.

- The width of the ledge is equal to that of the Exterior Layers of the wall type.
- The **Brick Ledge Depth** is a specified value greater than zero.
The Foundation to Exterior of Layer setting must be the wall type’s exterior layer.

The Build Platform to Exterior of Layer setting cannot be the wall type’s exterior layer.

Pony Walls

A Pony Wall, sometimes called a split wall, is a wall with two separate wall types, one above the other.

Walls drawn using the Pony Wall tool are created using the wall types and other information specified in the Pony Wall Defaults dialog. See “Pony Wall Defaults” on page 264.

Most pony walls combine two exterior or two interior wall types; however, a pony wall can also produce an individual wall to be an exterior wall near its top and an interior wall near its bottom. See “Exterior/Interior Pony Walls” on page 288.

When a pony wall is also specified as a Railing, its upper wall is replaced by a railing. See “Wall Types and Railings” on page 267.

You can also convert a normal wall into a pony wall and vice versa in the Wall Specification dialog. See “Wall Types Panel” on page 305.

The height where the upper portion meets the lower can be adjusted in 3D views using the wall’s edit handles as well as in the Wall Specification dialog. The upper and lower sections of a pony wall are linked, so if either portion is modified along the division between the two, such as raking or the stepping of a footing, the other portion of the pony wall adjusts to match. See “Stepped and Raked Walls” on page 289.

If the floor platform inside of a brick ledge is hung on the foundation wall, Subflooring to Wall Interior must be checked in the Wall Specification dialog in order for a brick ledge to generate. See “Structure Panel” on page 299.

Displaying Pony Walls

You can specify whether the upper and lower portion of pony walls displays in plan view in the Pony Wall Defaults dialog. This Display in Plan option can also be set for individual walls in the Wall Specification dialog. See “Wall Types Panel” on page 305.

Just as with other walls, the appearance of the portion of a pony wall that displays in plan view can be controlled. See “Displaying Walls” on page 277.

Only the portion of a pony wall that displays can be snapped to; however, regardless of what part is displaying, the upper wall will be used to Align with Wall Above ☐, and the lower part will be used to Align with Wall Below ☐. See “Editing Walls” on page 280 and “Aligning Walls” on page 285.

By default, when a door or window is located entirely in one part of a pony wall, and that part is not displayed in plan view, the opening’s outline is shown but the wall’s layer lines and fill drawn through it. You can instead display openings in the non-displayed parts of pony walls the same as in the displayed parts, or not at all. See “Pony Wall Defaults” on page 264.

If a window or door is completely contained by one part of a pony wall, it will display in plan view if the other part of the pony wall is shown; but the wall’s layer fill pattern or Hatch Wall fill pattern will display over it.

The Display in Plan and Display of Openings in Non-Displayed Parts of Walls settings on the WALL TYPES panel of the Pony Wall Defaults dialog are saved with and can be different in each Saved Plan View. See “Plan Views” on page 120.

Lower Pony Wall Caps

You can specify a cap over the top of a lower Pony Wall. See “Wall Cap Panel” on page 306.

By default, the cap generates on the exterior side of a Pony Wall, outward from the surface of the upper
Room Dividers and Invisible Walls

The **Room Divider** tool is used to define separate room areas in a plan; typically, by dividing a large room area into two or more smaller areas. See “Room Definition” on page 313.

Common uses for Room Dividers include dividing areas of an open floor plan into areas with different purposes.

Room Dividers can also be used to define areas with different floor or ceiling materials or heights.

Room Dividers are drawn using the attributes specified in the **Room Divider Defaults** dialog; which means they are simply walls that are specified as Invisible and have a single layer of an “Air Gap” material with a thickness of 0” (mm).

If a zero-thickness **Room Divider** separates two rooms with different floor and/or ceiling heights, its wall type will be changed to the current plan’s default Interior Wall so that the platform step created by the height difference can be enclosed. See “Floor and Ceiling Platforms” on page 325.

Invisible Walls

Any wall, regardless of its wall type or thickness, can also be specified as Invisible - or vice versa - in the **Wall Specification** dialog or by clicking the **Make Wall(s) Invisible** or **Make Wall(s) Visible** edit button. See “General Panel” on page 297.

Room Dividers are placed on the “Walls, Invisible” layer by default, as are walls that are specified as Invisible. A wall placed on a non-default layer and then specified as Invisible, however, will not move to the “Walls, Invisible” layer. See “Room Divider Defaults” on page 264.

Walls specified as Invisible can display in plan view but not in 3D views or the Materials List. See “Displaying Walls” on page 277.

It is not possible to place doors or windows into an Invisible wall; however, if a wall with openings in it is specified as Invisible, any openings in it will remain.

Important Notes on Invisible Walls

- Floor, wall and ceiling areas are calculated separately for rooms divided by Invisible walls.
- Invisible walls are ignored by the **Auto Place Outlets** tool; it functions as though they were not present.
- Cabinets, fixtures and furniture can be moved freely through Invisible walls.
- Invisible walls can be drawn through a cabinet to attach to the wall behind.
- By default, Room Dividers are automatically generated to connect “island” rooms to the larger structure around them. You can turn this behavior on/off in the **General Wall Defaults** dialog. See “General Wall Defaults” on page 262.

Changing Wall Types

The default upper and lower parts of a Pony Wall can be specified in the **Pony Wall Defaults** dialog. See “Pony Wall Defaults” on page 264.

The upper and lower parts of a Pony Wall can be redefined as different wall types in the **Wall Specification** dialog. See “Wall Types Panel” on page 305.
Polygon Shaped Rooms and Decks

The **Polygon Shaped Room** and **Polygon Shaped Deck** tools allow you to create rooms with regular sides and work similar to the **Regular Polygon** CAD tool. See “Regular Polygon” on page 246.

Select **Build> Wall> Polygon Shaped Room** to open the **New Polygon Shaped Room** dialog and create a polygon shaped room with regular sides.

Select **Build> Railing and Deck> Polygon Shaped Deck** to open the **New Polygon Shaped Deck** dialog and create a polygon shaped deck with regular sides.

The settings in these two dialogs are identical and are saved between program sessions. They are also independent of one another so different settings can be retained for each.

To create a polygon shaped room or deck

1. Click the radio button beside an option to specify whether you want to **Define Polygon by Side Length**, **Radius to Corner** or **Radius to Side**.
2. Specify the desired **Number of Sides**.
3. Specify the desired **Side Length** or,
4. Specify the desired **Radius**.
5. Uncheck **Include Railing** to produce a deck platform defined by Deck Edges. This option is not available in the **New Polygon Shaped Room** dialog.
6. Click **OK**, then click once in plan view to create the specified polygon shaped room.

Hatch Wall

The **Hatch Wall** tool can be used to fill wall segments with a single hatch pattern in plan view.

To apply wall hatching, select **Build> Wall> Hatch Wall**, then click on a wall. The hatch pattern covers the entire length and width of the wall segment.

In many cases, it is preferable to create a wall type definition rather than use the **Hatch Wall** tool because multiple fill styles can be used. See “Wall Type Definitions Dialog” on page 294.

Once created, wall hatching can be selected, edited and deleted much like other line-based objects. See “Editing Line-Based Objects” on page 171.

If you use the **Hatch Wall** tool to apply a hatch pattern to a wall that has been divided into multiple segments using the **Break** edit tool, the pattern is only applied to the segment that you clicked on. See “Break” on page 200.

Like doors and windows, wall hatching cannot extend across multiple wall segments. Unlike these objects, hatching cannot be located by dimension lines.

The wall hatch pattern and its line weight can be specified in the **Wall Hatch Specification** dialog. See “Wall Hatch Specification Dialog” on page 311.
When editing or deleting wall hatching, make sure that it is selected rather than the wall by noting that “Wall Hatching” displays in the Status Bar. See “The Status Bar” on page 33.

Creating Walls

Walls, railings, and fencing are drawn similar to the way CAD lines are drawn: select a Wall Tool or a wall saved in the Library Browser, and then click and drag from end to end in the drawing area. Walls can be drawn in plan view, camera views, and overviews. See “Draw Line” on page 231.

There are several other ways that walls can be created in Chief Architect:

• Exterior walls can be generated automatically when a new floor is built by using another floor as a model. See “Adding Floors” on page 538.
• Foundation walls are created when a foundation is automatically generated on Floor 0. See “Foundations” on page 521.
• Attic walls are generated automatically when the program perceives a gap between a wall that defines a room and the roof above. See “Attic Walls” on page 289.
• The **Space Planning Assistant** creates room boxes which can be arranged and then converted into walls. See “Space Planning” on page 59.
• 2D CAD lines can be converted into walls using the **CAD to Walls** tool. See “CAD to Walls” on page 291.

Drawing Walls

Drawing walls to create a floor plan is simple if you keep a few things in mind:

• Draw exterior walls first to define the building’s footprint, then draw the interior walls after the perimeter is in place.
• It is easiest to draw walls at the approximate location and length needed and then move or resize them precisely using dimensions later. See “Moving Objects Using Dimensions” on page 365.
• When drawing and positioning exterior walls, make sure **Grid Snaps** are enabled. Once these walls are in place, you may prefer to turn Grid Snaps off to draw and position interior walls and other objects. See “Grid Snaps” on page 133.
• If you wish to input wall lengths as you draw, make sure your **General Wall Defaults** are set to **Resize About Outer Surface**. See “Entering Wall Lengths and Angles” on page 274.

• As walls are drawn, Intersection Snap indicators, “sticky” points and extension lines identify points that are either collinear or orthogonal to the end points of other walls, making alignment easier. See “Wall Intersection Extension Snaps” on page 132.
• As walls are drawn, Angle Snaps take priority over Object Snaps. If you prefer that walls draw at any angle so that they can snap to other objects, uncheck **Always Snap Walls On Allowed Angles** in the **Preferences** dialog. See “Snap Properties Panel” on page 97.
• When walls enclose an area to form a room, the program will orient all exterior walls so that the siding material faces outward. You can disable this behavior if you wish. See “Interior and Exterior Surfaces” on page 294 and “General Wall Defaults” on page 262.
• To flip the layers of a wall after it is drawn, select it and click the **Reverse Layers** edit button. See “Editing Walls” on page 280.
• Initial wall heights are determined by the default floor and ceiling heights of the current floor. See “Floor Defaults Dialog” on page 537.

Wall Angles

With very few exceptions, walls should be drawn and edited with **Angle Snaps** enabled. Walls that are drawn at irregular angles can result in wall connection, alignment, and room definition problems.

If a wall is drawn at an off angle, the **Off Angle Wall** icon will follow the mouse pointer and a Caution symbol will display over the problem wall in plan view.

To correct the wall’s angle, click on the Caution symbol that displays over the wall and select **Fix Off Angle Wall** from the contextual menu. In the **Fix Off Angle Wall** dialog:
• The **Old Angle** is stated for reference.

• Enter a **New Angle** in the text field.

• Specify whether to **Lock** the **Start**, **Center**, or **End** point of the wall when its angle is changed.

There are several other ways to fix a selected wall if it has been drawn at an off angle:

• Click the **Open Object** edit button and specify the correct angle. See “General Panel” on page 297.

• Click and drag an end edit handle until the wall snaps to an Allowed Angle. See “Angle Snaps” on page 132.

• If the wall in question should be aligned with a wall directly above or below it, click the **Align with Wall Above** or **Align with Wall Below** edit button. See “Aligning Walls” on page 285.

You can also suppress the Caution symbol by specifying the needed angle in the wall’s specification dialog or adding that angle to the list of Allowed Angles. See “General Plan Defaults Dialog” on page 77.

Although not recommended unless the walls in question are Fencing, Terrain Walls, and/or Retaining Walls, you can choose to **Ignore Off Angle Wall** or **Ignore All Off Angle Walls** by clicking on the Caution symbol that displays over an off angle wall. See “Fencing Tools” on page 268 and “Terrain Wall and Curb Tools” on page 908.

Wall Positioning

The recommended method of drawing walls is to draw them at their approximate location and length, then move them into position with accuracy using dimensions. To make this task quick and efficient:

• Notice the temporary wall that displays as you draw. Its length and angle display in the Status Bar at the bottom of the window and adjust as you move the mouse. Release the mouse button to draw the wall at the displayed length and angle. See “The Status Bar” on page 33.

• Use Snaps to help ensure proper wall alignment and orientation. See “Snap Behaviors” on page 130.

Once walls are drawn, they can be accurately dimensioned and moved as needed. See “Measuring Walls” on page 279.

Entering Wall Lengths and Angles

The fastest way to draw walls is to draw them at their approximate position and length, and then move or resize them accurately using dimensions. See “Using Dimensions” on page 281.

For those that wish to enter walls’ lengths and angles as they are drawn, first select **Resize About Outer Surface** in the **General Wall Defaults** dialog. See “Resize About” on page 285.

Then draw a wall, select it, and specify its **Length** and **Angle** in the **Wall Specification** dialog. Draw a second wall and specify its length and angle, and so on. See “General Panel” on page 297.

You can also press the Tab key while you are dragging to draw a wall to open the **Enter Coordinates** dialog, where you can enter the wall’s **Distance**, or length, and **Angle**. See “Entering Coordinates” on page 135.

Wall Openings

To create a door or doorway, do not draw wall sections with a gap between them. Walls should be drawn to completely enclose rooms, and then door and window objects should be placed in the walls to create openings later. See “Doors” on page 403 and “Windows” on page 427.

Temporary Dimensions

Temporary dimensions will display along the length of a wall as it is drawn when **Temporary Dimensions** are toggled on and **Show Wall Length When Editing** is checked in the **General Wall Defaults** dialog. See “Temporary Dimensions” on page 358 and “General Wall Defaults” on page 262.
Continuous Wall Drawing

You can draw walls continuously by right-clicking, Alt+clicking or Alt+dragging. See “To draw continuous lines” on page 232.

By default, this continuous drawing behavior will turn off when walls are drawn to form an enclosed area. You can specify that this behavior remain on in the Preferences dialog. See “Behaviors Panel” on page 96.

Drawing Curved Walls

Drawing a curved wall, curved railing, or curved fence is similar to drawing a CAD arc. See “Arc Tools” on page 239.

As with CAD arcs, the method used to draw a curved wall depends on which Arc Creation Mode is currently active. See “Drawing Arcs - Arc Creation Modes” on page 237.

A straight wall can also be converted into a curved wall and vice versa using the Change Line/Arc edit button. See “Change Line/Arc” on page 201.

The radius of a curved wall is measured from the center to a surface or layer of the wall. The radius can be defined in the Wall Specification dialog. You may elect to define the radius to the exterior or interior wall layers. See “General Panel” on page 297.

Space Planning Assistant

The Space Planning Assistant Tools allow you to place and arrange room boxes that can then be converted into a fully editable house plan, including walls. See “Space Planning” on page 59.

Wall Framing

Once walls have been drawn, they can be framed. For best results, avoid generating framing until your model is in its final form. See “Wall Framing” on page 626.

Framing for an individual wall can be built or rebuilt using the Build Framing for Selected Object edit tool. This tool is only available if the selected wall has a framing material assigned to its Main Layer, and is not available if Retain Wall Framing is checked in the Wall Specification dialog. See “Build Framing for Selected Object(s)” on page 650.

Wall framing can be viewed and edited in floor plan and 3D views, as well as in Wall Detail views. See “In Wall Detail Views” on page 647.

Connecting Walls

When walls are drawn sufficiently close to one another, they will snap together to form an intersection. This snapping occurs when the walls’ center lines are within a distance defined by the larger of the two walls’ widths and will occur even when Object Snaps are turned off. See “Object Snaps” on page 131.

If the two walls in question have identical specifications and are collinear, they will merge to become a single wall. See “Aligning Collinear Walls” on page 286.

When three or more walls connect to form a completely enclosed area, that area defines a room. See “Rooms” on page 313.

When walls snap together to form an intersection and Object Snaps are enabled, the program joins them at their Resize About line, which is specified in
the **General Wall Defaults** dialog. See “Aligning Walls” on page 285.

- The wall that is being drawn or edited will move, lengthen, or shorten slightly to meet the other wall.
- The other wall will not move; however, its length may be affected.

Wall Intersections

Any time two walls intersect, one wall will build through the other. You can turn on the display of the “Walls, Thru Wall Lines” layer in plan view to see which walls build through and which do not. See “Layer Attributes” on page 142.

When a wall builds through another wall, it will extend into the intersected wall until it meets the interior surface of that wall’s Main Layer. See “The Main Layer” on page 293.

You can specify which walls build through wall intersections at corners in the **Wall Specification** dialog. See “Structure Panel” on page 299.

You can also control how the individual layers of one wall build into another using the **Edit Wall Layer Intersections** edit tool. See “Wall Layer Intersections Edit Handles” on page 284.

Partition Walls

By default, walls not only build to an intersecting wall’s Main Layer, they also build through the finish layers of the floor below and the ceiling above to reach the structural layers.

In some situations, though, this is not desirable: for example, glass shower walls are typically installed against the surfaces of walls, floors and ceilings rather than building into them. To achieve this, use a wall type that is specified as a **Partition Wall**. See “Wall Type Definitions Dialog” on page 294.

Fix Wall Connections

Occasionally, intersecting walls may not properly connect. When this is the case and the connection in question is on the current floor, a Caution symbol will display at the problem location in plan view and the Connect Walls icon will follow your mouse pointer.

Click on the Caution symbol that displays over the wall to open a contextual menu:

- Select **Delete** to delete the wall.
- Select **Ignore Unconnected Wall** to leave the wall unchanged and suppress the Caution symbol.

To correct wall connections throughout the current plan, select **Build> Walls> Fix Wall Connections**.

Alternatively, you can fix an individual wall connection using the **Connect Walls** edit tool.

To use the Connect Walls edit tool

1. Select a wall.
2. Click the **Connect Walls** edit button.
3. Click on a wall that you want to connect to the selected wall.
 - If the unconnected wall ends are sufficiently close to one another, the tool connects them.
 - If the separation is too great, extend one towards the other and try again.

Removing Wall Breaks

The **Break** edit tool allows you to break a wall into two or more separate wall segments. See “Break” on page 200.

To merge two collinear walls separated by a break, select one of the segments, then click on the end edit handle located at the break and drag it a few plan inches (mm) away from the break.

If the two walls do not merge, either one or both walls have been moved and they are no longer collinear, or one or both has been edited in some way and they are no longer identical. Open the **Wall Specification** dialog for each wall and determine how they differ. See “Wall Hatch Specification Dialog” on page 311.
Displaying Walls

While the structure and appearance of each wall type is controlled in the **Wall Type Definitions** dialog, the display of walls in all views is controlled in the **Layer Display Options** dialog. See “Layer Attributes” on page 142.

The program installs with a number of layers intended for specifically for various types of walls; however, you can specify any layers as the defaults for most of these walls. Once created, you can also place a selected wall on any layer. See “Layer Panel” on page 308.

If a “Walls” layer is turned off in plan view, any doors and windows placed in walls on that layer will not display, either. See “Displaying Doors” on page 406 and “Displaying Windows” on page 434.

In Plan View

The appearance of each wall type, including line weights and colors and wall layer fill styles, is specified in the **Wall Type Definitions** dialog. See “Wall Type Definitions Dialog” on page 294.

There are also several options for controlling how walls are displayed in plan view. In the **Layer Display Options** dialog, you can specify whether or not various types of walls display. By default, walls are placed on layers with “Walls” at the beginning of the layer name, such as “Walls, Normal”.

The display of the wall layers specified in the **Wall Type Definitions** dialog can be controlled. If you turn off the display of the layer called “Walls, Layers”, wall types display with two lines representing the inside and outside surfaces.

In addition, you can turn off the display of non-structural layers and show only the walls’ Main Layers by turning on the display of the “Walls, Main Layer Only” layer. This allows you to create both fully configured walls and framing layouts. The “Walls, Main Layer Only” layer affects the display of walls in plan view only. See “The Main Layer” on page 293.

The “Walls, Thru Wall Lines” layer controls the display of lines indicating which walls build through at wall intersections.

Note: In plan view, railings not specified as Solid display their Main Layer regardless of whether “Walls, Layers” or “Walls, Main Layer Only” is turned on. See “Wall Types and Railings” on page 267.

Either the upper or lower portion of a Pony Wall can display in plan view. Only the portion that displays can be snapped to or aligned with walls above or below. See “Pony Walls” on page 270.

Foundation Walls have footings that display in plan view as long as the “Footings” layer is turned on. Brick ledge lines can also display. See “Displaying Foundations” on page 525.

Railing newels, balusters, and rails can be set to display in plan view in the **Railing Specification** dialog. See “Newels/Balusters Panel” on page 310.

It is sometimes helpful to display the walls from a floor other than the current floor. To do this, select and display a reference floor. See “The Reference Floor” on page 543. You can also specify which layers are included in the Reference Display Layer Set in the **Layer Display Options** dialog.

Notification Icons

Occasionally, the program may detect a problem with one or more walls in a plan. When this is the case, notification icons will display on the floor where the problem has occurred:

- If a wall is drawn at an off angle, the **Off Angle Wall** icon will follow the mouse pointer and a Caution symbol will display over the problem wall in plan view.
- If there is a problem with a wall connection, the **Connect Walls** icon will follow the mouse pointer and a Caution symbol will display at the problem location.

The recommended response to either situation is to fix the problem, although you can choose to ignore it if you prefer. See “Wall Angles” on page 273 and “Fix Wall Connections” on page 276.

If an issue has been ignored, notification icons for it will not display. Select **Tools> Checks> Reset Notification Icons** to display any suppressed notifications so that any wall angle or connection problems can be corrected.
In 3D Views

As in plan view, the display of walls can be controlled by layer in the **Layer Display Options** dialog.

Each layer of a wall is generated when you create a 3D view. You can see the different layers in 3D using the **Delete Surface** tool. See “Delete 3D Surface” on page 792.

A wall’s framing layer displays as a solid layer rather than studs and plates until wall framing is built. See “Framing” on page 625. Wall framing is placed on the “Framing, Wall” layer by default.

When a camera is located on the exterior of a structure, you can select **3D> Camera View Options> Hide Camera-Facing Exterior Walls**, allowing the interior to be seen as you rotate around the model. Interior walls set as Attic walls are also hidden when this setting is active. See “Hide Camera-Facing Exterior Walls” on page 817.

While most architectural objects in the program can display in both floor plan and 3D views, a few cannot. Invisible walls and Wall Hatching are examples of objects that do not display in 3D, regardless of what layer they are placed on.

Unlike in plan view, doors and windows placed in a wall can display in 3D views even if the wall’s layer is turned off. See “3D View Defaults Dialog” on page 782.

In Cross Sections

When the **Auto Detail** tool is used in a cross section view, the fill style of each wall layer as set in its Wall Type Definition is used. See “Auto Detail” on page 789.

Wall Labels

Wall labels are located on the “Walls, Layers” layer and can be set to display in plan and cross section/elevation views. See “Object Labels” on page 515.

Walls do not have Automatic Labels by default. Once wall framing has been built, however, framed walls will be assigned Automatic Labels that correspond to each wall’s Wall Detail. See “In Wall Detail Views” on page 647.

Concrete and masonry walls’ automatic labels are always blank; however, custom labels can be assigned to any wall in the **Wall Specification** and **Defaults** dialogs. If you wish, you can use Named Values to create custom text macros for wall labels. See “Working with Name-Value Pairs” on page 1003.

Wall label information included when **Export to REScheck** is used. See “Export to REScheck” on page 897.

Wall Materials

There are several ways that materials can be assigned to walls, depending on how the walls and the rooms they define have been defined. See “Rooms” on page 313.

When you draw a wall, it uses the materials specified in its wall type definition. See “Wall Type Definitions” on page 292.

You can change the surface material of an individual wall in the **Wall Specification** dialog. If you select “Use Default” as the material and the wall is used to define a room, the program refers to the material specified in the **Room Specification** dialog. See “Wall Specification Dialog” on page 297.

You can also change a room’s wall material in the **Room Specification** dialog. See “Materials Panel” on page 761. To restore the default Wall Type material, select **Use Default** in the **Select Material** dialog. See “Select Material Dialog” on page 762.

Wall materials can also be changed using the **Material Painter** tool, but bear in mind that depending on which Material Painter Mode is in use, only a portion of the wall may be painted and that the entire room may be affected rather than the individual wall. See “Material Painter and Walls” on page 760.

When neither the wall nor the room has a material assigned to it, the program refers to the general material for walls in the **Material Defaults** dialog. See “Material Defaults” on page 758.

In the Materials List

The materials that make up wall assemblies are listed under different Categories in the Materials List:

Note: Wall materials that are specified on the Materials panel of either the Wall or Room Specification dialog are not calculated in the Materials List.
• **Siding** - Lists all materials located outside of each wall’s Main Layer, such as siding, sheathing, and housewrap.

• **Framing** - Lists the Main Layer material(s) for all walls as well as railings specified as Solid. Non-framed walls’ Main Layer materials are also listed here when those walls are not specified as Foundation.

Wall framing, including studs, plates, and headers, is only counted when a framing material has been assigned to a wall type and wall framing has been built. See “Framing” on page 625.

• **Insulation** - Insulation is calculated for all walls that separate Conditioned from Unconditioned space, are not defined as Railings, and have one or more Framing layers. Insulation thickness is equal to that of the framing layer. See “Exterior and Interior Walls” on page 268.

• **Wallboard** - Lists all materials located inside of each wall’s Main Layer, such as drywall. Includes all materials aside from framing, concrete, and rebar in walls that do not define rooms.

Does not include Wall Coverings or materials specified in either the Room or Wall Specification dialog. See “Materials Panel” on page 308.

• **Interior Trim** - Lists base, crown and chair rail moldings, and Wall Covering materials specified in the Wall and Room Specification dialogs. See “Wall Covering Panel” on page 306.

• **Foundation** - Lists the concrete and rebar for all walls specified as Foundation as well as their footings. See “Foundation Walls” on page 268.

Slab Footings as well as the room areas that they define can be assigned **Pour Numbers** in their specification dialogs. Pour Numbers are listed separately under the Foundation category of the Materials List. See “Foundation Panel” on page 303.

With the exception of wallboard, windows and doors are taken into account in the calculation of these totals.

Additional wall-related information is listed in the **General** category, including the total linear feet of each wall type per floor and the thermal envelope wall area per floor. See “Conditioned Area” on page 957.

A wall type’s Main Layer plays a central role in determining how wall materials are calculated. For this and other reasons, correct Main Layer assignment is very important. See “The Main Layer” on page 293.

Measuring Walls

Accurate wall measurements are an essential aspect of any drawing, and can be achieved by following two basic rules:

- Be aware of what part of a wall assembly dimensions are locating;
- Position walls using dimensions rather than edit handles or edit tools.

These rules can easily be met when you keep the following recommendations in mind.

For information about changing the value reported in a dimension line label, see “Using Dimensions” on page 281.

Use Dimension Defaults

Manually-drawn, automatic, and temporary dimensions can all be set to locate walls at their Dimension Layers or at their surfaces. Before drawing dimensions - and particularly, before using them to move your walls into position - make sure that all of your Dimension Defaults are set up to meet your needs. See “Dimension Preferences and Defaults” on page 342.

If a wall is specified as Invisible, dimensions will locate it at its centerline regardless of its Wall Type Definition or your Dimension Defaults settings. If the Invisible wall divides rooms with different floor heights, dimensions will locate the edge of the wall facing the room where the floor is lower.

Be aware, too, that the wall length dimension that displays when a wall is selected as well as the Length specification in the Wall Specification dialog do not inherit their settings from the Dimension Defaults. Instead, they follow the Resize About line. See “Resize About” on page 285.

Edit Dimension Lines

Once a dimension line has been drawn, its extension lines can be edited to locate a number of locations on a wall assembly:
• The exterior surface
• The Wall Dimension Layer’s exterior
• The center line of the wall assembly
• The Main Layer’s center line
• The Main Layer’s interior
• The interior surface

See “Editing Extension Lines” on page 363.

Moving Walls Using Dimensions

By far, the most precise method of positioning walls is using dimension lines. To produce accurate measurements, remember to:

• Be aware of what part of your walls is being located by each type of dimension.
• Avoid specifying dimension values with greater accuracy than your dimensions are set to display.

See “Primary Format Panel” on page 344.

See “Using Dimensions” on page 281.

Remember that the temporary wall length dimension that displays when a wall is selected may be set to locate a different part of the wall assembly than other dimension lines. See “Wall Length” on page 283.

Use Object, Angle and Grid Snaps

Object Snaps, Angle Snaps, and Grid Snaps make it easier to align walls when they are being drawn as well as when they are edited. See “Snap Behaviors” on page 130.

Object Snaps help to ensure consistent wall connections and are particularly helpful when aligning collinear walls.

When Grid Snaps are enabled, walls are drawn on a regularly spaced grid, which helps avoid inaccurate wall placement. This can become particularly important if you forego positioning walls using dimensions in favor of using edit handles to move them.

Angle Snaps make it easy to accurately draw walls at regular angles, ensuring walls that are truly parallel or perpendicular to one another and separated by consistent distances.

No Locate

If a wall is specified as No Locate in the Wall Specification dialog, it will be ignored by Auto Exterior Dimensions in plan view, as will any doors or windows placed in it. See “Dimensions” on page 341.

By default, Railings, Deck Railings, and Room Dividers are specified as No Locate. See “General Panel” on page 297.

If a wall is on its default layer and is specified as No Locate, it will be moved to the “Walls, No Locate” layer. If this box is later unchecked, the wall will return to its default layer. If a wall is on a non-default layer, it will remain there. See “Displaying Walls” on page 277.

Once a dimension line has been created, it can be edited so that it locates a No Locate wall or railing that is perpendicular to it. See Editing Dimension Lines.

Selecting Walls

Like other objects, walls can be selected in a variety of ways. See “Selecting Objects” on page 167.

• In plan view, if wall hatching has been applied to a wall using the Hatch Wall tool, the hatching may be selected first. Click Select Next Object to select the wall itself. See “Hatch Wall” on page 272.
• When Select Room Before Wall in 3D is checked in the Preferences dialog and you click on a wall in a cross section/elevation or camera view, the room defined by that side of the wall will become selected instead of the wall. See “Appearance Panel” on page 80 and “Selecting Rooms” on page 317.

When this is the case, you can select the wall by clicking the Select Next Object edit button or pressing the Tab key.

• In plan views, the Edit Area tools allow you to select only part of a wall or walls. See “Edit Area Tools” on page 209.

• In a Wall Detail, Framing Overview or other 3D view in which wall framing can be seen, select a wall framing member and click the Find Wall edit button to switch to a plan view in which the wall associated with the selected framing is selected. A wall selected in this manner can then be edited even when its layer is turned off and/or locked. See “Locking Layers” on page 143.

Using the Edit Handles

A selected wall can be modified in a variety of ways using its edit handles in any view. The handles that are available will depend on the current view type. See “Edit Handles for Walls” on page 283.

In the Specification Dialog

The appearance and structure of walls can be customized in the Wall Specification dialog. See “Wall Specification Dialog” on page 297.

The characteristics of the roof directly above a selected wall can also be specified in the Wall Specification dialog. See “Roof Panel” on page 301.

Using the Edit Tools

A selected wall or walls can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Using Dimensions

Automatic, manually-drawn, and temporary dimension lines can be used to both resize and move walls with accuracy. Select a wall, then click on a dimension line that locates it and type in the value that you need. See “Moving Objects Using Dimensions” on page 365.

When a wall is resized using dimensions, the inline text field used to edit the dimension will have three unique buttons:

• Horizontal walls have Move Left End , Move Both Ends , and Move Right End .

• Vertical walls have Move Top End , Move Both Ends , and Move Bottom End .

Choose the option that you want to use before pressing the Enter key.
If both ends of the selected wall intersect walls that are not parallel to one another, a fourth option will be available: **Move Along Rails**. When this option is used, the selected wall both resizes and changes position so that it remains connected to the other walls when you press the Enter key.

Depending on your **Dimension Defaults** settings, manual, automatic, and/or temporary dimension lines may locate wall surfaces or wall dimension lines. See “Locate Objects Panel” on page 346.

Dimension lines do not locate foundation wall footings when they are first drawn. Their extension lines can be edited to do so, however. See “Editing Extension Lines” on page 363.

Unlike other types of walls, the thickness of a **Slab Footing** can be resized using dimensions. A new wall type may result. See “Editing Foundations” on page 526.

Bear in mind that temporary dimensions can be set up to locate different wall layers than automatic and manual dimensions. As a result, they may appear to give different measurements between the same walls. See “Temporary Dimension Defaults Dialog” on page 354.

Only the portions of pony walls that display are located by dimensions. The upper and lower parts of pony walls typically have different thicknesses, so which part you choose to display may affect your plan’s dimensions. See “Pony Wall Defaults” on page 264.

Wall Thickness

The initial thickness of a wall is determined by its wall type definition. You can change a wall’s thickness by modifying the definition of it’s wall type. If you do this, all instances of the wall type used in the plan will be affected - not just an individual object. See “Wall Type Definitions” on page 292.

You can also specify a selected wall’s thickness in its **Wall Specification** dialog. See “General Panel” on page 297.

If a selected wall’s thickness is changed:

- A copy of the wall’s wall type is created with the same name but appended with a number equal to the thickness of the Main Layers, and that new type is assigned to the wall. See “The Main Layer” on page 293.
- The change in thickness will be applied to new wall type’s innermost Main Layer.
- The Main Layer must be at least 1/16” thick, and the wall’s thickness cannot be less than the original wall type’s total thickness minus the thickness of its Main Layer.

If a wall type’s thickness is modified, the wall will resize about the **Resize About** line specified in the **General Wall Defaults** dialog. In some instances, the wall may appear to move as a result of changes made to the thicknesses of its layers. See “General Wall Defaults” on page 262.

Wall Heights

The height of a wall is controlled by the ceiling height of the room(s) it defines. If the ceiling or floor height of a room is changed, the height of the walls that define it also change.

- The initial ceiling height for all rooms on a floor is set in the **Floor Defaults** dialog for that floor. See “Floor Level Defaults” on page 314. Whenever possible, it is best to set all ceiling heights using the default.
- The ceiling height of a single room can be set in its **Room Specification** dialog. See “General Panel” on page 333.
• The default Floor and Ceiling Heights for a given floor can be adjusted by editing the top and/or bottom edges of the Exterior Room in a 3D view. See “The Exterior Room” on page 318.

• The top or bottom edge of any wall can be adjusted independent of floor or ceiling heights using the mouse in Cross Section/Elevation and 3D views. Top and bottom edges can also be stepped and raked. See “Step and Raked Walls” on page 289.

• The top height of a selected Railing can also be edited in Cross Section/Elevation and 3D views. The bottom height, however, cannot. See “Railings and Deck Tools” on page 266.

• The edge dividing an upper and lower pony wall can be edited in Cross Section/Elevation and 3D views. In addition, its height can be defined in the Wall Specification dialog. See “Wall Types Panel” on page 305.

Wall Length

Wall length can be modified in several different ways:

• Using dimensions. See “Measuring Walls” on page 279.

• In the Wall Specification dialog. See “General Panel” on page 297.

• Using the Break edit tool to divide a selected wall into two segments. See “Break” on page 200.

• By dragging the end edit handles. See “Editing Line-Based Objects” on page 171 and “Editing Arc-Based Objects” on page 173.

Bear in mind that if you try to resize a wall by a small amount using one of its edit handles and that wall is connected to another wall at that end, its length will not change because its end will snap back to the existing intersection. See “Connecting Walls” on page 275.

The most accurate way to specify wall length is using dimensions. By default, wall length is measured at the outside edge of the Main Layer. You can instead specify that manual, automatic, and/or temporary dimension lines locate surfaces in the Dimension Defaults dialogs. See “Dimension Preferences and Defaults” on page 342.

Be aware that the wall length dimension that displays when a wall is selected as well as the Length specification in the Wall Specification dialog do not inherit their settings from the Dimension Defaults. Instead, they follow the Resize About line. See “Resize About” on page 285.

Note: By default, dimensions and the Resize About line all use the exterior edge of the Main Layer. When Resize About is set to use a different location, dimension lines may not agree with a wall’s length specification. See “Measuring Walls” on page 279.

Locked vs. Unlocked Centers

The default for curved walls is an unlocked center because it is easier to draw and edit when the center is unlocked.

Once walls are in place and curved walls are properly aligned with straight walls, it is a good idea to lock the curved walls’ centers.

To lock the center of a curved wall, select it and click the Lock Center edit button. See “Using Lock Center” on page 176. The curved wall remains selected, but its edit handles change.

The locked status can also be changed in the General panel of the Wall Specification dialog. See “General Panel” on page 297.

Edit Handles for Walls

Walls can be edited extensively using their edit handles. Depending on the type of view, a wall displays a different set of edit handles when selected.

• In plan view, straight and curved walls and their footings can be edited like other line- and arc-based objects. See “Editing Line-Based Objects” on page 171 and “Editing Arc-Based Objects” on page 173.

• In plan view, a wall’s edit handles display along its Resize About line. See “Resize About” on page 285.

• The Edit Wall Layer Intersections edit tool lets you control how a wall’s layers build to another wall that it intersects.

• In a camera view or overview, click on the top surface of a wall to display the same edit handles that were visible in Cross Section/Elevation and 3D views.
as in plan view, allowing you to rotate, move, and extend or shorten the length of the wall.

- Moving a wall in any view will move any cabinets attached to that wall, as well.
- In a cross section/elevation view, the top and bottom edges of straight and curved walls can be edited like closed polylines. See “Editing Closed Polyline-Based Objects” on page 180. Only the top and bottom edges of walls can be broken, angled or curved: the side edges cannot.
- In a camera view or overview, click on an interior or exterior surface to display the same edit handles as in an elevation view: one at each corner and one on the top and bottom edges.
- A wall can only be moved perpendicular to itself or, in the case of curved walls, perpendicular to its chord using the Move edit handle. To move a wall at Allowed Angles, use the Alternate Edit Behavior. See “Alternate” on page 164.
- The footings of Foundation Walls and Slab Footings can be selected in 3D views and edited using the edit handles. See “Footing Width and Height” on page 527.
- The Same Wall Type edit handles can be enabled, allowing you to draw a new wall segment of the same type as the selected wall.

Same Wall Type Edit Handles

The Same Wall Type edit handles allow you to draw a new wall extending out from either end of a selected wall and with identical properties as that wall.

To temporarily enable the Same Wall Type edit handles, select a wall and click the Same Wall Type edit button. You can also enable these handles globally in the Preferences dialog. See “Architectural Panel” on page 93.

When the Same Wall Type edit handles are enabled, two edit handles display just beyond a selected wall’s Extend edit handles in plan view or when the top edge of the wall is selected in a 3D view.

Editing Straight/Curved Wall Combinations

If you move a straight wall connected to a curved wall with a locked center and the connection cannot be maintained without changing the center of the arc, the walls lose their connection.

Click and drag a Same Wall Type edit handle at any angle to draw a new wall segment of the same type as the selected wall.

Wall Layer Intersections Edit Handles

The Edit Wall Layer Intersections edit tool lets you control how a wall’s layers build into another intersecting wall. When you click this edit button, the selected wall’s standard set of edit handles are replaced by a set of Wall Layer Intersection handles which you can use to modify the length of each wall layer. See “Connecting Walls” on page 275.

To edit wall layer intersections

1. Select a wall and click the Edit Wall Layer Intersections edit button.
 - This edit button is not available if the wall is not connected to another wall at either end.

2. Zoom in on either end of the wall so its edit handles can be clearly seen.
 - A Wall Layer Intersection edit handle is located at the midpoint of each wall layer.

3. Click and drag a Wall Layer Intersection handle either towards or away from the opposite edge of the intersecting wall.
 - As you drag, the wall layer will snap to the wall layer lines of the intersecting wall.

4. When you are finished, click the Main Edit Mode edit button or press the Esc key.
When an Extend edit handle of a curved wall with a locked center is dragged with the Alternate Edit Behavior active, the locked center setting will be overridden. See “Defaults, Preferences, and Edit Behaviors” on page 163.

If you move a straight wall connected to a curved wall with a locked center, the curved wall extends along its curve and the straight wall will either lengthen or shorten as needed to stay connected to the curved wall.

If the connection between the straight and curved wall cannot be maintained because of the curved wall’s radius, it will be broken.

When you click OK, the curved wall will adjust its length and position so that its ends become tangent to the walls it is attached to.

Aligning Walls

Wall alignment refers to the way wall segments line up with one another, either on the same floor or on the floor above or below. Walls may need to be aligned in a variety of situations.

To make alignment easier when drawing or resizing walls, “sticky” points and extension lines identify points that are either collinear or orthogonal to the end points of other walls. See “Extension Snaps” on page 131.

Make Arc Tangent

If both ends of a selected curved wall are connected to other walls at angles of 45° or less, the Make Arc Tangent edit button is available. Click this button to open the Radius of Tangent Curved Wall dialog.

- Specify the Wall Radius, which is measured from the curved wall’s Arc Center to the Measured to location, specified below.
- Specify where along the curved wall’s thickness the radius should be Measured to. The wall’s radius is usually changed by this action and a locked center automatically becomes unlocked. See “Wall Type Definitions” on page 292.

Resize About

The Resize About line specified in the General Wall Defaults dialog controls two important aspects of wall alignment:

- What part of a wall retains its position when its wall type or wall type definition is changed. See “Wall Type Definitions” on page 292.
- Where walls snap together to form an intersection. See “Connecting Walls” on page 275.
See “General Wall Defaults” on page 262.

The **Resize About** line is the line along which a selected wall’s length is measured in the **Wall Specification** dialog. See “Wall Length” on page 283.

The **Resize About** line is also the line along which a selected wall’s edit handles display, and is the line along which any snap points will be located. See “Editing Walls” on page 280.

Aligning Collinear Walls

Collinear walls are parallel walls connected end to end and drawn on the same floor. When collinear walls join end-to-end, the walls snap together. If these walls have the same wall type and identical specifications, and if **Object Snaps** are enabled, they will merge to become a single wall segment.

Creating a Nook

Walls can be aligned across an opening such as a nook, so that they are collinear, using the **Break** edit tool.

To align walls across a gap

1. Select a wall to build a nook into and click the **Break** edit button.
2. Click at a point on the wall close to one side of the nook area. Do not worry about exact placement right now.
3. Click again near the other side of the nook. Two short lines at each location where you clicked indicate Breaks in the walls.
4. Right-click the middle section of the wall to select the wall section.
5. Click the middle Move handle and drag the wall outward.
6. Draw side walls to connect the wall back to the rest of the house.
7. Move these short walls using dimensions to accurately size the nook.

Aligning Walls Between Floors

Walls can be aligned between floors by clicking the **Align With Wall Above** and **Align With Wall Below** edit buttons.

By default, walls on different floors are aligned by the outer edges of their Main Layers. See “The Main Layer” on page 293.

In order for these edit tools to be available, the areas of the walls in question must be partially aligned, or overlapping.

To align walls between floors

1. Select a wall that you want to align with another wall either above or below it.
2. If the wall is above or below the other wall along only part of its length, you must click on it along that part. Select **Tools > Floor/Reference Display > Reference Display On** to help make sure you click on the correct part of the wall.
3. When you have selected the wall at the desired location, click either the **Align With Wall Above** or **Align With Wall Below** edit button.

Aligning Curved Walls Between Floors

Curved walls are aligned between floors using the same technique to align straight walls. If the centers and radii of the walls are within a few inches of each other, the **Align With Wall Above** and **Align With Wall Below** edit buttons are enabled for the selected wall. The selected curved wall will take on the radius and center of the referenced wall when the walls are aligned.

Aligning Pony Walls Between Floors

When aligning a pony wall with either the wall above or below:

* Align With Wall Below will always align the lower pony wall with the wall below, as specified
in the lower pony wall’s Wall Type Definition. See “Wall Type Definitions” on page 292.

- **Align With Wall Above** will always align the upper pony wall with the wall above, as specified in the upper pony wall’s Wall Type Definition.

Aligning Foundation Walls

The **Foundation To This Line** setting in the **Wall Type Definitions** dialog controls how a wall of a given type aligns with foundation walls directly below on Floor 0.

By default, **Foundation To This Line** is specified for the Main Layer of most wall types. An exception to this are brick wall types, which have Foundation To This Line specified for the exterior siding layer. See “Brick Ledges” on page 269.

Aligning Curved Walls With Straight Walls

Curved walls can be drawn tangent to an existing straight wall using the **Start/Tangent/End Arc Mode**. See “Drawing Arcs - Arc Creation Modes” on page 237.

If both ends of a selected curved wall are connected to other walls, the **Make Arc Tangent** edit button is available. Click this button to move and resize the wall so that both ends are tangent to the connected walls. See “Make Arc Tangent” on page 285.

Aligning Railings on Different Platforms

Two collinear Railings or Deck Railings on the same floor can be aligned one above the other when they define rooms with different floor heights.

Roof Directives in Walls

To automatically generate a roof plane using values other than the defaults or to not generate a roof plane bearing on a particular wall (as for a gable or the sides of a shed roof), you can change the settings in the **Wall Specification** dialog. See “Roof Panel” on page 301.

Hip, Gable, and Shed Roofs

By default, the program will produce a roof plane over each exterior wall to create a hip roof. You can instead specify a gable or shed roof above the selected wall.

- Check **Full Gable Wall** to create a gable with a ridge centered above the selected wall(s).
• Check **High Shed/Gable Wall** for the side walls or the wall under the high side of a shed roof.
• You can also select a wall and click the **Change to Gable Wall(s)** edit button, or change it back by clicking the **Change to Hip Wall(s)** edit button.

Pitch

The default pitch for roof planes is set in the **Build Roof** dialog. However, any exterior wall can define the pitch of the roof plane built above it.

You can also specify a second, upper pitch above a given wall. Mansard, gambrel, gull wing and half-hip are examples of roof styles that use two pitches. See “Roof Tutorial” on page 439 of the Tutorial Guide.

Overhangs and Roof Returns

You can specify the overhang of the roof plane to be generated above the selected wall. This setting only takes effect when Same Height at Exterior Walls is unchecked in the **Build Roof** dialog, which is also where the default Overhang value is set.

Check **Auto Roof Return** to generate roof returns on the selected wall. In most cases, roof returns only generate on Full Gable Walls. See “Roof Returns” on page 620.

Extend Slope Downward

Check **Extend Slope Downward** to extend the roof plane downward over a bump out, instead of creating additional roof planes. The two connecting walls that create the bump out must be Full Gable walls.

In the following image, the bearing wall of the bump out has **Extend Slope Downward** checked. The two short side walls are **Full Gable Walls**.

Clerestory and Dormer Walls

Occasionally, walls are built between two roof planes rather than between a roof plane and a floor platform. Common examples include clerestory walls and the side, or the cheek, walls of floating dormers.

Check **Roof Cuts Wall at Bottom** to have the bottom of the selected wall clipped by the roof plane below, as where a floating dormer wall meets the main roof plane.

Exterior/Interior Pony Walls

It’s not uncommon for an individual wall to be an exterior wall near its top, and an interior wall near its bottom.

Check **Lower Wall Type If Split By Butting Roof** to achieve this. When this option is checked, the
selected wall is specified as a pony wall and a second, lower wall type can be specified. Unlike with other pony walls, the change in wall type occurs wherever a roof plane builds to the exterior of the wall. See “Pony Walls” on page 270.

Attic Walls

In Chief Architect, walls are built between the floor and ceiling platforms of the current floor. See “Floor and Ceiling Heights” on page 324. When the program detects an open space between a wall and the roof plane above it, it automatically creates an Attic Wall on the floor above that wall to fill in the gap.

Attic Walls are typically found above Full Gable Walls, forming a gable or closing the top portion of a side wall of a shed roof. They are also generated above all exterior walls when the Raise Off Plate value in the Build Roof dialog is 3” (175 mm) or greater. See “Build Roof Dialog” on page 586.

Attic Walls are often found on the Attic floor, but can be generated on other floors, as well. See “The Attic Floor” on page 543.

Attic Walls are specified as such in the Wall Specification dialog; if automatically generated, that will be noted as well. If needed, you can specify a regular wall as an Attic Wall. If you specify a wall as an Attic Wall and it is currently on its default layer, it will be moved to the “Walls, Attic” layer. See “General Panel” on page 297.

When you Rebuild Walls/Floors/Ceilings, all automatically generated Attic Walls in the plan are deleted and rebuilt unless Auto Rebuild Attic Walls is also checked in the General Wall Defaults dialog. See “General Wall Defaults” on page 262.

Removing Attic Walls

Occasionally, the program will generate an Attic Wall where one is not wanted. There are several ways to address this:
- Turn off the display of the layer that the Attic Wall is on.

Stepped and Raked Walls

Stepped and raked walls can be created using the Break Line tool and the wall’s edit handles in any 3D or Cross Section/Elevation view. In many cases, working in a Backclipped Cross Section is easiest and allows the greatest accuracy.
Stepped Walls and Footings

A typical example of stepped walls is a stepped foundation with pony walls. In the illustration below, the lower part of the pony wall is the concrete wall with footing, and the upper part of the pony wall is a framed wall with brick siding built to the first floor platform. See “Pony Walls” on page 270.

To add a step to a wall

1. Select the wall in a Backclipped Cross Section view.
2. Click the Break Line tool, then click the top or bottom edge of the wall to place the break.
3. In addition to the corner handles, two handles display along the broken edge.
4. Select one of these two handles, and drag up or down.
5. A square step is created.

The vertical edges of a wall cannot be broken, although they can be raked as well as moved side to side.

By default, a stepped foundation wall displays an “S” symbol at the location of each step in plan view. The display of this “S” is controlled in the Foundation Defaults dialog. See “Foundation Panel” on page 522.

Raked Walls

A raked wall has an angled top or bottom edge.

To create a simple raked wall

1. Select the wall in Cross Section/Elevation or 3D view.
2. Click one of the corner edit handles and drag that handle either up or down.
3. To rake a wall at a specific angle, you can:
 - Draw a CAD Line at the desired angle and use the Make Parallel/Perpendicular edit tool. See “Using Make Parallel/Perpendicular” on page 197.

Compound Raked Walls

A compound raked wall is a wall that has a top or bottom edge with multiple angles.

To create a compound raked wall

1. Select the wall in Cross Section/Elevation or 3D view.
2. Use the Break Line tool to add breaks to the wall edge, as for a stepped wall.
3. Select a segment of the edge and adjust its angle, as for a raked wall.
Double Walls

Most wall assemblies can be modeled using a single wall type. In some situations, such as where the walls of two modular home units meet, two walls are drawn side-by-side. When two walls are both parallel and touching, they are referred to as Double Walls.

There are three types of Double Walls in Chief Architect: Frame Through, Split Framing and Furred Wall.

Frame Through

Frame Through walls can be considered the basic Double Wall type. A Frame Through wall could be used as a double wall between hotel rooms for sound insulation.

By default, all walls are specified as Frame Through in the Wall Specification dialog. See “Structure Panel” on page 299.

Split Framing

Split Framing walls divide floor and ceiling platforms, as well as any walls they intersect. The split occurs at the boundary where the two double walls touch and is useful for separating modular home units.

Chief Architect frames walls and platforms separately on either side of the Split Framing wall boundary, with no framing members crossing it.

You can make floor platform rim joists touch each other at the boundary between Split Framing walls or provide spacing to carry sheathing over them using the Build Platform to Exterior of Layer setting in the Wall Type Definitions dialog. See “Wall Type Definitions Dialog” on page 294.

Furred Walls

The recommended method for creating furring is to simply add the required air gap, framing, and finish layers to the wall type of your choice. Alternatively, though, Double Walls can be used, with the inner wall being specified as a Furred Wall.

Furred Walls are placed against the inside of a primary wall, typically an exterior wall. An example is a concrete wall furred out by a framed wall with an air gap or insulation between them.

Rooms are defined in the normal manner by the primary wall, but the layers of the Furred Wall are treated by the program as though they were added to the primary. An air gap between the primary and furred walls should be defined as a layer of one of the walls, usually the furred wall.

As with Frame Through walls, Furred Walls do not split platforms or connected walls. Unlike Frame Through walls, they do not connect or frame to non-parallel walls like normal walls. Instead, they will connect to other Furred Walls.

To create a Furred Wall, specify the primary wall as a Frame Through wall and the furred wall as a Furred Wall on the STRUCTURE panel of the Wall Specification dialog.

Openings in Double Walls

Doors and windows placed in one Double Wall extend through both walls. You can specify how an opening builds through the Double Walls on the CAS-ING panel of either the Door or Window Specification dialog. See “Door Specification Dialog” on page 412 or “Window Specification Dialog” on page 438.

CAD to Walls

The CAD to Walls tool can be used to convert CAD lines in plan view into architectural objects. Two or more parallel CAD lines can be converted to both straight or curved walls or rails. CAD lines representing windows and doors can also be converted.

All lines that you want to convert to walls must be located on one layer. The same is true for windows, doors, and rails. It may be helpful to place like items on a single layer with unique layer attributes. See “Layer Display Options Dialog” on page 144.

To convert the lines of an imported drawing using CAD to Walls, map its layers in the Import...
Drawing Assistant. Do not convert lines with shared endpoints to either Boxes or Polylines. See “Select File” on page 884.

To convert to a specific wall type, the lines representing the wall’s surfaces must be within one inch or 25mm of that wall type’s width. If two wall types are specified, new walls are assigned the type having the closest width.

When CAD objects are located properly, select CAD> CAD to Walls to display the Convert CAD to Walls dialog.

Convert CAD to Walls Dialog

1. **Set Layers** - From the drop-down lists, select the source layers of lines to be converted to walls, windows, doors, and rails.
 - Click **Define** to open the Layer Display Options dialog.

2. **Set Wall Types** - Specify the wall types for the new walls.

 If the distance between the surface lines is less than the total width of the specified wall type, a copy of that wall type will be created. The width of its Main Layer will adjust so that the overall width is equal to the specified wall’s Main Layer.

 Click **OK** to complete the conversion.

Wall Type Definitions

Every wall drawn in a plan is assigned a wall type, and its Wall Type Definition determines its structure, its appearance in plan view, and its default materials. Wall types can be viewed, edited, and created in the Wall Type Definitions dialog. See “Wall Type Definitions Dialog” on page 294.

Walls can have up to ten layers defined, each representing a different material. All of these layers can be calculated in the Materials List. The materials assigned to the surface layers of the wall type definition also determine the wall’s appearance in 3D views. See “Materials Lists” on page 943.

You can specify the default wall type that is drawn by each Wall Tool and can specify the wall type of any wall after it is drawn in the Wall Specification dialog. See “Wall, Railing, and Fencing Defaults” on page 262 and “Wall Types Panel” on page 305.

Wall types are plan specific, which means that wall types available in one plan file may not be available in other plans. You can, however:

- Export and import wall types. See “Exporting and Importing Wall Types” on page 297.
- Add a wall to the library for use in other plans. See “Add to Library” on page 700.
The Main Layer

In most circumstances, each wall type’s Main Layer should be specified as the structural layer. A wall type is considered to be:

- “Framed” if it has a Main Layer with the “Framing” or “Steel Framing” Material Structure Type;
- “Concrete” if it has a Main Layer with the “Concrete” Material Structure Type;
- “Masonry” if it has a Main Layer with a “Masonry” Material Structure Type.

See “Materials and the Materials List” on page 766.

The Main Layer determines many things in addition, including:

- Floor and ceiling platforms and automatically built foundation walls normally build to the outer edge of the Main Layer.
- The Main Layers of exterior walls build through slab floors while interior wall layers stop at the slab surface.
- At intersections, walls join at the interior surfaces of their Main Layers. See “Connecting Walls” on page 275.
- Windows are placed relative to the outer surface of the outermost Main Layer.
- Exterior walls on different floors are aligned by the exterior edges of their outermost Main Layer.
- Roof baselines are placed at the outer edge of the outermost Main Layer when roofs are automatically generated. See “The Baseline” on page 592.
- Roof baselines and gable/roof lines that are manually drawn snap to the outermost edge of the Main Layer.
- By default, walls resize about the exterior surface of their Main Layers when their thickness, wall type, or Wall Type Definition is changed. See “Resize About” on page 285.
- Object Snaps locate the interior and exterior edges of a wall’s Main Layers. See “Object Snaps” on page 131.
- The Sheathing Layer that windows and doors may be recessed to is the layer located just outside the outer Main Layer.

All of this information is reliant on the Main Layer, so creating your wall type definitions accurately beforehand and specifying the Main Layer correctly is very important.

Multiple Main Layers

In standard light frame construction, walls build to one another’s framing layers, and floor and ceiling platforms are built to bear over the wall framing; however, some building techniques configure these components in other ways. You can control how walls of a given type are intersected, and also where platforms build to, by specifying multiple Main Layers.

By default, when multiple Main Layers are specified:

- Intersecting walls build to the interior surface of the innermost Main Layer.
- Floor platforms build to the exterior surface of the outermost Main Layer.
- A selected wall’s edit handles display along the exterior of the outermost Main Layer.
- The exterior surface of the outermost Main Layer is the Dimension Layer

See “Wall Type Definitions Dialog” on page 294.

The Dimension Layer

Dimension Defaults can be set to locate walls at their surfaces or at the exterior line of their Wall Dimension Layer. See “Locate Objects Panel” on page 346.

For installed wall types, the default Wall Dimension layer is the Main Layer; however, this can be changed in the Wall Type Definitions dialog. In addition to the Wall Dimension Layer, dimensions can locate the inside surface of the Main Layer, as well.

Whether Surface or Wall Dimension Layer is selected on the Locate Objects panel of the Dimension Defaults dialog determines a number of aspects related to how dimensions locate walls:

- Where both Manual and Automatic Reach are measured from.
- Where Extension line lengths and their Gap From Marked Object are measured from.
• Where First Line Offset for **Auto Exterior Dimensions** is measured from.

• How the minimum enclosed area required by **Auto Exterior Dimensions** is measured.

The settings on the Locate Objects panel control how dimensions initially locate walls. Once a dimension line has been created, you can move its extension lines or add new extensions to locate other points along a wall’s assembly. See “Measuring Walls” on page 279.

Interior and Exterior Surfaces

Every wall has an interior and exterior surface - including walls in a plan that are recognized by the program as being interior walls. See “Exterior and Interior Walls” on page 268.

Having separate designations for a wall’s two sides serves several purposes:

• It allows the program to orient each wall’s exterior side toward the outside of a structure. See “Creating Walls” on page 273.

• It allows you to specify different materials for each side’s surface in the Wall Specification dialog. See “Materials Panel” on page 308.

• It also allows you to specify which direction Wall Detail views face. See “In Wall Detail Views” on page 647.

In the Wall Type Definitions dialog, the exterior surface is shown at the top of the Wall Layers table. In plan view, you can identify a selected wall’s exterior surface by the location of its edit handles, which display on the exterior of the Main Layer by default. See “Resize About” on page 285.

Legacy Wall Types

In Chief Architect version X2 and prior, generic, single-layer wall types were used as the default for railings, deck railings and fencing. In the earliest program versions, they were the defaults for walls, as well.

• In Chief Architect X1 and prior, there were two such wall types: “Default (wood frame 16”OC)” and “Default (concrete)”.

• In Chief Architect X2, these two wall types were replaced by one named “Adjustable Thickness Wall”.

When plans that include either of these wall types - in the drawing itself or set as a default - are opened in Chief Architect X12, the legacy wall type is replaced by a new wall type named “Wall-X”, where X is the thickness of the wall’s Main Layer, rounded up.

There are a few exceptions:

• If legacy wall types with the same thickness but different materials are found, they use the same naming convention appended with an additional _X.

• If a wall using a legacy wall type is specified as a Foundation wall, the resulting wall type will be named “Foundation Wall-X”.

• If a legacy wall type has the same attributes as a wall type installed with Chief Architect X12, such as 8” Concrete Stem Wall, it will be replaced by that wall type.

Unless a wall is specified as a Foundation wall, Deck Railing, or Fencing, it will be treated as a framed wall and its new wall type will acquire two additional 1/2” (13 mm) thick wall layers: an interior and an exterior layer. These new layers will use the interior and exterior materials of the original wall. The wall’s original layer will maintain its original thickness, acquire a framing material, and will become the new wall type’s Main Layer.

Foundation, Deck Railing, and Fencing wall types converted in this manner will continue to have only one layer.

Wall Type Definitions Dialog

The Wall Type Definitions dialog is used to define new wall types and redefine existing wall types in the current plan file. Select **Build>Wall>Define Wall Types** to open this dialog.

You can also click the Define button on the WALL TYPES panel of the Wall Specification dialog or in most Wall Defaults dialogs. See “Wall Types Panel” on page 305.

Changes made to an existing wall type definition affect all walls in the current plan using that wall type. Walls in other plan files are unaffected.

If changes to a wall type affect its thickness, the position of any walls in the plan using that wall type may be affected. See “General Wall Defaults” on page 262.
Wall Type Definitions Dialog

Manage the list of wall types available in the current plan.

- Click the drop-down list to display all wall types in the current plan. Select a wall type from the list to display its definition. You can rename a wall type by typing in a new name. Note that wall type names in a plan must be unique.

- To create a new wall type, click **New** to define a new wall type from scratch or click **Copy** to copy the current wall type. A copied wall type can then be renamed and redefined.

- Click **Rename** to rename an existing wall type, or simply click on its name and type a new name.

- To remove a wall type from the current plan, select it and click **Delete**. Wall types that are in use or set as plan defaults cannot be deleted.

- To remove all wall types that are not in use or set as a default from the current plan, click **Delete All Unused**.

The selected wall type’s Wall Layers are listed here. Wall layers are listed from exterior at the top to interior at the bottom. The last item listed is the interior surface line rather than a true layer.

- The list is divided into three sections: Exterior, Main, and Interior Layers. To move a layer from one section to another, use the Move Up and Move Down buttons to the right.

- A wall type’s thickest structural layer is typically set as the Main Layer; however, multiple Main Layers can be specified. See “The Main Layer” on page 293.

- Click in either the Pattern or Texture column to open the Select Material dialog and choose a material for the selected wall layer. See “Select Material Dialog” on page 762.

- Click in the Fill column to open the Layer Fill Style dialog and specify a fill style for the selected wall layer. See “Fill Styles” on page 155.

- Click in the Thickness column to type the selected layer’s thickness, or depth. Very thin layers can be created, but for best results, avoid using a thickness of 0. For very small values, it can be helpful to temporarily change the dialog number format: click the Number Style button.

- A check mark in the Ins column means that the selected layer will Auto Detail as Insulation in cross section views. Click in this column to place or remove the check mark. See “Auto Detail” on page 789.

1 Manage the list of wall types available in the current plan.

2 The selected wall type’s Wall Layers are listed here. Wall layers are listed from exterior at the top to interior at the bottom. The last item listed is the interior surface line rather than a true layer.
The buttons to the right of the table allow you to reorganize the wall type definition’s layers.

- Click the **Insert Above** button to create a new layer directly above, or outside, the selected layer in the wall type definition. The new layer is a copy of the original.

- Click the **Insert Below** button to create a new layer directly below, or inside, the selected layer in the wall type definition. The new layer is a copy of the original.

- Click the **Move Up** button to swap the selected layer’s position with that of the layer immediately outside of it or to move it into the layer section directly outside of it. Not available for the outer-most layer or for a single Main Layer.

- Click the **Move Down** button to swap the selected layer’s position with that of the layer immediately inside of it or to move it into the layer section directly inside of it. Not available for the inner-most layer or for a single Main Layer.

- Click **Delete** to remove the selected layer from the wall type definition.

- The **Total Thickness** of the wall assembly displays here. If you change this value, the thickness of the Main Layer automatically updates to account for the difference.

Specify the attributes of the **Selected Wall Layer Line**, which is the line defining the selected layer’s exterior.

- Define the **Color**, **Style**, and **Weight** for the selected Wall Line.

- Check **By Layer** if you want the line to assume the attributes of the wall’s layer as defined in the **Layer Display Options** dialog. See “Layer Attributes” on page 142.

- Click the **Library** button to select a **Line Style** from the Library. See “Line Styles” on page 157.

Wall layer fill styles are overridden if you use the **Hatch Wall** tool on a wall in plan view. See “Hatch Wall” on page 272.

Wall Settings -

- Specify the **Brick Ledge Depth**, which is the vertical depth of the brick ledge under walls of this type when a Brick material Type is specified for the exterior layer and a monolithic slab foundation is built. See “Brick Ledges” on page 269.

By default, the **Brick Ledge Depth** is equal to the Height value of the Brick material. See “Materials and the Materials List” on page 766.

- **Build Platform to Exterior of Layer** - Select a wall layer from the drop-down list to build floor and ceiling platforms to. By default, the exterior side of the outermost Main Layer is selected.

Note: If Build Platform to Exterior of Layer is set to the exterior wall layer, no siding material will generate to cover the floor platform.

- **Dimension to Exterior of Layer** - Select the wall type’s Dimension Layer from the drop-down list. By default, the outermost Main Layer is selected. This setting does not affect Interior Dimensions. See “The Dimension Layer” on page 293.

- **Foundation to Exterior of Layer** - Select a wall layer from the drop-down list to align the Main Layer of a foundation wall or slab footing on the floor below to. By default, the outermost Main Layer is selected. See “Aligning Foundation Walls” on page 528.

- **Foundation Offset** - Specify how far to offset the Main Layer of a foundation wall on the floor below relative to the Foundation to Exterior of Layer selected above. A positive value offsets toward the exterior; a negative value offsets toward the interior.

- Check **Partition Wall** to prevent walls of this type from cutting through the surface layers of floors, ceilings, and other walls. See “Partition Walls” on page 276.

Specify the selected wall type’s **Energy Values**. This information is used when exporting to REScheck. See “Export to REScheck” on page 897.

- Select a **Wall Type** from the drop-down list. When “Framed” is selected, the on center spacing is derived from the material definition of the wall’s framing layer. See “Materials and the Materials List” on page 766.

- Specify a **Cavity R-Value** for the selected wall type definition.

- Specify a **Continuous R-Value** for the selected wall type definition.

A preview of the selected wall type definition displays here. See “Dialog Preview Panes” on page 32.
• When the selected preview type is a 3D view, a gap is shown between each of the wall layers in the preview. Click the **Explode Layers** button to remove or restore these gaps.

Exporting and Importing Wall Types

Wall type definitions created in one plan can be exported as a .dat file and imported into other plans. This is a convenient alternative to re-creating one or more wall type definitions that already exist in another plan.

The wall type definitions available to export from the current plan are listed in the **Wall Type Definitions** dialog. See “Wall Type Definitions Dialog” on page 294.

Exporting Wall Types

To export wall type definitions from the current plan file, select **File > Export > Export Wall Definitions**.

The **Export Wall Definitions File** dialog is a typical Save As dialog. Exported wall types are saved using the .dat file extension. See “Exporting Files” on page 44.

Importing Wall Types

To import wall type definitions into the current plan or layout, select **File > Import > Import Wall Definitions**.

The **Import Wall Definitions File** dialog is a typical Open File dialog. See “Importing Files” on page 48.

When wall type definitions are imported, the names of the wall type definitions in the .dat file are compared with those already present in the current plan. If the program finds identical names, it will ask you if you want to replace existing wall definitions with the same name. Click Yes to replace existing files in the plan file, or No to keep the definitions already in the plan.

Wall Specification Dialog

To open the **Wall Specification** dialog, select a wall or group of walls and click the **Open Object** edit button.

The panels of the **Wall Specification** dialog are also found in the **Footing, Railing, Deck Railing**, and **Fencing Specification** dialogs. See “Railing and Fencing Specification Dialogs” on page 308.

The settings in this dialog are also similar to those in the various Wall Defaults dialogs. The settings in these defaults dialogs determine the initial characteristics of railings, deck railings, foundation walls and footing walls, and fencing when they are first drawn. See “Wall, Railing, and Fencing Defaults” on page 262.

General Panel

The settings on the **GENERAL** panel determine the basic use of the selected wall, as well as its length, angle, and other attributes.
Specify General properties of the selected wall(s) or railing(s).

- Check Foundation Wall to specify the selected wall as a foundation wall. More foundation wall settings are available on the FOUNDATION panel. See “Foundation Walls” on page 265.

- Check Railing to specify the selected wall as a railing. More railing settings are found on the RAILING, NEWELS/BALUSTERS, and RAILS panels.

- Check Terrain Retaining Wall to treat the selected wall as a terrain retaining wall. See “Retaining Walls” on page 908.

- Check Attic Wall to prevent the selected wall from extending through the roof above. See “Attic Walls” on page 289.

- The Thickness of the selected wall displays and can be changed here. If the wall is a Post to Overhead Beam railing, this setting can also affect the width of the beam. See “Wall Thickness” on page 282.

- Wall Angle - The current absolute angle of the wall in plan view is shown. If you type in a new angle, the wall rotates about its locked point and any walls attached to it will not move. If the selected wall is curved, this value describes the angle of the chord and cannot be modified. See “3D Drafting” on page 25.

- Wall Length - The current length, as measured along the Resize About line, is shown. If you type a new length, the wall will extend or contract according to how it is locked. Any walls attached to the selected wall will not move. If the selected wall is curved, this value cannot be modified. See “Resize About” on page 285.

- Select a radio button to Lock the selected straight wall at its Start, End or Center. When the Wall Angle or Wall Length of the selected wall is changed, this point along the wall does not move. Not available for curved walls.

Check any of the Options to modify the selected wall accordingly. In most cases, multiple options can be selected.

- Check Invisible to specify the wall as invisible. Invisible walls can display in plan view but not in 3D views or the Materials List. Room Dividers are invisible by default. See “Room Dividers and Invisible Walls” on page 271.
• Check **No Room Definition** to display the wall in floor plan and/or 3D views but not create room definition. See “Room Definition” on page 313.

• Check **No Locate** to prevent **Auto Exterior Dimensions** from locating the wall in plan view. See “No Locate” on page 280.

• Check **Include in Schedule** to include the selected wall in a Wall Schedule. See “Wall Schedules” on page 312.

• Check **No Room Moldings Exterior** to prevent any room moldings from generating along the Exterior side of the selected wall. If a Room Molding Polyline is created, it will also be affected by this setting. See “Room Moldings” on page 331.

• Check **No Room Moldings Interior** to prevent any room moldings from generating along the Interior side of the selected wall. If a Room Molding Polyline is created, it will also be affected by this setting.

• **Automatically Generated Wall** displays for reference and is checked whenever the selected wall was generated by the program. Typically, automatic walls are also Attic walls.

• Check **Lock Center** to prevent the arc center of a selected curved wall from moving when the wall is edited using its edit handles. Not available for straight walls.

The **Curved Wall** settings control the definition of a selected curved wall’s radius and are only available when the selected wall is curved.

• Select **Outer Surface** to measure the selected wall’s radius from its center point to its outer surface.

• Select **Main Layer Outside** to measure the radius from the wall’s center point to the outside of its Main Layer. See “The Main Layer” on page 293.

• Select **Main Layer Inside** to measure the radius from the wall’s center point to the inside of its Main Layer.

• Select **Inner Surface** to measure the radius from the wall’s center point to its inner surface.

• Specify the selected wall’s **Radius**, as defined by the radio button selected above.

• Select **Arc Center** to move the selected wall’s ends and prevent its center point from moving when its Radius is changed.

• Select **Ends** to move the selected wall’s center point and prevent its ends from moving when its Radius is changed.

• Uncheck **Automatic Facet Angle** to specify the **Facet Angle**, which is the angle at which the surfaces of the curved wall are broken in 3D views. The default value is 7.5°; a smaller value produces a smoother curve but may take longer to generate in 3D views.

A preview of the selected wall, including any doors or windows inserted into it, displays on the right. If the selected wall is specified as Invisible, its plan view will display here by default. See “Dialog Preview Panes” on page 32.

Structure Panel

The settings on the Structure panel control the height and other structural attributes of the selected wall(s).
The **Default Wall Heights** settings allow you to reset a wall’s default top and bottom heights if they have been manually edited. See “Wall Heights” on page 282.

- **Default Wall Top Height** and **Default Wall Bottom Height** are only enabled if the selected wall’s top and/or bottom height has been edited. Check these boxes to restore the default heights.

The **Platform Intersection** settings control the relationship between the selected wall and the floor and ceiling platforms above and below it. These settings only take effect when the selected wall is positioned at a platform edge, such as at the exterior of a building or Open Below room.

- Select **Stop at Ceiling Above** to have the top of the wall stop at the bottom of the ceiling platform above.
- Select **Balloon Through Ceiling Above** to have the top of the wall go past the ceiling platform. If there is a wall directly above, the framing will continue upward to its bottom plate. The two walls remain separate objects on different floors, however, unless the wall above is an Attic Wall. Does not affect interior walls.
 - Select **Hang Floor Platform Above on Wall** to produce a platform that hangs on the inside of the selected wall rather than bearing on top of it. When checked, the two options that follow are available.
 - Select **Subflooring to Interior Wall** to hang the platform on the inside surface of the wall. When unchecked, the platform builds to the inside surface of the wall’s Main Layer. See “The Main Layer” on page 293.
 - Select **Include Ledger** to hang the platform from a ledger board attached to the wall. When unchecked, no ledger is created when platform framing is generated. See “Floor and Ceiling Framing” on page 626.
- Select **Stop at Floor Below** to have the bottom of the wall stop at the top surface of a floor platform. This is the default for framed wall types.
- Select **Go Through Floor Below** to have the bottom of the wall go through the floor platform below. This is the default for concrete wall types.
If the wall is framed and there is a framed wall directly below, the studs of the wall below will extend up to produce balloon framing. Does not affect interior walls.

These settings are only available for straight walls.
- Select **Frame Through** to create a basic double wall.
- Select **Split Framing** to create a double wall that splits platforms and connecting walls at its boundary.
- Select **Furred Wall** to treat the selected wall as additional layers added to another wall.

Note: The Double Wall options are not available for curved walls.

Framing
- Check **Retain Wall Framing** to preserve the framing of the selected wall when the wall framing is globally rebuilt. See “Keeping Framing Current” on page 649. Check **Bearing Wall** to specify the selected wall as load-bearing. When checked, automatically generated joists run perpendicular to the selected wall and either lap or butt over it, as specified in the **Build Framing** dialog. See “Floor and Ceiling Framing” on page 626.
- Check **Create Wall/Footing Below** to create a stem wall or slab footing below the selected wall on Floor 1 when an automatic foundation is built. Has no effect if the selected wall is on any floor other than Floor 1. See “Building a Foundation” on page 524.

If **Create Wall/Footing Below** is checked, **Foundation Wall** and **Slab Footing** will become unchecked on the Foundation Panel.
- Check **Stagger Multiple Framing Layers** to produce wall studs that are offset from one another when wall framing is created. This setting only has an effect if a wall type with multiple Framing layers is specified. See “Wall Type Definitions Dialog” on page 294.

Roof Panel

Any automatically generated roof style other than a hip requires roof information to be defined in the exterior walls. On the **ROOF** panel, you can specify how the selected wall interacts with the roof plan, defining the portion of the roof plan that bears on it. See “Automatic vs. Manual Roofs” on page 581.
Roof Options - Specify the shape of the wall relative to the roof.

- Check Full Gable Wall to create a gable end over the selected wall.
- Check Dutch Gable Wall to create a small gable part way up a hip roof. Use the Pitch Options below to specify the location of the gable.
- Check High Shed/Gable Wall to specify the selected wall as the high end of a shed roof.
- Check Knee Wall to define the selected interior wall as a knee wall. Only an interior wall can be defined as a knee wall. A knee wall’s height is defined by the roof above, not the ceiling height. See “Knee Walls” on page 289.
- Check Extend Slope Downward to continue a roof down over a bump out in an exterior wall. See “Extend Slope Downward” on page 288.

- Check Roof Cuts Wall at Bottom to prevent the portion of a selected wall located below an intersecting roof plane from building.

- Combine with Above Wall is only available when a selected wall has an Attic wall above it. Check this box to balloon frame the two walls when automatic framing is built. The two walls remain separate objects. See “Attic Walls” on page 289.

Pitch Options - Specify the pitch or pitches of the roof plane(s) above the selected wall.

- Enter a value to define the Pitch of the roof plane bearing on the selected wall.
- Check Upper Pitch to create a roof with two pitches or, if the selected wall is a Full Gable Wall, a half hip condition.
- Enter the Pitch of the second, upper roof.
- Specify the Height that the Upper Pitch Starts at, or define the distance In from Baseline that
the second pitch begins. The two values are dynamic. Press the Tab key to update the relative numbers. These settings are also used to position a Dutch Gable Wall.

3 Specify the Overhang Length, which is the horizontal distance from the baseline to the eave. See “The Baseline” on page 592.

4 Check Auto Roof Return to generate roof returns on the selected wall. In most cases, roof returns only work for Full Gable Walls. See “Roof Returns” on page 620.

• Specify the horizontal Length of the roof return in inches (mm).
• Enter a value in inches (mm) to Extend the roof returns past the overhang.
• Specify a Gable, Hip, or Full roof return.
• Specify a Sloping or Flat roof return. See “Roof Tutorial” on page 439 of the Tutorial Guide.

5 Check the boxes to Include Shadow Boards, Ridge Caps, Frieze molding, and/or Gutters on the roof returns.

6 Check Lower Wall Type if Split by Butting Roof to specify the wall type for any portion of the selected wall located beneath an adjacent, abutting roof plane, should one be present. A wall affected by this setting is specified as a Pony Wall and the upper wall is defined on the WALL TYPES panel. See “Exterior/Interior Pony Walls” on page 288.

A preview of the selected wall, including any doors or windows inserted into it, displays on the right. See “Dialog Preview Panes” on page 32.

Additional information about using the settings on this panel can be found in the “Roof Tutorial” on page 439 of the Reference Manual.

Foundation Panel

1 Specify the Foundation properties of the selected wall(s).

2 Check Foundation Wall to specify the selected wall as a foundation wall and enable additional settings on this panel. This box is checked by default for automatically generated foundation walls as well as walls drawn with the Foundation Wall and Slab Footing tools.

3 Check Slab Footing to specify the selected wall as a slab footing. See “Foundation Walls” on
page 268. When this is checked, **Foundation Wall** will also be checked.

Note: Rooms defined by walls drawn using the Slab Footing tool will have a Ceiling Height of 0 and a Monolithic Slab Foundation. Rooms defined by walls that are later specified as Slab Footings will not unless the room is on Floor 0 and the plan has a Monolithic Slab foundation specified.

- The **Thickness** of the selected wall displays and can be changed here.
- If Slab Footing is checked, the **Curb Width** can be specified instead.

2 Check **Footing** to assign a concrete footing to the selected wall(s) and enable the settings below. Only available when Foundation Wall is checked, above.

- Specify the **Width** and **Height** of the footing below the selected foundation wall(s). The **Height** value will be unavailable if the bottom height of the footing has been edited. See “Stepped Foundations” on page 530.
- Check **Automatic Footing Bottom Height** to restore the default height of the selected wall’s footing. Only available when the footing bottom height has been edited.
- Check **Vertical Footing** to generate footings that run up and down along any steps in the foundation wall’s bottom height.

Offset - Specify how the footing is centered under the selected wall.

- Check **Center Footing on Main Layer** to center the footing on the wall’s Main Layer. See “The Main Layer” on page 293.
- Check **Align Footing on Outside** to align the footing along the wall’s exterior surface. See “Wall Type Definitions” on page 292.

- Specify the **Footing Offset**, which is the distance between the center of the footing and the center of the wall. A value of 0 centers the footing under the wall. A positive value offsets the footing towards the wall’s interior surface. A negative value offsets it towards the wall’s exterior. Not available if either Center Footing on Main Layer or Align Footing on Outside are checked.

3 Specify how **Monolithic Slab** footings generate. These settings apply only when the selected wall defines the side of a Monolithic Slab. See “Foundations” on page 521.

- Specify the **Chamfer Width** and **Height**, which define the angled corners where the footing meets the underside of the slab.
- Specify the **Pour Number** of the selected Slab Footing. Pour Numbers are listed separately in the Materials List. See “In the Materials List” on page 526.

4 Check **Sill Plate** to reserve space for one or more sill plates, or mud sills between the selected foundation stem wall or grade beam and the floor platform or framed wall that bears on it. Sill plates are generated when the floor framing is generated. See “Sill Plates” on page 627.

- Specify the **Width** and **Height** of the treated sill plates. If the Height is set to zero, no sill plates are produced. Not available if **Monolithic Slab** is the selected **Foundation Type**.
- Specify the **Count**, which is the number of sill plates stacked vertically on each stem wall or grade beam.

5 A preview of the selected wall, including any doors or windows inserted into it, displays on the right. See “Dialog Preview Panes” on page 32.
Wall Types Panel

1. Choose the selected wall’s **Wall Type** from the drop-down list of all currently available types. A preview of the selected wall type displays below the drop-down list.

 - Click the **Define** button to open the **Wall Type Definitions** dialog to create or modify existing wall types. See “Wall Type Definitions Dialog” on page 294.

2. Check **Pony Wall** to specify the selected wall as a pony wall having different wall types on its upper and lower portions. See “Pony Walls” on page 270.

 - If the selected wall is a Foundation Wall, its initial wall type will become the Lower Wall Type. For all other walls, the initial wall type will be the upper Wall Type.
 - Select the **Lower Wall Type**, the wall type of the lower portion of the pony wall, from the drop-down list. A preview of the selected wall type displays directly below.
 - Click the **Define** button to open the **Wall Type Definitions** dialog.

Specify the height of the division between the upper and lower walls. These two settings are dynamic: if one is changed, the other will update accordingly.

 - Specify the **Elevation of Lower Wall Top**, which is the division between the upper and lower walls. If the top of the lower pony wall is stepped or raked, this value will be “No Change”. This is an absolute value: regardless of the wall’s location, it is always measured from 0” (mm) - the default floor height for Floor 1. See “Floor Defaults Dialog” on page 537.
 - Specify the **Height Off Floor** of the division between the upper and lower walls. This value is measured from the floor height of the room(s) defined by the selected wall. If the wall defines rooms with different floor heights, “No change” will display.

Align Pony Walls - Specify how the layers of the selected wall’s Upper and Lower portions align.

 - Select **Outer Surface** to align wall types at their outer surfaces.
 - Select **Main Layer Outside** to align wall types at the exterior edge of their main layers.
• Select **Wall Center** to align the centers of the main layers of both wall types.
• Select **Main Layer Inside** to align the wall types at the interior side of their main layers.
• Select **Inner Surface** to align wall types at their interior surfaces.
• **No Change** is used by default when multiple pony walls with different alignment settings are selected. Choose this to leave the alignment as it was when the dialog was opened.

Specify which part of the pony wall you would like to **Display in Plan View**. See “Displaying Pony Walls” on page 270.

• Select **Default** to display the portion of the pony wall specified in the **Pony Wall Defaults** dialog.
• Select **Upper Wall** to display the upper portion of this pony wall in plan view regardless of the default setting.
• Select **Lower Wall** to display the lower portion of this pony wall in plan view regardless of the default setting.
• When walls are group-selected, choose **No Change** to allow each wall in the selection set to maintain its own setting.

In the **Pony Wall Defaults** dialog only, specify the **Display of Openings in Non-Displayed Parts of Walls**. This controls how doors and windows display in plan view when they are located entirely in the part of a pony wall that is not visible.

• Select **Outline** to display the lines associated with openings but draw the wall layers’ lines and fill through them.
• Select **Always** to display doors and windows the same regardless of where they are located: drawing their outlines and preventing wall layers from drawing through them.
• Select **Hide** to not draw door and window outlines at all, so they cannot be seen.

3 A preview of the selected wall, including any doors or windows inserted into it, displays on the right. See “Dialog Preview Panes” on page 32.

Wall Cap Panel

The settings on the **Wall Cap Panel** allow you to apply a cap to the top of a wall or, if the wall is a Pony Wall, over the top of the lower Pony Wall. See “Lower Pony Wall Caps” on page 270.

The settings on this panel are like those on the **Moldings Panel** found in a variety of dialogs in the program. See “Moldings Panel” on page 680.

Wall Covering Panel

The **Wall Covering Panel** is also available in the **Room Specification** dialog. See “Room Specification Dialog” on page 332.
All wall covering materials applied to the selected wall are listed here. Select one from the drop-down list to edit its position or remove it from the wall.

- Click **Add New** to apply a new wall covering to the selected wall. See “Select Library Object Dialog” on page 705.
- Click **Replace** to replace the current wall covering with a new one from the library.
- Click **Delete** to remove the current wall covering from the selected wall.

Preview panes showing the current wall covering display the row of buttons.

Specify the **Position** of the selected wall covering.

- Enter the heights of the current wall covering’s **Top To Ceiling** and **Floor To Bottom**. The wall covering’s **Height** from its top edge to its bottom edge can also be specified.
- Check **Interior** and/or **Exterior** to apply the wall covering to the inside and/or outside of the selected wall. Interior is checked by default. Not available for rooms. See “Wall Type Definitions” on page 292.

Check **No Room Wall Coverings** to prevent any wall coverings assigned to rooms from generating on the selected wall.

Most wall coverings are best previewed using the Standard Rendering Technique. See “Dialog Preview Panes” on page 32.

Rail Style Panel

The settings on the **RAIL STYLE** panel are only available for Railings, Half Walls. See “Rail Style Panel” on page 309.

Newels/Balusters Panel

The settings on the **NEWELS/BALUSTERS** panel are only available for Railings, Half Walls. See “Newels/Balusters Panel” on page 310.

Rails Panel

The settings on the **RAILS** panel are used to specify the style and size of the horizontal components of a selected Railing, Deck Railing, or Fence. See “Railing and Deck Tools” on page 266.

A similar panel is also found in the **Staircase** and **Ramp Specification** dialogs and has additional settings for handrails at walls. See “Rails Panel” on page 575.

The settings on this panel are like those on the **MOLDINGS** panel found in a variety of dialogs in the program. See “Moldings Panel” on page 680.
Layer Panel
For information about the settings on this panel, see “Layer Panel” on page 149.

Materials Panel
All walls - including interior walls, railings and fencing - have an “Exterior Wall Surface” and an “Interior Wall Surface”. See “Interior and Exterior Surfaces” on page 294.

The materials specified on the MATERIALS panel affect the appearance of walls and Solid Railings in 3D views but are not calculated in the Materials List. See “Materials Lists” on page 943.

For most railing types, the “Exterior Wall Surface” component only affects the appearance of the floor platform under the railing. and “Interior Wall Surface” component is not used. For fencing, neither material component is used.

Label Panel
Wall labels display in plan view and cross section/elevation views when the “Walls, Labels” layer is turned on and use the Text Style assigned to that layer. See “Wall Labels” on page 278.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel
The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel
The information entered on the OBJECT INFORMATION panel can be used in Wall Schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Railing and Fencing Specification Dialogs
To open the Railing or Fencing Specification dialog, select a railing or fencing, or a group of railings or fencing, and click the Open Object edit button.

The Railing and Fencing Specification dialogs are the same as the Wall Specification dialog, but have three panels that apply only to Railings, Half Walls, Deck Railings, and Fencing. See “Wall Specification Dialog” on page 297.

The RAILS panel is similar to the HANDRAIL panel found in the Staircase and Ramp Specification dialogs. See “Stairs, Ramps, and Landings” on page 545.
Check Specify Railing to specify the selected wall as a railing and enable the other options on this panel. Railings drawn using the Railing or Deck Railing tools have this checked by default.

Select the radio button for the desired Railing Type:

- Select Balusters to create regularly spaced balusters between larger newel posts.
- Select Solid to create a solid railing or Half Wall. Not available if the selected railing is also a Pony Wall. See “Pony Walls” on page 270.
- Select Open to create a railing with only newel posts and top and bottom rails.
- Select Open with Middle Rail to create a railing with newel posts and top, bottom, and middle rails.
- Select Panels to create a railing composed of panels. You can specify the panel style on the NEWELS/BALUSTERS panel.

Check Newels/Posts to assign these to the selected railing, then specify their properties.

- Select Post to Rail to create newel posts from the floor to the top rail. This option is selected by default.
- Select Post to Beam to create newel posts from floor to a beam placed just under the ceiling height. The beam’s width is based on the Thickness of the selected railing wall.
- Select Post to Ceiling to extend the newel posts to the ceiling.
- Select Rail to Post to produce newel posts of the Height specified on the NEWELS/BALUSTERS panel, with rails that build to the sides of the newels.

Specify the type and offset of the railing’s Start/End Posts.

- Select the Type of post at the railing’s Start and End points: “Full Post”, “Half Post”, or “None.” The “Auto Post” options place a Full post if the railing intersects a wall and either a Half post or None otherwise.
- Specify the Start and End Wall Offsets, which are the distances between the railing’s half posts and the intersecting wall.
- Check Uniform Offsets to apply the same offset to both ends of the railing.
- Check Square Half Post to use a square half post where the railing intersects a wall instead of the post Type specified on the NEWELS/BALUSTERS
panel. This only applies when a railing end is set to have a Half Post.

4 The Top/Bottom Rail options control the placement of the top and bottom rail, or shoe.

- Uncheck Include Top Rail to eliminate the top rail.
- Uncheck Include Bottom Rail to eliminate the bottom rail and extend the balusters to the floor. Not available for Solid railings.
- Check Raise Bottom, then specify the Floor to Bottom distance, measured up from the floor platform to the bottom rail or panel.

5 Specify where the selected railing or fencing should Build From. With the exception of Follow Stairs, these settings are not available for Solid railings.

- Check Step Terrain to have the railing or fencing follow the terrain in horizontal steps between each newel post. Not available if the selected railing is a Pony Wall.
- Check Follow Terrain to have the railing or fencing follow the terrain smoothly. Not available if the selected railing is a Pony Wall.
- Check Generate on Low Platform to build the selected railing on the lower floor platform when the railing defines two room areas with different floor heights. See “Aligning Railings on Different Platforms” on page 287.
- Check Follow Stairs to have the railing or fencing follow the rise of stairs drawn in the same location. See “Inset or Middle Railing” on page 562 for more information.

6 A preview of the selected railing or fence, including any doorways or gates inserted into it, displays on the right. See “Dialog Preview Panes” on page 32.

Newels/Balusters Panel

1 Specify the height of the **Railing**, as well as its appearance in plan view.

2 Specify the **Railing Height**. For interior railings, this is measured from the height of the floor finish. See “Floor and Ceiling Platform Definitions” on page 325.
Specify the characteristics of the selected railing’s **Newels/Posts**.

- Specify the **Width** of each newel at its widest point.
- Check **Use Wall Width** to assign the width of the wall type assigned to the selected railing to its newels.
- Specify the **Height**, which is the height from the floor or ground to the top of the newel. Not available if Post to Rail, Post to Overhead Beam or Post to Ceiling is selected on the **RAIL STYLE** panel.
- Specify the **Offset**, which is the amount each newel is offset from the center of the railing. Use this to create a fence with the newels on one side of the fence boards.
- Specify the on-center **Spacing** of the newel posts.
- **Type** - Select Square, Round, or Library newels.

Note: Selecting Library from the drop-down list is the same as clicking the Library button to the immediate right and allows you to select a symbol from the library. See “Select Library Object Dialog” on page 705.

Specify the characteristics of the selected railing’s **Balusters**. These settings are only available when the railing type is “Balusters”.

- Specify the **Width** or diameter of each baluster at its widest point.
- Specify the on-center **Spacing** of the balusters.
- **Type** - Select Square, Round, or Library balusters.

Specify the characteristics of the selected railing’s **Panels**. These settings are only available when the railing type is specified as Panels on the **RAIL STYLE** panel.

- Specify the panel’s **Thickness**.
- Select “Solid” or “Library” from the **Panel Type** drop-down list.

Wall Hatch Specification Dialog

To open the **Wall Hatch Specification** dialog, select a Wall Hatch and click the **Open Object** edit button. See “Hatch Wall” on page 272.

- You can also apply newels, balusters, and panels onto a railing directly from the Library Browser. See “Inserted Objects” on page 705.

Plan Display settings control how newels, balusters, and rails display in plan view. See “In Plan View” on page 277.

- Uncheck **Use Defaults** to enable the settings that follow. When this is checked, the settings in the Defaults dialog for the tool used to draw the selected railing are used. This check box is also found in the Defaults dialogs for all wall tools except Railing: when checked, the defaults set in the Railing Defaults are used.
- Check **Draw Newels** to display newel posts in plan view.
- Check **Draw Balusters** to display balusters in plan view.
- Check **Draw Rails** to display the rails in plan view.
- Click the **Fill Style** button to open the Fill Style dialog and specify the fill style for newels, balusters, and/or rails, when set to display.

A preview of the selected railing or fence, including any doorways or gates inserted into it, displays on the right. See “Dialog Preview Panes” on page 32.

Rails Panel

The settings on the **RAILS** panel are used to specify the style and size of the horizontal components of a selected Railing, Deck Railing, or Fence. See “Railing and Deck Tools” on page 266.

A similar panel is also found in the **Staircase** and **Ramp Specification** dialogs and has additional settings for handrails at walls. See “Rails Panel” on page 575.

The settings on this panel are like those on the **MOLDINGS** panel found in a variety of dialogs in the program. See “Moldings Panel” on page 680.

Layer Panel

Specify the layer that the selected Wall Hatch is placed on. See “Layer Panel” on page 149.
Fill Style Panel

The **Fill Style** panel is found in the specification dialogs for many different objects. See “Fill Style Specification Dialog” on page 155.

Wall Schedules

The **Wall Schedule** tool allows you to produce customizable wall schedules or legends with information about wall types, wall assembly layers, length, and more. See “The Schedule Tools” on page 506.

All wall types present in the current plan are listed in the **Schedule Specification** dialog. See “Wall Type Definitions” on page 292.

When a new wall type is created, it will be included in any existing Wall Schedules as well as in the Wall Schedule Defaults automatically. See “General Panel” on page 512.

A wall type that is not set to be included may still be listed in a Wall Schedule if it part of a Pony Wall.

You can also specify which individual walls are included in a Wall Schedule in the **Wall Specification** dialog. This affects totals like Length and Count. If the wall in question is the only instance of its wall type, that wall type will not be listed even if it is set to be included in the Wall Schedule. See “General Panel” on page 297.

An Invisible Wall will be included in a Wall Schedule provided that its wall type is set to be included and it has **Include in Schedule** checked.
Chapter 12: Rooms

Rooms are created when walls are drawn to enclose an area. When a room is defined in this way, it automatically receives both a floor and ceiling as well as features like moldings and finish materials that can be seen in 3D Views.

Rooms can be selected and edited. Each room can be assigned a Room Type with predefined characteristics. For example, a room defined as a Deck is assigned certain attributes that are different than a Kitchen.

Room Definition

A room is a totally enclosed area defined by any combination of joined walls or railings, visible or invisible. To be recognized as a room by Chief Architect, a room must have an unbroken perimeter.

Unless otherwise specified, rooms generate floor and ceiling platforms automatically. Most rooms are also automatically covered by the roof when one is built. There are exceptions to this, such as rooms defined as Decks. See “Room Types and Functions” on page 315.

If a room is drawn within a larger structure and none of its walls connect to the exterior walls, either directly or indirectly by connecting to walls that do, it is referred to as an “island” room. The program will connect such a room to the larger structure with an Invisible Wall. See “Room Dividers and Invisible Walls” on page 271.

Room definition disappears if part or all of a surrounding wall is deleted. It is a good idea to finalize the position of walls before specifying Room Types or defining room attributes such as floor or ceiling height.

Chapter Contents

• Room Definition
• Floor and Room Defaults
• Room Types and Functions
• Displaying Rooms
• Selecting Rooms
• Editing Rooms
• Room Types and Functions
• Room Labels
• Decks
• Floor and Ceiling Heights
• Floor and Ceiling Platforms
• Trey and Coffered Ceilings
• Trey Ceiling Specification Dialog
• Special Ceilings
• Room Moldings
• Room Polylines
• Room Specification Dialog
• Room Finish Schedules
Subdividing Rooms

When a room area is first defined, it inherits its characteristics from the Floor Defaults dialog for that floor. If the room is then specified as a particular type, it may inherit properties from the Room Defaults dialog associated with its type.

If a new room is created by subdividing a larger room, it inherits its characteristics from that larger room - including any non-default settings.

If two rooms are separated by an Invisible wall, their interior areas will be measured from the wall’s centerline and characteristics like the floor finish materials and moldings will break along that line.

• If the two rooms have different floor heights, the break will occur at the wall edge that faces the room where the floor is lower.

• If the two rooms have different ceiling heights, the break will occur at the wall edge that faces the room where the ceiling is higher.

Copying and Pasting Rooms

A room can be copied into the same or a different plan by copying and pasting the walls that define it. Rooms copied in this manner retain their size and shape, as well as any finish materials assigned to the walls. See “Copying and Pasting Objects” on page 136.

If you want to retain the room’s Type and other specifications, copy and paste it and the walls that define it using the Edit Area tools. See “Edit Area Tools” on page 209.

Floor and Room Defaults

Select Edit> Default Settings to open the Default Settings dialog, then click the arrow to the left of “Floors and Rooms” to expand the category. Here, you can access several defaults dialogs which directly affect rooms. Select a line item and click the Edit button to open the defaults dialog associated with it.

Floor Level Defaults

Many important default values that affect rooms are specified in the Floor Defaults dialog for each floor in a plan. This dialog controls important information that the program uses to create a 3D model - particularly floor and ceiling heights and materials. Moldings can also be specified in the Floor Defaults dialog.

Only the defaults for Floor 1 can be set ahead of time. The program uses the settings from Floor 1 to create subsequent floors. Once a new floor is created, its floor defaults can be changed. See “Floor Defaults Dialog” on page 537.

The Floor Defaults dialog for the current floor can also be opened by clicking the Floor Defaults button, which can be added to the toolbars. See “Adding and Removing Buttons” on page 109.

Floor 1 Default Height

Chief Architect always defines the default height of Floor 1 at 0'-0". This height value is measured from the top of the subfloor and is the constant by which the heights of structural elements in the program like walls, floors, and ceilings are measured. The heights of architectural objects can be measured relative to this absolute height, as well. As such, this default cannot be changed.

Floor/Ceiling Platform Defaults

Floor and Ceiling Structure and Finish definitions assigned to rooms have a hierarchy of dynamic defaults. See “Dynamic Defaults” on page 67.

• The plan-wide defaults for platforms are set in the Floor/Ceiling Platform Defaults dialog.

• The plan-wide defaults can be overridden for each floor level in the Floor Defaults dialogs.

• Floor-wide platform defaults can be overridden in the Room Type Defaults dialogs.

• The platform defaults for Room Types can be overridden for individual rooms in the Room Specification dialog. See “Structure Panel” on page 334.

See “Floor and Ceiling Platforms” on page 325.

Room Type Defaults

The Room Types dialog can also be opened by clicking the Room Types button, which can be added to the toolbars.
Select an Available Room Type from the list, then:

- Click the **Edit** button to modify the selected Room Type in the **Room Type Defaults** dialog.
- Click the **Copy** button to create a new Room Type based on the selected one, and customize it in the **Room Type Defaults** dialog to meet your needs.
- Click the **Rename** button to specify a new Name for the selected Room Type, which will affect its room label as well as how it is listed in room schedules.
- Click the **Delete** button to remove the selected Room Type from the list of those available in the plan.

The settings in the **Room Type Defaults** dialogs allow you to specify the following for each Room Type:

- The **Name**, as used in its Room Label and in Room Schedules. See “Schedules and Object Labels” on page 505.
- The room **Function**. See “Room Types and Functions” on page 315.
- Inclusion in the **Living Area**. See “Living Area” on page 321.
- Inclusion in the **Conditioned Area**. See “Conditioned Area Totals” on page 957.
- **Ceiling Structure** and **Finish**. See “Floor and Ceiling Platforms” on page 325.
- **Floor Structure** and **Finish**.
- **Framing** and **Supports** for Deck rooms. See “Decks” on page 323.
- **Moldings**. See “Room Moldings” on page 331.
- **Components** information for use in the Materials List. See “Components Panel” on page 959.

Room Label Defaults

The **Room Label Defaults** dialog allows you to specify the initial appearance of room labels. This dialog is also accessed by expanding the “Rooms” category in the **Default Settings** dialog. See “Room Labels” on page 320.

The options on most panels of the **Room Label Defaults** dialog are similar to those in the **Text Specification** dialog. See “Text Specification Dialog” on page 381.

The options on the **DIMENSION FORMAT** panel are similar to those in the **Displayed Line Length** dialog. See “Displayed Line Length Dialog” on page 227.

Any text added to the **Room Label Defaults** dialog displays in all subsequently created room labels, after the Room Name. Changes made to default settings do not alter existing room labels. To update existing labels so that they reflect changes made to the defaults, delete and replace them. See “Editing Room Labels” on page 321.

Room Types and Functions

Room Types are used to quickly apply useful structural, functional, and appearance properties to different kinds of rooms. For example, a room assigned the “Garage” Room Type will receive concrete curbs under its walls when the Foundation is built, while a “Kitchen” will get GFCI Outlets when the Auto Place Outlet tool is used.

When a room is first created by enclosing an area with walls, it is assigned a generic room type of “Unspecified.” Once a room is created, though, it can be assigned a Room Type in the **Room Specification** dialog. See “General Panel” on page 333.

A selection of pre-defined Room Types is available for use; they are, however, editable, and you can create your own, as well. See “Room Type Defaults” on page 314.
Room Type Defaults

Each Room Type is composed of two sets of characteristics: those set by the program, and those that are directly editable.

Characteristics set by the program are grouped together based on typical requirements for different types of rooms. This non-editable set of properties is referred to as Room Functions.

Characteristics of a Room Type that can be modified include the default room Name, whether it is included in the Living Area and Conditioned Area, and the floor structure, finish, and deck supports. A default Function can also be specified. See “Room Type Defaults” on page 314.

When you specify that a room be a certain Room Type, all of the characteristics associated with that Room Type are assigned to the room, overriding existing settings. After you specify a Room Type, though, various settings can be customized.

Room Functions

A room Function is a set of non-editable characteristics that are typical of a certain type of room.

There are three broad categories of room Functions: Interior, Exterior and Hybrid.

Exterior - Court, Deck, Balcony.

Hybrid - Open Below, Garage, Slab, Porch, Attic.

Effects of Room Functions

Chief Architect applies specific properties to rooms depending on the assigned Room Function.

Living and Conditioned Areas

- All interior type rooms are included in Living Area calculations by default; exterior and hybrid type rooms are not.
- With the exception of Unspecified rooms, all interior type rooms are included in Conditioned Area calculations by default. Open Below rooms are also included; however, exterior and other hybrid type rooms are not. See “Conditioned Area Totals” on page 957.

Ceilings and Roofs

- Interior rooms have a ceiling and roof above them.
- Exterior rooms are assumed to be open to the outside and do not generate a roof above them.
- Attic rooms do not receive a ceiling and are ignored by the program’s automatic roof generator.
- Garage, Slabs, and Porches are treated like exterior rooms in all cases except that they generate a ceiling and a roof above them by default.

Floors and Foundations

- A room’s default floor structure and finish definitions are determined by its Room Type. See “Room Type Defaults” on page 314.
- Open Below is a unique type of interior room that has no floor platform. Open Below rooms can be used for defining stairwell openings.
- Garages have a foundation under them as defined by the Foundation Defaults dialog with a concrete slab at the top of stem wall or grade beam.
- The floor in Garage and Slab rooms display in 3D on Floor 0, not the first floor. See “Garages” on page 529.
- Defining a room as Slab causes the floor platform thickness to equal the slab thickness value in the Foundation Defaults dialog.
- Deck rooms do not generate foundations. See “Decks” on page 323.

Doors and Windows

- A window placed in a wall between an exterior room and an interior room always faces out toward the exterior.
- Doors placed between interior and exterior type rooms inherit their settings from the Exterior Defaults for the door tool, if available; they display threshold lines and are considered Exterior. See “Interior vs Exterior Doors” on page 404.
- Doors placed between interior type rooms do not display thresholds and are considered Interior.
- Open Below rooms are treated as interior rooms for window and door placement.

Electrical

- An electrical object placed on the wall of an exterior room using the Light, Switch, 110V Outlet or 220V Outlet tool will automatically be a waterproof or outdoor type fixture, as
specified in the Electrical Defaults dialog. See “Electrical Defaults” on page 491.

- The Auto Place Outlets tool adds outlets automatically to all interior rooms. In Bath rooms, only one outlet over each sink is added. See “Auto Place Outlets” on page 495.

- Auto Place Outlets places GFCI outlets in Kitchens and Baths.

- Auto Place Outlets places fewer outlets in hybrid type rooms.

Displaying Rooms

Unlike most things in Chief Architect, a room is not an individual object. Rather, a room is a space defined by the walls that enclose it.

You can see the primary and secondary layers associated with a room by selecting it and clicking the Object Layer Properties edit button. See “Object Layer Properties” on page 150.

In Plan Views

Rooms typically display a transparent fill in plan view. You can, however, specify a solid color or fill pattern for all the rooms on an entire floor in the Floor Defaults dialog, or for individual rooms in the Room Specification dialog. See “Fill Style Panel” on page 339.

In order for room fill styles to display, the “Rooms” layer must be turned on. See “Layer Attributes” on page 142.

Room labels that include the room’s name as well as its size and other information can be set to display in plan view. See “Room Labels” on page 320.

Selecting Rooms

Room definition is established when a room is completely enclosed by walls. You can confirm that a room has room definition by using the Select Objects tool to select it. When a fully-enclosed room is selected, its interior space becomes highlighted. See “Selecting Objects” on page 167.

In 3D Views

Rooms can be viewed in views created by any of the 3D view tools. The Floor Overview tools can be used to see all rooms on the current floor without their ceilings. See “Creating Overviews” on page 785.

In the Materials List

The contents of a room, including furnishings and floor and ceiling materials can be calculated using the Calculate in Room tool. See “Calculate Materials in Room” on page 944.

In Schedules

Information about rooms and their contents can be reported in different types of schedules. See “Room Finish Schedules” on page 340.

Dimensions

- Auto NKBA Dimensions only generate in rooms specified as Kitchens or Baths. See “The Automatic Dimension Tools” on page 358.

Plan Check

- Plan Check uses Room Functions and their characteristics for basic plan checking. For example, a closet does not need a smoke detector but a bedroom does. See “Plan Check” on page 62.

- Auto Place Outlets does not place outlets in exterior type rooms, Porches or Open Below rooms.
Although rooms may be visible, if the “Rooms” layer is locked in the currently active layer set, it will not be possible to select a room. See “Locking Layers” on page 143.

As with many other objects in the program, rooms can be group-selected. Not all attributes of multiple selected rooms can be edited; however, many - such as moldings, materials, and fill style - can be.

The Exterior Room

Each floor level of a plan has an Exterior Room, which allows you to control its exterior wall coverings and materials in the **Exterior Room Specification** dialog. See “Room Specification Dialog” on page 332.

To select the Exterior Room in plan view, click just outside an exterior wall using the **Select Objects** tool. If a wall or other object becomes selected instead, click the **Select Next Object** edit button or press the Tab key until the Exterior Room becomes selected. The Status Bar indicates which object is currently selected. See “The Status Bar” on page 33.

When it is selected, a highlighted band around the plan’s exterior displays.

In 3D Views

A room can be selected in a 3D view by clicking on an empty space on its floor or a wall surface while the **Select Objects** tool is active.

If you select a wall or other object instead of the room, click **Select Next Object** edit button or press the Tab key until the room becomes selected.

In exterior camera views and overviews, the Exterior Room for each floor can be selected by clicking on the exterior surface of an exterior wall using the **Select Objects** tool and then clicking the **Select Next Object** edit button.

Select Room Before Wall in 3D

By default, when you click on a wall surface in a 3D view, the individual wall will become selected. If you prefer to always select the room first instead of the wall, check **Select Room Before Wall in 3D** in the **Preferences** dialog. See “Architectural Panel” on page 93.

Match Properties

Click a room to select it, then click the **Match Properties** edit button and group-select rooms with shared attributes. See “Match Properties” on page 219.

Editing Rooms

A room’s structure and appearance can be modified using its edit tools and specification dialog. Rooms can be selected in all views, and the ways in which they can be edited depend somewhat on the current view. See “Selecting Rooms” on page 317.
In 3D Views

The top and bottom heights of individual walls, the floor and ceiling heights of individual rooms, and the floor and ceiling heights for entire floor levels can be edited using edit handles in 3D views. Lowered ceilings cannot be edited in 3D. See “3D Views” on page 779.

The default floor and ceiling heights for an entire floor level can be edited by selecting the Exterior Room. See “Floor and Room Defaults” on page 314.

To change default ceiling heights in 3D

1. Create a 3D or Cross Section/Elevation view of the exterior of your plan.
2. Click on the exterior surface of a wall, then click the Select Next Object edit button.
3. When the Exterior Room is selected in 3D:
 • The wall that you clicked on remains highlighted and an edit handle displays along its top edge.
 • When the wall is on any floor other than Floor 1, an edit handle also displays along its bottom edge.
 • A bounding box displays around each wall of the selected floor level.
 • The Status Bar says “Exterior Room”. See “The Status Bar” on page 33.
 • A temporary dimension will display, measuring from the floor’s default rough floor to default rough ceiling. See “Temporary Dimensions” on page 358.
4. Click and drag the edit handle on the top wall edge to adjust the default ceiling height, or the edit handle on the bottom edge to adjust the default floor height.
5. As you drag a handle, notice that the entire floor level is affected.

To adjust the height of a wall in 3D

1. Create a 3D or cross section/elevation view of your plan.
2. Click on a surface of the wall to select it.
3. Click and drag the edit handles along its top and bottom surfaces. See “Wall Heights” on page 282.

To adjust room heights in 3D

1. Create a 3D or Cross Section/Elevation view of your plan.
2. Click on the surface of a wall that faces a room to select it, then click the Select Next Object edit button.
3. When a room is selected in 3D:
 • The wall that you clicked on remains highlighted and an edit handle displays along its top and bottom edges.
 • The Status Bar says “Room”.
 • A temporary dimension will display in cross section/elevation views, and measure from the room’s rough floor to rough ceiling.
4. Click and drag the edit handle on the top wall edge to adjust the room ceiling height, or the handle on the bottom edge to adjust its floor height. Temporary dimensions display.
5. As you drag a handle, notice that all walls defining that room are affected.

Room materials such as floor, ceiling, and wall materials can be changed in 3D views using the Material Painter. See “Material Painter Tools” on page 759.

Room moldings can be replaced directly from the library in 3D views, as well. See “Replace From Library” on page 706.

If you use the Material Painter to change a room’s floor or ceiling finish material, it will add that material to the room’s Floor or Ceiling Finish Definition. Changes to a Deck room’s planking or framing will affect its floor structure definition.

In the Specification Dialog

Floor and ceiling heights and structure, moldings, wall coverings, and materials can all be specified in the Room Specification dialog. See “Room Specification Dialog” on page 332.

When multiple rooms are selected, the options available in the Room Specification dialog will be limited. You can, however, apply attributes to
multiple rooms using the Match Properties and Apply Properties edit tools. See “Match Properties” on page 219.

Using the Edit Tools
A variety of options are available on the edit toolbar for a selected room. See “The Edit Toolbar” on page 29.

- Click the Calculate Materials for Room edit button to create a materials list of the contents of the selected room, not including walls. See “Calculate Materials in Room” on page 944.
- Click the Add Selected Object(s) to Style Palette edit button to add the selected room’s attributes to a Style Palette. See “Style Palettes” on page 217.
- Click the Build Framing for Selected Object(s) edit button to build or rebuild the framing for the selected room. See “Build Framing for Selected Object(s)” on page 650.
- Click the Make Room Polyline edit button to create a CAD polyline that follows the surfaces of the selected room. See “Room Polylines” on page 331.
- Click the Make Standard Area Polyline edit button to create a CAD polyline that follows the perimeter of the room’s Standard area. See “Displaying Room Labels” on page 321.

Room Labels
A label can display in plan view for any area defined as a room. There are two parts to each room label:

- The Room Name, which is similar to a Text object and can be selected and edited. See “The Text Tools” on page 374.
- The area, which is not a standard text entry and cannot be directly edited.

Custom Room Names
The Room Names that display in room labels are based on the Room Types assigned in the Room Specification dialog. See “Room Types and Functions” on page 315.

You can, however create a custom name for a selected room, also in the Room Specification dialog. See “General Panel” on page 333.

Before creating a custom Room Name, assign the Room Type most similar to the room’s actual use. For example, if you wish to name a room “Guest Room”, begin by specifying it as a “Bedroom” since these rooms have similar uses.

You can assign a custom Room Name, move a room label or even delete it without affecting the Room Type.
Room Label Defaults

The initial settings that control the size, font, color and other aspects of room label appearance are controlled in the Room Label Defaults dialog. See “Room Label Defaults” on page 315.

You can also add additional text to the default room label if you wish. This text will appear in the labels for all rooms.

Displaying Room Labels

The display of room labels is controlled in the Layer Display Options dialog. By default, room labels are placed on the “Rooms, Labels” layer and use the Text Style assigned to that layer. See “Layer Display Options Dialog” on page 144.

You can specify how the area of rooms is reported by the program by turning on the display of one or more of these layers:

- **Rooms, Standard Area** is measured from the center of interior walls that define the room and from either the outside surface or outside of the Main Layer of exterior walls, depending on the Living Area to setting in the General Plan Defaults dialog. It is rounded to the nearest square foot or mm and does not include the area within bay, box and bow windows. See “Exterior and Interior Walls” on page 268 and “General Plan Defaults Dialog” on page 77.

- **Rooms, Interior Area** is measured from the inner surfaces of all the room's walls.

- **Rooms, Interior Dimensions** is also measured from the inner surfaces of the room walls. Its format is set on the DIMENSION FORMAT panel of the Room Label Defaults dialog. See “Room Label Defaults” on page 315.

The display of room labels can also be controlled on a room by room basis in the Room Specification dialog. See “General Panel” on page 333.

Editing Room Labels

Room labels are similar to simple Text objects and can be moved and resized much like any other text object. You can also modify a room label's Text Style and other attributes in the Room Label Specification dialog. See “Text Specification Dialog” on page 381.

The text of a room label cannot be modified in its specification dialog, however. The Room Name can only be specified in the Room Specification dialog and additional text can only be added in the Room Label Defaults dialog.

If you delete a room label, the Room Type and Room Name remain unchanged in the Room Specification dialog. To restore the label, check the Show Room Label checkbox on the General panel of that dialog.

If you wish to further customize an individual room’s label by adding text or a text macro, uncheck Show Room Label in the Room Specification dialog and create your own label using a Text object.

Note: If you use the Convert to Rich Text edit tool to convert a Room Label to a Text object, it will no longer be display room size information or update if the room type is changed. See “Convert to Rich Text” on page 385.

Room Area

Unlike the rest of a room label, the room area and dimensions are not standard text entries and cannot be edited or changed. The room area moves, resizes and rotates with the rest of the room label, but you can turn the area and dimensions on or off separately in the Layer Display Options dialog. See “Displaying Rooms” on page 317.

The **Interior Area** room area calculation includes the areas within bay, box or bow windows, while the Standard Area and Interior Dimensions calculations do not.

You can use the Make Room Area Polyline edit button to see the exact extents of the selected room's Standard Area.

You can also insert room areas as well as other information into text objects using Text Macros. See “Text Macros” on page 400.

Living Area

The Living Area label is an automatically generated Text object that reports the area of the current floor specified as living space. By default, Interior Rooms are defined as part of the Living Area, while Exterior
and Hybrid Rooms are not. See “Room Functions” on page 316.

Regardless of its Room Type, you can specify whether any room is included in the Living Area Calculation in the Room Specification dialog. See “General Panel” on page 333.

A Living Area label is created as soon as a room area is defined by walls and/or railings and is recalculated every time you add, remove, resize, or redefine a room or when you Rebuild Walls/Floors/Ceilings. If multiple buildings are created, each will have its own Living Area label. If none of a structure’s rooms are included in the Living Area Calculation, however, no Living Area label will display for it.

Each Living Area label can be edited in its specification dialog. If a new floor is added, however, any existing Living Area labels will be deleted and replaced. See “Text Specification Dialog” on page 381.

To turn off the display of all Living Area labels in a plan, uncheck Show Living Area Label in the General Plan Defaults dialog or turn off the “Room Labels” layer in the Layer Display Options dialog. See “General Plan Defaults Dialog” on page 77.

The Living Area label can be moved or deleted. To restore a deleted Living Area label, select Tools> Checks> Plan Check. You can click the Done button immediately, without actually completing Plan Check. See “Plan Check” on page 62.

Living Area vs. Footprint

The Living Area should not be mistaken for the footprint of a house. Only true livable areas are included in the Living Area calculation. By default, exterior and hybrid room types such as Garage, Deck, and Porch are not included. Neither is any room labeled Open Below or Attic. See “Room Functions” on page 316.

Regardless of its room type, you can specify whether a room is included in the Living Area calculation in the Room Specification dialog. See “General Panel” on page 333.

Living Area is measured from either the outside surface or the outer surface of the Main Layer of exterior walls. See “Wall Type Definitions” on page 292.

You can use the Make Living Area Polyline edit button to see the exact extents of the current Living Area Calculation.

To find the extents of the Living Area

1. Click just outside of an exterior wall to select the current floor’s Exterior Room. See “The Exterior Room” on page 318.

2. Click the Make Living Area Polyline edit button. This creates a polyline surrounding the area included in the Living Area on the current floor.

3. You can edit the polyline’s shape to include or exclude portions of the plan if you wish. See “Using the Edit Toolbar” on page 182.

4. Select the polyline and click the Open Object edit button. The polyline’s Area is stated in the Polyline Specification dialog. See “Polyline Panel” on page 245.

A polyline created using the Make Living Area Polyline edit tool is a static representation of the current Living Area Calculation. If changes are made to the model that affect the Living Area, any previously created Living Area Polylines will not be affected.

To find the footprint of a floor

1. Select the Exterior Room.

2. Click the Make Room Polyline edit button. This creates a polyline around the exterior walls.

3. Edit the shape of the polyline if you wish.

4. Select the polyline and click the Open Object edit button. The polyline’s Area is stated in the Polyline Specification dialog.

[Note: Editing the shape of the Living Area Polyline does not affect the Living Area Calculation.]

You can quickly see which rooms are included in the Living Area using the Match Properties edit tool. See “Match Properties” on page 219.
Decks

A Deck room is an exterior-type room that uses deck planking and framing to create a floor platform rather than using a floor finish that spans the entire room area. See “Floor and Ceiling Platform Definitions” on page 325.

The default settings for deck planking and framing are set in the Deck Room Defaults dialog. See “Room Type Defaults” on page 314.

To draw a deck, select Build > Railing and Deck > Straight Deck Railing, then click and drag to draw a railing.

- To create a deck without a railing, use one of the Deck Edge tools. See “Fencing Tools” on page 268.
- You can also create a regular, polygon-shaped deck using the Polygon Shaped Deck tool. See “Polygon Shaped Deck” on page 267.

A room does not have to be defined by Deck Railing to be specified as a “Deck.” See “Room Types and Functions” on page 315. You can also define a room as a “Deck” in the Room Specification dialog. See “General Panel” on page 333.

By default, decks do not have roofs. If you want a roof over a deck, check Roof Over This Room in the Room Specification dialog. See “Structure Panel” on page 334.

To give the roof a visible means of support, you can select the Post to Beam option in the Wall Specification dialog. See “Rail Style Panel” on page 309.

Openings in deck railings can be created using Doorways. See “Openings in Railings” on page 411.

Deck Framing and Planking

When a Deck room is created, the floor platform is modeled using joists, beams, posts, and planking as specified in the Deck Room Defaults dialog. See “Structure Panel” on page 334, “Deck Panel” on page 337, and “Deck Support Panel” on page 338.

- If a floor level is present below the one that the Deck room is created on, the framing will be created there. If needed, beams may be generated with posts beneath them, if specified. When terrain is present, the posts will have footings, again, if specified.
- If a floor level is not present below the Deck, framing will be generated on the same floor as the room. Beams may be created but posts will not.
- Deck framing, planking, posts, and beams are placed on their own layers with names that begin with “Framing, Deck” - for example, “Framing, Deck Posts”. These layers are often turned off in plan view but are typically turned on in 3D views. See “Displaying Framing” on page 645.

If standard floor framing is present when a room is specified as a Deck, that framing is deleted and replaced with deck framing.

If changes are later made to the settings on the DECK panel of the Room Specification dialog, the deck framing and planking will be automatically rebuilt in response. To prevent this from happening, uncheck Automatic Deck Framing.

Once created, the individual planking and framing objects generated for a Deck room can be selected and edited like other framing objects, provided that Automatic Deck Framing is turned off. See “Editing Framing” on page 648.

To rebuild a deck’s framing and remove any changes you may have made to individual deck framing or planks, select the Deck room and click the Build Deck Framing edit button.

If you delete a Deck room, its deck framing and planking will be automatically deleted, as well. To prevent this from happening, check Keep Deck Framing After Deck Room is Deleted. See “Deck Panel” on page 337.

The structural materials for a selected deck can be calculated in a Materials List by clicking the Calculate Structural Materials for Deck edit button. See “Materials Lists” on page 943.

Deck Framing Schedules

The framing components that make up the decks in a plan can be listed in a Framing Schedule. See “Framing Schedules” on page 653.
Floor and Ceiling Heights

Default floor and ceiling heights are defined in the **Floor Defaults** dialog for each floor, including the foundation. Use the **Floor Defaults** dialog to change these values on a floor-by-floor basis. See “Floor and Room Defaults” on page 314.

Use the **Room Specification** dialog to set floor heights on a room-by-room basis. See “Room Specification Dialog” on page 332.

Different rooms on the same floor can have unique floor and ceiling heights, allowing you to create:

- Split levels and bi-levels
- Sunken living rooms and garages
- Cathedral, vaulted, and coffered ceilings.

In 3D views, you can adjust the default floor and ceiling height for the entire floor, the floor and ceiling height for an individual room, or the top and bottom heights of an individual wall. See “In 3D Views” on page 319.

In order to raise or lower an area’s floor or ceiling height, you must give it a room definition. To create room definition without enclosing an area with solid walls, use **Railings**.

Invisible walls and railings will fill in the vertical space between floor platforms of different heights as long as **Generate Between Platforms** is checked in their specification dialog. See “General Panel” on page 297.

Ceiling and floor heights are interrelated. Changing the floor height in one room can affect ceiling heights of the rooms below.

- If a room’s floor is lowered, its ceiling height is increased while the ceiling below that room drops.
- If the floor is raised, the ceiling height decreases while the ceiling below that room is raised.

If the rooms above a particular room have more than one floor height, the room’s ceiling is stepped.

In a situation like this, a Lowered Ceiling can be used to cover “steps” made by different floor heights on the floor above. See “General Panel” on page 333.

Dropped Ceilings and Raised Floors

The structure of a dropped, or suspended, ceiling can be specified in the **Ceiling Finish Definition** dialog either for a room or the defaults for a floor. See “Floor and Ceiling Platform Definitions” on page 325.

To create a framed dropped ceiling

1. Select a room and click the **Open Object** edit button.
2. On the **Structure** panel of the **Room Specification** dialog, click the **Ceiling Finish** button. See “Structure Panel” on page 334.
3. In the **Ceiling Finish Definition** dialog:
 - Specify Layer 1 as the plenum, or air gap, space.
 - Specify Layer 2 as the horizontal framing. Framing member spacing and width are set in the material definition. See “Define Material Dialog” on page 769.
 - Specify Layer 3 as the drywall.
 - Specify Layer 4 as the paint color.

A dropped ceiling composed of a metal grid requires only two layers: one for the plenum and one for the tiles.

You can create a raised floor, such as for a shower pan, in a similar manner by specifying it in the **Floor Finish Definition** dialog.
In rooms with high or vaulted ceilings, it is possible to have a smaller room such as a closet that has a flat, lower ceiling. By default, the area above the flat ceiling will be enclosed by automatically-generated Attic walls. See “Attic Walls” on page 289.

If you prefer, you can specify that these Attic walls be suppressed and an open space be created instead. This condition is referred to as a Shelf Ceiling, or plant shelf, and can be specified in the Room Specification dialog of the room with the lower flat ceiling. See “Structure Panel” on page 334.

Split Levels

A split level can be created by raising or lowering the floor and ceiling heights of various areas of the plan.

Floor and Ceiling Platforms

In many ways, rooms in Chief Architect are defined by the floor platforms below them and the floor and/or ceiling platforms above.

All floor and ceiling platform and finish materials are used for the calculation of the materials list. See “Materials Lists” on page 943.

Floor vs Ceiling Platforms

Floor and ceiling platforms are not the same thing in Chief Architect. Floor platforms have living space above them and are designed to be weight-bearing. Ceiling platforms, on the other hand, have living space below them but not above them. They are not designed to bear weight and are typically less strong - and less thick - than floor platforms.

Floor and Ceiling Platform Definitions

Floor and ceiling platforms are made up of layers of different materials such as framing, subflooring, drywall, and finish materials. So, typically, are Floor Material Regions. See “Floor and Wall Material Regions” on page 748.

Floor and ceiling platform definitions play a role in determining floor and ceiling heights. Floor and ceiling finishes can be used to create raised floors as well as dropped ceilings. See “Floor and Ceiling Heights” on page 324.

- You can specify the composition of the default floor and ceiling platforms for an entire plan in the Floor/Ceiling Platform Defaults dialog. The settings in this dialog are also found in the Room Specification dialog. See “Structure Panel” on page 334.

- Floor and ceiling platforms can be customized on a floor-by-floor basis in the Floor Defaults dialog. See “Floor Level Defaults” on page 314.

- Floor and ceiling platforms can also be customized for individual rooms in the Room Specification dialog. See “Structure Panel” on page 334.

Regardless of how they are accessed, floor and ceiling structure are defined in the Floor and Ceiling Structure Definition dialogs. See “Material Layers Definition Dialogs” on page 750.

In addition to the structural layers of a platform, floors and ceilings typically have one or more finish layers. You can specify floor and ceiling finish materials for an entire floor or individual room much the way you can structural layers: by clicking the Floor Finish and/or Ceiling Finish button on the Structure panel of either the Floor Defaults or Room Specification dialog to open the Floor or Ceiling Finish Definition dialog.

Floor and Ceiling Finishes and the Material Painter

If you use the Material Painter to change a room’s floor or ceiling finish material, it will add that material to the room’s Floor or Ceiling Finish Definition. Changes to a Deck room’s planking or
facing will affect its Floor Structure Definition. See “Material Painter Tools” on page 759.

When the Material Painter is used to add a floor or ceiling finish material in a room where one does not currently exist, a new finish layer is created and the material Depth is used as its Thickness. See “Materials List Panel” on page 776.

Floor Material Regions

Floor Material Regions allow you to create areas within a floor that use different layers of materials than the parent object. See “Floor and Wall Material Regions” on page 748.

Stepped Floor and Ceiling Platforms

Each floor has default floor and ceiling heights. You can, however, use the Room Specification dialog to specify floor and ceiling heights on a room by room basis to create stepped floors and ceilings. See “Structure Panel” on page 334.

If you require a single floor platform with a uniform height and thickness but different ceiling heights for the rooms below, specify a lowered ceiling using the Ceiling Finish Specification dialog. See “Lowered Ceilings” on page 329.

By default, the gap between floor and ceiling platforms that step at a railing or invisible wall is closed off by a short section of solid wall. If you require a gap between the platforms, either select a single-layer wall type or uncheck Generate Between Platforms in the Wall or Railing Specification dialog. See “General Panel” on page 297.

Cantilever Undersides

If a room cantilevers out past an exterior wall, the cantilever will use the same floor platform as the rest of the room. You can specify the surface material of the cantilever underside on the MATERIALS panel of the Room Specification dialog. For no material, select “No Material” from the Plan Materials dialog. See “Room Specification Dialog” on page 332.

Platform Edges

Typically, floor and ceiling platforms are built so that they bear on top of walls. The edges of the platform structures extend through exterior walls to the layer of the wall type definition with the Build Platform to This Line setting. See “Wall Type Definitions” on page 292.

- For framed walls, the Build Platform to This Line layer is set as the outside of the wall’s Main Layer,
- For concrete walls, it’s the inside of the wall’s Main Layer.
- The platforms of rooms with raised floors and/or lowered ceilings build in the same manner: to the Build Platform to This Line layer of the wall type assigned to the railing or invisible wall defining the room. See “Floor and Ceiling Heights” on page 324.

For a given wall type, you can specify a different Build Platform to This Line wall layer surface provided that it is on the exterior side of the Main Layer.

In addition, you can specify that individual walls build through floor and ceiling platforms in the Wall Specification dialog. See “General Panel” on page 297.

Platform Holes

Select Build> Floor> Hole in Floor Platform or Hole in Ceiling Platform, then click and drag a rectangular polyline that forms a hole in the designated platform.

You can also create a hole in a floor or ceiling platform by drawing a closed CAD polyline and then using the Convert Polyline edit button to convert it into a platform hole. See “Convert Polyline” on page 205.

Platform hole edges derive their material from the ceiling finish of the room directly below the hole.

Note: The Hole in Ceiling Platform tool only forms holes in the flat ceiling that is automatically generated in a room. It does not create holes in manually drawn Ceiling Planes. See “Ceiling Planes” on page 606.
Trey and Coffered Ceilings

A wide variety of different trey and coffered ceiling configurations can be created using Trey Ceiling Polylines.

A basic Trey Ceiling Polyline is made up of an upper and lower Ceiling Plane and a ceiling plane hole, but you can add moldings and rope lights if you wish. You can also add sloped sides formed by additional Ceiling Planes, and you can recess the trey ceiling into the ceiling platform rather than build it below the room’s ceiling.

A single Trey Ceiling Polyline can be used; smaller polylines can be nested inside of larger ones; and, you can replicate nested polylines to create a coffered ceiling. See “Multiple Copy” on page 139.

In order for a Trey Ceiling Polyline to generate in 3D, it must be located in a room with a flat ceiling. Trey Ceiling Polylines do not have surfaces on their sides, so while one can be positioned next to a room with no ceiling, it will not have a closed side. See “Structure Panel” on page 334.

If a Trey Ceiling Polyline is shaped or positioned in a way that is not supported, a Caution ⚠ symbol will display in its interior. Move the mouse pointer over the symbol to display a Tool Tip with information about how to fix the problem.

To create a Trey Ceiling Polyline, select Build> Roof> Trey Ceiling Polyline and then click inside of a room. A Trey Ceiling Polyline that follows the shape of the room is created. Trey Ceiling Polylines can also be created by clicking and dragging. See “Polylines” on page 243.

You can also create a Trey Ceiling Polyline that follows the perimeter of a room by selecting that room and clicking the Make Trey Ceiling in Room edit button.

In addition, you can create a Trey Ceiling Polyline that follows the perimeter of another Trey Ceiling Polyline by selecting that polyline and clicking the Make Nested Trey Ceiling edit button.

You can also convert a closed CAD polyline into a Trey Ceiling Polyline. See “Convert Polyline” on page 205.

Editing Trey Ceiling Polylines

Once created, Trey Ceiling Polylines can be edited much the way other closed CAD polylines are. See “Editing Closed Polyline-Based Objects” on page 180.

Trey Ceiling Polylines can also be edited in their specification dialogs. See “Trey Ceiling Specification Dialog” on page 327.

Explode Trey Ceiling

Click the Explore Trey Ceiling edit button to explode a selected Trey Ceiling Polyline into its component parts. The ceiling planes as well as the ceiling and/or platform hole and any Molding Polylines and Rope Lights can then be edited individually.

Once exploded, the components of a Trey Ceiling Polyline cannot be blocked together again.

This option is not available if the polyline displays a Caution ⚠ symbol.

Trey Ceiling Specification Dialog

The Trey Ceiling Specification dialog opens if you select one more more Trey Ceiling Polylines and click the Open Object edit button.

This dialog also opens when you select a room and click the Make Trey Ceiling in Room or Make Nested Trey Ceiling edit button. See “Trey and Coffered Ceilings” on page 327.
Specify the structure of the Trey Ceiling.

1. Specify the Width of the outer ceiling, from the outside edge to the hole in its center. The Width setting is only present when this dialog is opened using the Make Trey Ceiling in Room or Make Nested Trey Ceiling edit tool.
2. Specify the vertical Depth, which is the distance from the surface of the lower ceiling to that of the upper ceiling.
3. Check Recess into Ceiling to build the outer ceiling at the room’s specified ceiling height and raise the inner ceiling into the room’s ceiling platform. When unchecked, the inner ceiling is positioned at the room’s specified ceiling height and the outer ceiling is dropped.
4. Specify the Pitch of the trey’s sides. When a non-vertical value is specified, a sloped Ceiling Plane is created along each edge. When this is the case, rope lights and moldings cannot be specified.
5. Check Vertical to produce vertical sides with no side Ceiling Planes.
6. Check Pitch in Degrees to display the pitch value in degrees in all dialogs as well as in roof plane labels. Values between -89° and 89° can be entered. When this is unchecked, Pitch is described in terms of rise and run: x inches in 12 or in metric plans, x mm in 1000.
7. Specify the Ceiling Layers of the trey ceiling.
 • The total thickness of the Structure displays here for reference. Click the Edit button to modify the structure. See “Material Layers Definition Dialogs” on page 750.
 • Check Use Room Ceiling Material for Sides to apply the room’s ceiling finish material to the sides of the trey ceiling.
 • Check Use Room Ceiling Material for Top to apply the room’s ceiling finish material to the top of the trey ceiling.

Polyline Panel

The POLYLINE panel indicates the length of the trey ceiling interior’s Perimeter and its enclosed Area. See “Polyline Panel” on page 245.

Moldings Panel

Crown or other moldings can be assigned to a Trey Ceiling Polyline on the MOLDINGS panel. Moldings are placed around the inside perimeter of the polyline at the specified height.

The settings on the MOLDINGS panel are similar to those found in other specification dialogs throughout the program. See “Moldings Panel” on page 680.

The settings on this panel are only available when the Pitch of the trey ceiling sides is set to “Vertical” on the GENERAL panel.

Rope Lights Panel

The settings on the ROPE LIGHTS panel allow you to assign rope lights to the inside perimeter of the selected Trey Ceiling Polyline. See “Rope Lights” on page 493.

The settings on this panel are similar to those on the MOLDINGS panel found in a variety of dialogs in the program. See “Moldings Panel” on page 680.

Two things about the ROPE LIGHTS panel are unique:
• No attributes of the rope light aside from its Horizontal and Vertical Offset can be specified here.
• Click the Edit button to open the Rope Light Specification dialog for the rope light selected in
the table. See “Rope Light Specification Dialog” on page 502.

The settings on the ROPE LIGHTS panel are only available when the Pitch of the trey ceiling sides is set to “Vertical” on the GENERAL panel.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected polyline in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Special Ceilings

By default, the program builds a flat ceiling platform on top the wall plates of a room. More varied and complex ceilings are made using settings in the Room Specification dialog and the Ceiling Plane tool.

You can define a lowered or dropped ceiling in a room without affecting the top height of the walls by specifying the lowered ceiling framing as a layer in the Ceiling Finish Definition. See “Floor and Ceiling Platforms” on page 325.

In the following illustration, the default ceiling height for the entire first floor is 120", and the room on the right has a ceiling finish lowered to 96".

When a Soffit is positioned against the ceiling in a room, the Ceiling Finish layers located directly above it - including any lowered ceiling framing - will not generate. See “Placing Soffits” on page 744.

Materials Panel

The MATERIALS panel can be found in dialogs throughout the program. For information about the settings on this panel, see “Materials Panel” on page 761.

Label Panel

Trey Ceiling Polyline labels display in plan views when the “Roofs, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for Trey Ceiling Polylines is blank, but you can specify a custom label.

For information about the settings on this panel, see “Label Panel” on page 516.

Lowered Ceilings

To create a lowered ceiling

1. Select the room in which you would like to specify a lowered ceiling.
2. Click the Open Object edit button to open the Room Specification dialog.
3. On the STRUCTURE panel, click the Ceiling Finish button to open the Ceiling Finish Definition dialog. See “Material Layers Definition Dialogs” on page 750.
 - Select Layer 1 of the ceiling finish definition, then click the Insert button to create a new layer above the current Layer 1.
 - Specify the desired Thickness of the new layer, which will form the lowered ceiling framing.
 - Click the Select Material button and specify the new layer’s material as a Framing material.
 - Specify the Structural Type, the type of framing member you want to use to frame the lowered ceiling.
4. Repeat step 3 if you require additional layers, such as an air gap, above the lowered framing.
5. When you are finished, click OK to close the Ceiling Finish Definition dialog.
6. On the STRUCTURE panel, notice that the preview diagram represents the Finished Ceiling height (F).

Vaulted and Cathedral Ceilings

A cathedral ceiling has the same pitch as the roof and is created using the underside of the roof above the room. A vaulted ceiling typically has a different pitch from that of the roof and is often framed using scissor trusses. See “Scissors Trusses” on page 666.

To create a cathedral ceiling

1. Build a roof for your plan. See “Roofs” on page 581.
2. Select the room and open the Room Specification dialog. See “Room Specification Dialog” on page 332.
3. On the STRUCTURE panel, uncheck Flat Ceiling Over This Room.

By default, cathedrals ceiling use the ceiling material set in the Room Specification dialog. If you require a different material on a given roof plane, uncheck Use Room Ceiling Finish in the Roof Plane Specification dialog. See “Options Panel” on page 600.

To create a vaulted ceiling

1. To create a ceiling pitch different from the roof’s, select Build > Roof > Ceiling Plane and draw ceiling planes. See “Ceiling Planes” on page 606.
2. Select each ceiling plane and specify its pitch. See “Ceiling Plane Specification Dialog” on page 607.

Cantilever Undersides

Occasionally, a room will cantilever out past an exterior wall. You can specify the surface material of the underside of a cantilever on the MATERIALS panel of the Room Specification dialog. For no material, select “No Material” from the Plan Materials dialog. See “Room Specification Dialog” on page 332.

Other Special Ceilings

Soffits can be used in various ways to enhance the 3D model. Soffits’ ability to follow the slope of the roof offers unlimited possibilities, such as
exposed beams or trusses and coffered ceilings. See “Special Applications for Soffits” on page 744.

Polyline solids, framing members and locked roof trusses can also be used for similar purposes.

Room Moldings

Base molding, chair rail, and crown moldings can be applied to rooms on a floor by floor basis in the Floor Defaults dialogs, to different room types in the Room Type Defaults dialogs, and to individual rooms in the Room Specification dialog. See “Floor and Room Defaults” on page 314 and “Room Specification Dialog” on page 332.

By default, Chief Architect does not automatically add room moldings to exterior or hybrid room types. Baseboards and chair rails are not automatically added to Open Below rooms, either; however, crown molding is if it is specified in the defaults for the room’s floor. See “Room Types and Functions” on page 315.

Room Polylines

Polylines for a variety of purposes can be created using the buttons on the edit toolbar for a selected room. See “Using the Edit Tools” on page 320.

Once they are created, these polylines are not linked to the room in any way and are not affected if the room is altered.

Make Room Polyline

Click the Make Room Polyline edit button to create a standard CAD polyline on the Current CAD Layer that follows the surfaces of the selected room. See “Current CAD Layer” on page 229.

Make Standard Area Polyline

Click the Make Standard Area Polyline edit button to create a CAD polyline on the Current CAD Layer that follows the extents of the selected room’s Standard Area. See “Room Area” on page 321.

Make Room Molding Polyline

To create a molding polyline that follows the interior surfaces of a room, select the room and click the Make Room Molding Polyline edit button.

If a Room Molding Polyline crosses a door or window, it will have a separate line segment at that location, with No Molding on Selected Edge. No Molding on Selected Edge will also be checked for any line segment associated with an Invisible wall or a wall that is set to have No Room Molding.

Room molding polylines can be edited just like other molding polylines. Their shape and height can be altered and the molding profile can be changed.
Additional molding profiles can also be assigned. See “Molding Polylines” on page 684.

Make Room Molding Polyline Dialog

- From the **Convert Molding** drop-down list, select the molding profile that you would like to convert from a room molding to a molding polyline. The available options will be the molding profiles assigned to the selected room.
- Alternatively, select “Blank Molding” from the list to generate a molding polyline that follows the room perimeter and has separate edges with “No Molding” where it passes through door and window openings, but has no molding profile assigned to it.
- Specify the **Height** of the molding polyline being created, as measured from the selected room’s floor.

When you convert a base, crown, or chair rail molding to a molding polyline, that molding is removed from the room itself. See “Moldings Panel” on page 339.

Make Trey Ceiling in Room

Click the **Make Trey Ceiling in Room** edit button to create a Trey Ceiling Polyline that follows the shape of the selected room. See “Trey and Coffered Ceilings” on page 327.

Expand Room Polyline

The **Expand Room Polyline** edit button is available when you select a room separated from other rooms by invisible walls or railings. Select this edit tool to create and select a temporarily enlarged room definition that ignores those invisible walls and railings. With this expanded room selected, you can then use one of the room polyline tools, create a Revision Cloud, or create a Materials List based on that selection.

To use the Expand Room Polyline tool

1. Click in a room defined by at least one invisible wall or railing.
2. Click the **Expand Room Polyline** edit button.
3. Click any of the edit buttons that remain available on the edit toolbar.

Expand Room Polyline does not create a new room and cannot be used in combination with the **Auto Interior Dimensions** or **Auto NKBA® Dimensions** edit tools.

Room Specification Dialog

The **Room Specification** dialog controls the structural characteristics and appearance of a selected room. To open the **Room Specification** dialog, select one or more rooms and click the **Open Object** edit button. See “Selecting Rooms” on page 317.

Some of the panels in this dialog are also found in the **Exterior Room Specification** dialog as well as in the **Floor**, **Floor/Ceiling Platform**, and **Room Type Defaults** dialogs. See “Floor and Room Defaults” on page 314.

Some values in this dialog are dynamic. A value with Default specified references the **Floor Defaults** dialog. To return a value to the default, replace the check mark. See “Dynamic Defaults” on page 67.

The settings in this dialog are similar to those in the **Floor Defaults** dialog, but affect only the selected room. See “Floor Defaults Dialog” on page 537.

If multiple rooms are selected, not all of the settings in this dialog will be available. See “Selecting Objects” on page 167.

Many of the settings in this dialog can be included in a Room Finish Schedule. See “Schedules and Object Labels” on page 505.
General Panel

The GENERAL panel is also available in the Room Type Defaults dialogs. See “Floor and Room Defaults” on page 314.

1. The settings here control the Room Type, the appearance of the Room Label, and how the room appears in the Room Finish Schedule.
 - Select the Room Type from the drop-down list. Changing the Room Type can affect settings throughout the dialog. Not available when multiple rooms are selected. See “Room Types and Functions” on page 315.
 - Click the Define button to open the Room Types dialog where you can customize the settings of the selected Room Type. Not available when multiple rooms are selected.
 - In the Room Type Defaults dialog only, specify the Function of the selected room type. See “Room Functions” on page 316.
 - If you wish to use a custom name in the room’s label and in Room Schedules, type the desired Room Name in the text field.
 - Check Show Room Label to display the room label in plan view. See “Room Labels” on page 320.
 - This option is unchecked automatically if you select “Unspecified” as the Room Type, and checked automatically if you select any other Room Type; however, you can turn this behavior off if you wish in the Preferences dialog. See “Architectural Panel” on page 93.

2. Specify whether the selected room is included in the Living Area calculation. See “Living Area” on page 321.
 - Select Include in Total Living Area Calculation to include the room in the Living Area regardless of its Room Type.
 - Select Exclude from Total Living Area Calculation to exclude the room from the Living Area regardless of its Room Type.
 - Select Use Default for Room Type (Included/Excluded) to base the selected room’s inclusion in the Living Area on its Room Type. The default for the selected Room Type is stated in parentheses.

3. Specify whether the selected room is a Conditioned Room or not. See “Conditioned Area” on page 957.
 - Select Conditioned to include the room in the Conditioned Area of the structure, regardless of its Room Type.
 - Select Unconditioned to exclude the room from the Conditioned Area, regardless of its Room Type.
- Select **Use Default for Room Type (Conditioned/Unconditioned)** to base the selected room’s inclusion in the Living Area on its Room Type. The default for the selected Room Type is stated in parentheses.

4 Specify the **Roof Group** of the selected room. Change this value to control how the program combines the selected room’s roof system with that of the rest of the building when automatic roofs are built. This value is nearly always left at zero. Not available in the **Room Type Defaults** dialogs. See “Roof Groups” on page 584.

5 The preview on the right side of this dialog features a cross section diagram showing the relationships between the room’s heights and platform thicknesses.

If present, the floors above and below the selected room are also shown. The left side of the floor above is offset for clarity.

The height and thickness values shown in this diagram are set on the Structure Panel.

Structure Panel

Some settings on the STRUCTURE panel are also found in the Floor, Floor/Ceiling Platform, and Room Type Defaults dialogs.

In the Floor/Ceiling Platform and Room Type Defaults dialogs, only the Floor and Ceiling settings are available. When multiple rooms are selected, only these settings can be modified. See “Floor and Room Defaults” on page 314.
Active Defaults icons in the Elevation and Height fields, as well as Default check boxes next to the Structure and Finish fields indicate that these settings are Dynamic Defaults. See “Dynamic Defaults” on page 67.

Note: Many of the settings on this panel are interdependent. For example, if the Ceiling Structure thickness is modified, the Absolute Ceiling and Rough Ceiling heights will change in response.

1 Absolute Elevations - These height values are measured from zero, which is the default top height of the subflooring on Floor 1. See “Floor and Ceiling Heights” on page 324.

- The Floor Above height displays here for reference. If multiple rooms with differing floor heights exist directly above, “No Change” will display.
- Specify the Ceiling height of the selected room, as measured from zero to the bottom of the ceiling framing. Not available in the Room or Floor Defaults dialog or if multiple floor heights are specified above the selected room.
- Specify the Floor height, as measured from zero to the top of the subfloor.

Note: The default floor height for Floor 1 is 0. It can be modified in the Room Specification dialog, but not in the Floor 1 Defaults dialog. See “Floor and Room Defaults” on page 314.

If a room is defined directly beneath the selected room on the floor below, additional settings may be available.

- Specify the Floor Below height, which is the subfloor height of the room directly below where you clicked to select the currently selected room. If there are multiple rooms with differing floor heights located below, this value may change depending on where you click.
- If the selected room is directly above a Garage and there is a foundation present, you can specify the SWT Below height, which is the top height of the concrete stem walls around the perimeter of the garage.

2 Relative Heights - These height values are measured from surfaces within the selected room or the room below.

- Specify the Rough Ceiling height, as measured from the subfloor surface to the bottom of the ceiling framing. Not available if multiple floor heights are specified directly above the selected room.
- Specify the Finished Ceiling height, as measured from the finished floor surface to the finished ceiling surface. Not available if multiple floor heights are specified directly above the selected room.
- Specify the distance from the Stem Wall Top to Ceiling. Only available when Floor for this Room is Supplied by the Foundation ‘Room from the Floor Below’ has been checked.
- Specify the Ceiling Below height, which is the height of the ceiling of the room below, as measured from that room’s subfloor to rough ceiling surfaces. Not available when Auto Rebuild Foundation is enabled or if there is no room below the selected room. See “Rebuilding Foundations” on page 526.
- Specify the Stem Wall height, which is measured from the top of the foundation wall footing to the top of the treated sill plate, if one is specified. Only available if the selected room or the room below it is defined by foundation walls.

3 Specify the characteristics of the room’s Ceiling. Only the Ceiling Finish and Structure settings are available in the Room Type Defaults dialogs.

- If Roof Over This Room is checked, a roof automatically generates over the room. If unchecked, no roof generates.

If this option is unchecked and a roof plane is manually drawn over this room, its structure will be that of an eave rather than a regular roof. See “Roof Panel” on page 639.

- If Flat Ceiling Over This Room is checked, the room has a flat ceiling. If unchecked, the ceiling follows the underside of the roof or manually drawn ceiling planes.
- Check Shelf Ceiling to prevent Attic Walls from generating over the interior walls that define the selected room. When unchecked, interior Attic Walls will generate if surrounding rooms have higher ceilings than the selected room. See “Shelf Ceilings” on page 325.
- Check Use Soffit Surface for Ceiling to frame the roof over the selected room using the framing defaults for fascia rather than for rafters.
- The **Ceiling Structure** depth displays here for reference. Click the **Edit** button to open the **Ceiling Structure Definition** dialog and define the layers of materials that form the ceiling platform. Check **Default** to use the Ceiling Structure Definition set in the current floor’s Floor Defaults dialog. Not available for rooms on Floor 0. See “Material Layers Definition Dialogs” on page 750.

- The **Ceiling Finish** depth displays here for reference. Click the **Edit** button to open the **Ceiling Finish Definition** dialog and define the layers of materials that form the finished ceiling surface. Check **Default** to use the Ceiling Finish Definition set in the current floor’s Floor Defaults dialog. See “Material Layers Definition Dialogs” on page 750.

- Check the **Default** box to the right of either button to restore the default structure and/or finish. See “Floor/Ceiling Platform Defaults” on page 314.

4 Specify the characteristics of the room’s **Floor**. Only the Floor Finish, Structure, and On Structure Resize settings are available in the Room Type Defaults dialogs.

- When **Floor Under This Room** is checked, the room has a floor platform as specified below.

- If **Floor Supplied by the Foundation Room Below** is checked, the floor platform for this room is a slab located on the floor below and cannot be edited here.

- If **Monolithic Slab Foundation** is checked, the current Floor Structure will be replaced by a single 4” (100 mm) layer of concrete with footings that can be seen in camera views only. When a stem wall or grade beam foundation is generated, a slab will be created beneath the selected room.

- Check **Retain Floor/Ceiling Framing** to preserve the selected room’s floor and ceiling framing when floor and/or ceiling framing is globally rebuilt. See “Rebuilding and Retaining Framing” on page 628.

- When Monolithic Slab Foundation is checked, specify the room’s **Slab Pour Number**. Pour Numbers are listed separately in the Materials List. See “In the Materials List” on page 526.

- When Monolithic Slab Foundation is unchecked, specify the selected room’s **Framing Group** instead. See “Framing Groups” on page 626.

- The **Floor Finish** depth displays here for reference. Click the **Edit** button to open the **Floor Finish Definition** dialog and define the layers of materials that form the finished floor surface. Check Default to use the Floor Finish Definition set in the current floor’s Floor Defaults dialog. See “Material Layers Definition Dialogs” on page 750.

- Specify which part of the floor platform moves **On Structure Resize**. Select **Lock Floor Top** to keep the top of the floor structure at the same height and raise or lower its bottom when the platform depth is changed. Select **Lock Floor Bottom** to keep the bottom of the floor structure at the same height and raise or lower the top when the depth is changed.

- The **Floor Structure** depth displays here for reference. Click the **Edit** button to open the **Floor Structure Definition** dialog and define the layers of materials that form the floor platform. Check **Default** to use the Floor Structure Definition set in the current floor level’s Floor Defaults dialog. See “Material Layers Definition Dialogs” on page 750.

- If the selected room is a Deck, the Floor Structure button will be labeled **Planks, Joists** instead. See “Decks” on page 323.

- Check the **Default** box to the right of either button to restore the default structure and/or finish. See “Floor/Ceiling Platform Defaults” on page 314.

Note: The default floor and ceiling platform and finish definitions for rooms are set in the current floor’s Floor Defaults dialog. In the Floor Defaults dialog, the defaults are drawn from the Normal Room Defaults dialog. See “Floor and Room Defaults” on page 314.

5 The preview on the right side of this dialog features a cross section diagram showing the relationships between the room’s heights and platform thicknesses.

- If present, the floors above and below the selected room are also shown. The left side of the floor above is offset for clarity.

- The callout or dimension line associated with selected height or thickness value will be high-
lighted in the preview, as will any height or thickness value that you move your mouse point over.

- The font used by the callouts and dimensions is set in the currently active Dimension Defaults dialog, while the unit of measurement is specified in the Dialog Number/Angle Style dialog. See “Dimension Defaults Dialog” on page 343 and “Dialog Number/Angle Style Dialog” on page 105.

What appears in both the diagram and in the settings on the STRUCTURE panel may be affected by the location where you clicked to select the room. For example:

- If the selected room is located above two rooms with different structural settings, the position of the pointer relative to these two lower rooms determines which of them displays as the floor below.
- If the selected room is located below two rooms with different floor heights, its absolute and relative ceiling height settings will be disabled.

Deck Panel

The options on the DECK panel are only available for rooms designated as Decks, and control how deck planking and joists are generated. See “Deck Framing and Planking” on page 323.

The settings on this panel are also found in the **Deck Room Defaults** dialog, but affect the selected Deck room(s) only rather than Decks as they are initially created. See “Room Type Defaults” on page 314.

1. Check **Automatic Deck Framing** to generate planking and support framing for the deck that updates as changes are made to the deck. See “Decks” on page 323.

2. Check **Keep Deck Framing After Deck Room is Deleted** to retain the automatically generated framing and planking when the selected deck room is deleted. When this box is unchecked, the framing is automatically removed if the room is deleted.

3. Specify the appearance of the **Deck Planking**.

 - Specify how far the deck planking **Overhangs** the rim joists.
 - Specify the **Plank Width** of the deck planking.
 - Specify the **Plank Gap Width**, which is the distance between individual planks.
 - If you want to enter a **Plank Direction**, remove the check mark from **Automatic**. Enter the direction as degrees.
 - Specify the **Number of Border Planks**. These are planks that follow the outside edge of the deck and may not be parallel with the rest of the
planking. Border planks generate as long as the length of an inside edge is greater than 0”. They do not generate on curved deck edges.

Note: Planking thickness and joist depth are specified in the Floor Structure Definition dialog. See “Floor and Ceiling Platform Definitions” on page 325.

- Check **No Border Against Walls** to prevent border planking from being generated along any walls defining the deck.
- Check **Herringbone** to produce a herringbone pattern where the border planks meet.
- Check **Treated** to specify that the deck planking is counted as treated in framing schedules and the Materials List.

3 Specify the configuration of the **Deck Joists**.

- Enter the **Width** of the joists that support the deck.
- Specify the **Spacing** between joists, as measured from joist center to joist center.
- If you want to specify joist **Direction**, uncheck **Automatic** and enter the direction in degrees. When checked, joists are run in the direction that results in the shortest spans.
- Check **Treated** to specify that the deck joists are counted as treated in framing schedules and the Materials List.

4 The preview on the right side of this dialog features a cross section diagram showing the relationships between the room’s heights and platform thicknesses.

If present, the floors above and below the selected room are also shown. The left side of the floor above is offset for clarity.

The height and thickness values shown in this diagram are set on the Structure Panel.

Deck Support Panel

The options on the **DECK SUPPORT** panel are only available for Deck rooms and control how deck beams and posts are generated. See “Deck Framing and Planking” on page 323.

The settings on this panel are also found in the **Deck Room Defaults** dialog, but affect the selected Deck room(s) only rather than Decks as they are initially created. See “Room Type Defaults” on page 314.

1 Specify the configuration of the **Deck Beams** under the selected Deck room.

- Uncheck **Deck Beams** to prevent the automatic generation of support beams under the selected Deck room.
• Click the **Edit Beam** button to open the **Deck Beam Defaults** dialog and define the beam size and other characteristics. See “Framing Specification Dialog” on page 651.

• Specify the maximum **Beam Spacing**. Beams may be positioned closer than this value, but not further apart.

Specify the configuration of the **Deck Posts** under the selected Deck room.

• Uncheck **Deck Posts** to prevent the automatic generation of support posts under the selected Deck room.

• Click the **Edit Post** button to open the **Deck Post Defaults** dialog and define the size and other characteristics of the posts associated with the selected Deck. See “Framing Specification Dialog” on page 651.

• Specify the maximum **Post Spacing**. Posts may be positioned closer together than this value, but not further apart.

Specify whether **Deck Post Footings** are generated under the selected Deck room’s deck posts. Not available if Deck Posts is unchecked, above.

• Uncheck **Deck Post Footings** to prevent the automatic generation of footings under the selected Deck room’s posts.

• Specify the footings’ **Height Above Terrain**. See “Foundations and the Terrain” on page 530.

• Specify the footings’ **Thickness** and **Width**.

• Specify whether the footings are **Square** or **Round** in shape.

• Specify the **Rebar Size Number**.

• Specify the **Rebar Count**, or number of bars in each footing.

The preview on the right side of this dialog features a cross section diagram showing the relationships between the room’s heights and platform thicknesses.

If present, the floors above and below the selected room are also shown. The left side of the floor above is offset for clarity.

The height and thickness values shown in this diagram are set on the Structure Panel.

Moldings Panel

Chair rail, crown and base moldings can be assigned to one or more selected rooms on the **Moldings** panel. Moldings are placed on a room’s wall surfaces and continue around the surface of any soffit that is attached to the wall at the molding height.

The settings on this panel are also similar to those found in the **Floor Defaults** dialog, but affect only the selected room instead of all rooms on the current floor.

The settings on this panel are similar to those found in other specification dialogs throughout the program. See “Moldings Panel” on page 680.

Wall Covering Panel

The settings on the **Wall Covering** panel of the **Room Specification** dialog are the same as those on the same panel of the **Wall Specification** dialog.

When a wall covering is assigned in the **Room Specification** dialog, it is applied to all walls in the selected room only. See “Wall Covering Panel” on page 306.

Fill Style Panel

The settings on the **Fill Style** panel affect the appearance of the room in plan view. This panel is also found in the **Floor Defaults** dialog. For more information, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on this panel affect the appearance of a selected room’s walls, floor, ceiling, and moldings in 3D views. See “Materials Panel” on page 761.

The materials that make up the floor and ceiling platforms can be defined on the **Structure** panel. See “Structure Panel” on page 334.

Default molding and ceiling and floor covering materials can be set on this panel in the **Floor Defaults** and **Room Defaults** dialogs.

Components Panel

The information on the **Components** panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected room is included in. See “Schedule Panel” on page 519.

Room Finish Schedules

The Room Finish Schedule tool allows you to produce customizable room finish schedules with information about room size, structure, materials and moldings. See “The Schedule Tools” on page 506.

By default, Room Finish Schedules are set to include all Room Types: including any new Room Types that you may create. You can specify which Room Types are included in a Room Finish Schedule in its Schedule Specification dialog. See “General Panel” on page 512.

You can also create any type of schedule that lists the contents of a selected room using the Create Schedule from Room edit tool. See “Create Schedule from Room” on page 506.
Chief Architect provides a variety of manual and automatic dimensioning tools for measuring walls, doors, windows, and many other objects in various 2D and 3D views.

Dimensions can be used to accurately position objects relative to other objects. In addition, dimension lines and extensions can be selected and customized.

Chapter Contents

- Compatibility With Previous Versions
- Dimension Preferences and Defaults
- Dimension Defaults Dialog
- Auto Dimension Defaults Dialogs
- Auto Elevation Dimension Defaults
- Temporary Dimension Defaults Dialog
- The Manually Drawn Dimension Tools
- The Automatic Dimension Tools
- Displaying Dimension Lines
- Selecting Dimension Lines
- Editing Dimension Lines
- Editing Extension Lines
- Add Additional Text
- Moving Objects Using Dimensions
- Dimension Line Specification Dialog

Compatibility With Previous Versions

Dimensions function differently in Versions 9 and later of Chief Architect than they did in previous versions. Being familiar with these changes is helpful if you have plans that were originally created in these legacy program versions.

Extension Lines

In Chief Architect 8, extension lines had two modes: normal and short. Version 9 and later offer full control over extension lines. If Legacy Compatible Extensions is checked, you do not have this control. See “Extensions Panel” on page 349.

Accuracy

When the model is drawn with greater accuracy than dimensions are set to display, rounding may be required. The Rounding Method in the Dimension Defaults dialog controls how Chief Architect handles dimensions that require rounding. See “Setup Panel” on page 343.

In Chief Architect Version 8 and prior, dimensions used Distance Rounding, which shows the distance between equally spaced objects correctly, but dimension runs are not always accurate when added.

In Versions 9 and later, dimensions use Grid Rounding, which always add up dimension runs correctly, but individual distances may be inaccurate in order to achieve this.
Dimensioning the same object using these two rounding methods will obtain the same results as long as objects are placed with the same accuracy as the precision of the dimension lines. If an object is placed using more precision than the dimensions, results may vary between methods.

A good approach to accurate dimensioning is to turn on the accuracy indicators and position objects so that the inaccuracy indicators do not display.

Dimension Preferences and Defaults

There are a number of settings in the Preferences dialog that affect dimensions, as well as several dimension defaults dialogs.

Preferences

All plan and layout files save measurements in either Imperial or metric units. The type of unit used is determined when the file is first created and cannot be changed later. See “Creating a New Plan or Layout” on page 41.

You can specify either metric or Imperial files to be used as the templates whenever you open a new, blank plan or layout file in the Preferences dialog. See “New Plans Panel” on page 90.

You can also specify the minimum on-screen display size for dimension numbers in the Preferences dialog. See “Appearance Panel” on page 80.

Default Settings

Select Edit> Default Settings or double-click the Dimension Tools, parent button or any of its child buttons, or the Automatic Dimension Tools, parent button. There are eight dimension defaults dialogs:

- Dimension Defaults Dialog
- Three Auto Dimension Defaults Dialogs
- Three Auto Elevation Dimension Defaults Dialogs
- Temporary Dimension Defaults Dialog

When Angle Snaps are enabled, dimensions can be drawn at the Allowed Angles set in the General Plan Defaults dialog. Regardless of their angles, however, dimensions will only locate objects that are parallel to one another. See “General Plan Defaults Dialog” on page 77.

When Marker is created in association with a manually drawn dimension or Auto Elevation Dimension, the Marker will inherit its initial settings from the currently active Saved Marker Defaults. See “Markers” on page 393.

Saved Dimension Defaults

Dimensions are an example of objects that use Multiple Saved Defaults. This lets you set dimensions up for more than one task or requirement in advance, and then simply specify which default you want to use as the Active Default at any given time. See “Multiple Saved Defaults” on page 67.

A Saved Dimension Default can be activated in any view that supports dimensions: plan view, cross section/elevation views, CAD Details, and Wall Details. A Saved Dimension Default can be activated in any of four ways:

- Select a default from the Saved Dimension Defaults Control drop-down on the toolbars.
- Select a Currently Active Dimension Defaults in the Active Defaults dialog. See “Active Defaults Dialog” on page 69.
• Select a default in the Saved Dimension Defaults dialog. See “Saved Defaults Dialog” on page 68.

Dimension Defaults Dialog

Select Edit> Default Settings, expand the “Dimension” category, select “Dimensions”, and click the Edit button to open the Dimension Defaults dialog.

You can also double-click either the Dimension Tools or Automatic Dimension Tools parent button to open this dialog.

Manually drawn dimensions are able to support multiple Saved Defaults for specific drawing tasks. See “Multiple Saved Defaults” on page 67.

• When you access the Dimension Defaults dialog via the Default Settings dialog, the Saved Defaults dialog will open first, allowing you to select which Saved Manual Dimension Default that you wish to edit. Multiple Defaults can be selected and edited if you wish. See “Shift and Ctrl Select” on page 170.

• When you access this dialog by double-clicking the Dimension Tools button, the defaults dialog for the currently active Saved Default is opened directly. If you would like the Saved Defaults dialog to open first in this situation, you can enable this option in the Preferences dialog. See “General Panel” on page 85.

• In either case, the name of the Saved Default being edited will display in the title bar at the top of the dialog box.

The settings in this dialog are dynamic defaults, which means that any changes made here may affect existing dimension lines in the drawing that are using the Saved Manual Dimension Default being edited. See “Dynamic Defaults” on page 67.

Setup Panel

1 General -

• Specify the Line Separation, which is the distance between Baseline Dimension lines in plan inches (mm). This value should always be greater than the font size. If two formats are used, it should be at least twice the font size.

2 Specify how far manually drawn dimension lines Reach to locate walls and/or objects specified on the LOCATE OBJECTS panel. The default is 24” (450 mm) in plan files and 1” (10 mm) in layout.

3 Specify the initial spacing of Automatic Dimensions. See “The Automatic Dimension Tools” on page 358.
• Specify the **Line Separation**, which is the distance between Auto Exterior Dimension lines in plan inches (mm). This value should always be greater than the font size. If two formats are used, it should be at least twice the font size.

• Specify the **1st Line Offset**, which is the distance between each wall and the nearest Automatic Dimension line that measures its length in plan inches (mm).

3 Specify the use and appearance of **Rounded Value Indicators**, which can display when the degree of accuracy in use is not sufficient to describe a dimension’s true value.

• Check **+ or - After Number** to indicate that the actual dimension value is higher or lower than the value shown.

• Check **~ Before Number** to indicate dimension values that are not accurate with the ~ symbol.

4 Specify the **Rounding Method** used for dimension values.

• **Grid Rounding** ensures that the sum of the parts of a dimension line add up to the whole distance. To produce this result, some sections may not be rounded accurately. This is the recommended rounding method and is selected by default.

• **Distance Rounding** addresses each section of a dimension line individually, which could result in the sum of these sections not being equal to the whole. This option is selected by default for files created in Version 8 or prior but is not recommended for newer files. See “Compatibility With Previous Versions” on page 341.

Primary Format Panel

The settings on the **PRIMARY FORMAT** panel allow you to specify the units, position, and degree of accuracy of dimension numbers. The settings on this panel also control the format of object length numbers in the Status Bar. See “The Status Bar” on page 33.

These settings are the same as those on the **PRIMARY FORMAT** panel of the **Dimension Line Specification** dialog and the **DIMENSION FORMAT** panel of the **Room Label Defaults** dialog. See “Dimension Line Specification Dialog” on page 367 and “Room Label Defaults” on page 315.

These settings are also similar to those on the **INNER**, **OUTER**, and **MARKER FORMAT** panels of the **Auto Story Pole Dimension Defaults** and **Dimension Line Specification** dialogs. See “Auto Elevation Dimension Defaults” on page 351.

In addition to these Primary dimension numbers, you can display a set of Secondary dimension numbers that indicate the dimension’s length using different units, degree of accuracy, and/or location.
In the **Auto Story Pole Dimension Defaults** and **Specification** dialogs only, check **Use Default Formatting** to use the Primary Format settings of the currently active Dimension Defaults as the Inner Format.

Specify the numbering **Format** for dimension numbers.

- Select the **Units** of measurement to be used by dimensions from the drop-down list. The choices in this list correspond to all units measuring length specified in the **Preferences** dialog. See “Unit Conversions Panel” on page 90.

- Check **Unit Indicators** to display the unit of measurement along with the dimension number.

- Check **Leading Zeros** to include the zero before a decimal less than 1 or to display 0' or 0" when the ft-in or '-"' unit formats is used.

- Check **Trailing Zeros** to display trailing zeros at the end of decimal values. When the ft-in or '-"' unit format is used and fractional inches are specified, 0" will be included.

- Check **Thousands Separator** to use a digit grouping symbol for values greater than 999.

- Select the **Use Comma**, **Use Dot**, or **Use Non-Breaking Space** radio button to specify the thousands separator used by dimensions. Which option is available will depend on your operating system settings. See “Region and Language Settings” on page 66.

- Select the **Use Space** radio button to use a space as the thousands separator.

Specify the degree of **Accuracy** used by dimension numbers.

- Select the **Decimal Places** radio button for dimension numbers in decimal format. In the text field, specify the number of decimal places to use, from 0 to 20. If 0 is used, no decimal places are used.

- Select the **Smallest Fraction** radio button for dimension numbers using whole numbers and fractions. In the text field, specify the largest denominator to use, from 1 to 128. If 1 is entered, whole numbers are used.

- Uncheck **Show Denominator** to turn off the display of fraction denominators used by dimension lines. Typically, denominators are only turned off when eighths are desired.

Note: Although you can select Imperial or metric units in any plan or layout, it is best to use the same unit type that the file uses to save measurements. See “Units of Measurement” on page 42.
• Uncheck **Reduce Fractions** to always use the denominator specified above. When checked, the lowest possible denominator will be used.

When Smallest Fraction is selected, specify how fractions are reduced:

• Select the **Greatest Common Divisor** radio button to reduce fractions using the largest value that divides equally into the numerator and the denominator specified above. This option is best for fractional inches.

• Select the **Closest Fraction** radio button to reduce fractions without referring to the denominator specified above. Should only be used with **Distance Rounding**. Not recommended when fractional inches are used.

A value of 0.33333 is represented by the fraction 5/16 when Greatest Common Divisor is used and the Smallest Fraction denominator is 16. When Closest Fraction is selected, this value is represented by 1/3.

Specify the **Dimension Text Position**, which is the location of dimension numbers relative to the dimension line.

• **Center** primary dimension numbers on the dimension line. If two formats are used, the primary format is placed above the line and the secondary format, beneath it.

• Position dimension numbers **Above Line**.

• Position dimension numbers **Below Line**.

Secondary Format Panel

In addition to the Primary dimension label, you can display a set of secondary numbers that indicate the dimension’s length using different units and/or degree of accuracy.

The settings on the **SECONDARY FORMAT** panel of the **Dimension Defaults** dialog are similar to those on the **PRIMARY FORMAT** panel, with one addition:

• Check **Include Second Format** to use a secondary dimension label and enable the settings on this panel.

The settings on this panel are also the same as those on the same panel of the **Dimension Line Specification** dialog. See “Dimension Line Specification Dialog” on page 367.

If you choose to use a second format, you may want to increase the default Line Separation on the Setup panel.

Locate Objects Panel

The settings on the **LOCATE OBJECTS** panel specify how and whether or not dimension lines locate specific types of objects. Changes made on this panel only affect new dimension lines, not those already drawn.

These settings affect dimension lines as they are drawn. Once created, their extension lines can be edited so that they locate objects in ways not specified here. See “Editing Extension Lines” on page 363.

The **LOCATE OBJECTS** panel is also found in most **Auto Dimension Defaults** dialogs. The options available will vary for each defaults dialog. See “Auto Dimension Defaults Dialogs” on page 350.

In the **NKBA® Auto Elevation Dimension Defaults** and in the **Dimension Defaults** dialogs for a layout file or CAD Detail window, only the **CAD Objects** settings on this panel will be available.
The Walls settings affect Manual and Interior Dimensions and are also available in most Auto Dimension Defaults dialogs. See “The Manually Drawn Dimension Tools” on page 356 and “Auto Dimension Defaults Dialogs” on page 350.

The first two settings also determine the marked location in wall assemblies referred to by Extension Lines as well as the Reach and 1st Line Offset settings. See “The Dimension Layer” on page 293.

- Select Surfaces to locate exterior walls by outer surface and interior walls by one of their surfaces.
- Select Wall Dimension Layer to locate walls at the Dimension Layer. A wall’s Dimension Layer is specified in its wall type. See “Wall Type Definitions Dialog” on page 294.
- Select None to prevent Manual and End to End Dimensions from locating walls.

The Wall Options settings control how dimensions locate interior walls where they intersect exterior walls, and only apply to interior walls drawn perpendicular to the exterior walls they intersect. They are available in the Auto Exterior Dimension Defaults dialog but not the other Auto Dimension Defaults dialogs.

- Select Interior Wall Centers to have dimension lines locate the centers of interior walls. If Wall Dimension Layer is selected above, dimensions locate interior walls at the center of their Main Layers. See “The Main Layer” on page 293.
- Select Primary Wall Side to have dimension lines locate one side of interior walls.
- Select Both Wall Sides to have dimension lines locate both surfaces of interior and exterior walls. Wall thicknesses are also dimensioned.
- Check Interior Walls Only for dimensions to ignore the interior surface of exterior walls and the thicknesses of interior walls. Only available when Both Wall Surfaces is selected.

Note: Walls specified as No Locate will not be located by some dimension tools. See “No Locate” on page 280.
The remaining Locate Object options are organized into categories, most of which are also available in the Auto Interior and Auto Elevation Dimension Defaults dialogs.

- Check the box beside an option to have dimension lines locate that location on the object type in question as they are drawn or generated.
- Check the box beside a category heading to check all of the boxes in that category. Uncheck the box to clear all of those options.

The Cabinets options affect how dimension lines locate objects cabinets and cabinet fillers within the Reach area. See “Using Dimensions” on page 470.

- Locate the Sides of cabinet objects. The sides do not need to be perpendicular to the dimension line.
- Locate the Corners of cabinet objects. Angled cabinets are dimensioned to their corners at a right angle to the dimension line. A cabinet’s front or sides do not need to be perpendicular or parallel to the dimension line for its corners to be located.
- Locate the Centers of cabinet objects. A cabinet’s front or sides do not need to be perpendicular or parallel to the dimension line for its center to be located.
- Locate cabinet Countertop edges. A cabinet’s front or sides must be perpendicular or parallel to the dimension line for its countertop to be located. In elevation views, only the height can be located when the dimension is being drawn. Does not affect Custom Countertops.
- Locate top and bottom Backsplash edges in elevation views.
- Locate top and bottom Toe Kick edges in elevation views.
- Locate tops and bottoms of Moldings in elevation views.

The Fixtures/Appliances options affect how dimension lines locate appliances and other fixtures including hardware, millwork, sprinklers, and Geometric Shapes.

- Locate the Sides/Corners of appliances and other fixtures. For sides to be located, they must be perpendicular to the dimension line.
- Locate the Centers of all fixtures within the Reach area. An object’s front or sides do not need to be perpendicular or parallel to the dimension line for its center to be located.

The Furniture options affect how dimensions locate interior and exterior furnishings within the Reach area.

- Locate the Sides/Corners of furnishings. For sides to be located, they must be perpendicular to the dimension line.
- Locate the Centers of all furnishings. An object’s front or sides do not need to be perpendicular or parallel to the dimension line for its center to be located.

The Openings options control how wall openings are located by dimension lines.

- Locate the Centers of wall openings.
- Locate the both Sides of wall openings. This option locates the nominal width - not the rough opening.
- Locate the outer edges of both sides of wall openings’ Casing. Because interior and exterior casing often have different widths, an opening may have different interior and exterior dimensions when this option is selected.
- Locate both sides of the Rough Opening of doors and windows.

The CAD Objects options control how dimension lines locate 2D CAD objects as well as CAD-based objects such as slabs and polyline solids, and stairs.

- Locate Line/Sides that are perpendicular to the dimension line. If the lines or edges are not perpendicular to the dimension line, they are not dimensioned.
- Locate all Ends/Corners of polylines, no matter what angle they are in relation to the dimension line.
- Check Callouts/Markers to locate these objects.
- Check Text to locate text objects.

The Primitives/Shapes options affect how dimension lines locate objects drawn with the Primitive Tools. See “Primitive Tools” on page 731.
• Locate the **Sides** of primitive/shape objects. The sides must be perpendicular to the dimension line.

• Locate the **Corners** of all primitive/shape objects within the Reach area. Corners are dimensioned at a right angle to the dimension line. An object’s front or sides do not need to be perpendicular or parallel to the dimension line for its corners to be located.

• Locate the **Centers** of all primitive/shape objects within the Reach area. An object’s front or sides do not need to be perpendicular or parallel to the dimension line for its center to be located.

 The **Framing** options affect how dimensions locate framing objects within the Reach area. See “Using Dimensions” on page 648.

 • Locate the **Centers** of framing objects.

 • Locate both **Sides** of framing objects.

 The **Other Objects** options affect whether dimension lines locate additional object types at their centers.

 • Locate **Electrical** objects. Use this option when you want to precisely position electrical objects. See “Moving Electrical Objects Using Dimensions” on page 497.

 • Locate **Plants and Images**.

Locate Elevations Panel

The settings on the **LOCATE ELEVATIONS** panel determine what elevation marks are located by vertically oriented, manually drawn dimension lines in cross section/elevation views. For more information, see “Locate Elevations Panel” on page 353.

Extensions Panel

1. Specify the **Extension Length** relative to the marked location on an object.

2. **Select Gap From Marked Object** to specify the distance between the end of extension lines and their marked location in plan inches or mm. If a dimension line is moved, extension lines update, and the size of this gap is maintained.

3. **Select Length Towards Marked Object** to specify a fixed length for the portion of an extension line that extends from the dimension line toward the object it locates. If the dimension line is moved, this length remains the same but the size of the gap updates.

4. **Specify the Length Away From Marked Object**, which is the length of the portion of an extension line that extends from the dimension line in the opposite direction of the object it locates.

5. **Check Proximity Fixed** to specify a fixed distance between the marked object and the dimension line. You can only fix the proximity for a single extension line. See “Using Proximity Fixed” on page 364.

 • **Distance to Marked Object** - When Proximity Fixed is checked, you can specify the distance from the dimension line to the marked object using a positive value.

 Gap From Marked Object

 + Length Toward Marked Object

 = Distance to Marked Object
Proximity Fixed only affects dimension lines that locate an object using an extension line. When a dimension line arrowhead points directly to the object without using an extension line, this option has no effect.

Auto Exterior Dimensions ignore Distance to Marked Object and use the default 1st Line Offset and Line Separation values. See “Setup Panel” on page 343.

The Legacy Support settings are only recommended for files originally created in Chief Architect Version 8 and prior. See “Compatibility With Previous Versions” on page 341.

- Check Legacy Compatible Extensions to assign a program-defined length to extension lines that cannot be edited.
- Check Short Extensions to have short, uniform-length extension lines that do not reach all the way to the objects they locate.

Layer Panel

The Layer panel is found in the specification dialogs for many different objects. For more information, see “Layer Panel” on page 149.

If an automatic dimension line is edited, it will no longer be considered Automatic and the Default checkbox on this panel will be unchecked. See “Editing Dimension Lines” on page 361.

Arrow Panel

For information about the Arrow panel, see “Arrow Panel” on page 236.

Text Style Panel

The settings on the Text Style panel control the size, font and other attributes of automatic, manually drawn, and temporary dimension line labels. See “Dimension Labels” on page 360.

For information about the settings on this panel, see “Text Style Panel” on page 399.

Temporary dimension labels always use the color assigned to their layer - not the color specified in the Dimension Defaults dialog.

Auto Dimension Defaults Dialogs

There are two categories of Automatic Dimensions: those that can be created in plan view, and those that can be created in cross section/elevation views. The settings in the Auto Dimension Defaults dialogs allow you to control the initial appearance and behavior of dimensions created using the Auto Dimension tools available in plan view. See “The Automatic Dimension Tools” on page 358.

Select Edit> Default Settings or double-click either the Automatic Dimension Tools or Dimension Tools parent button. Expand the Dimension category, select one of the “Auto” subcategories, and click the Edit button.

You can also add buttons to your toolbars that you can click to quickly open each of these dialogs. See “To add a button to a toolbar” on page 109.

- Auto Exterior Dimensions Defaults
- Auto Interior Dimensions Defaults
- NKBA® Auto Dimensions Defaults

The default Line Separation and First Line Offset values for automatic dimensions are set in the Dimension Defaults dialog. See “Setup Panel” on page 343.

See, too, “Auto Elevation Dimension Defaults” on page 351.
General Panel

- Specify how far Auto Exterior Dimension lines Reach to locate objects set back from exterior walls. The default is 192 inches (4800 mm). If exterior walls are set back further than this distance, additional dimension lines are produced to dimension the set-back walls. Only available in the Auto Exterior Dimension Defaults dialog.
- Specify the Minimum Area: the minimum enclosed area needed for Auto Dimensions to generate.
- Check Overall Dimension to generate the overall dimensions of a plan when Auto Dimensions are created.
- Check Auto Refresh Dimensions to delete and replace Auto Exterior Dimensions whenever a change is made to the model that affects them. Not available for Auto Interior Dimensions.
- Check Ignore Interior Walls to prevent interior walls that intersect exterior walls from being located by Auto Exterior Dimensions. Not available for other Auto Dimensions.

Locate Objects Panel

The settings on the LOCATE OBJECTS panel are also found on the same panel of the Dimension Defaults dialog. The available options will vary in each defaults dialog, depending on the functionality of the tool. See “Locate Objects Panel” on page 346. The LOCATE OBJECTS panel is not available in the NKBA® Auto Dimension Defaults dialog.

Layer Panel

The LAYER panel allows you to specify what layers dimensions created using the Auto Dimension tools are placed on. It is found in the specification dialogs for many different objects. For more information, see “Layer Panel” on page 149.

Auto Elevation Dimension Defaults

The settings in the Auto Elevation, NKBA® Auto Elevation, and Auto Story Pole Dimension Defaults dialogs allow you to control how automatic dimensions and Auto Story Poles are created in cross section/elevation views. See “The Automatic Dimension Tools” on page 358.

Select Edit> Default Settings, expand the Dimension category, select one of these “Auto” subcategories, and click Edit to access the associated defaults dialog.

Each of these defaults dialogs also can be opened by clicking an associated toolbar button of the same name, which can be added to your toolbars. See “To add a button to a toolbar” on page 109.

- Auto Elevation Dimensions Defaults
- NKBA® Auto Elevation Dimensions Defaults
- Auto Story Pole Dimensions Defaults

The appearance of Auto Elevation and Story Pole Dimensions, including their size, primary and secondary formats, and extension lines, are set along with those of manual and the other automatic dimensions in the Dimension Defaults dialog. See “Dimension Defaults Dialog” on page 343.
General Panel

The settings available on the GENERAL panel will vary somewhat depending on which defaults dialog is open.

1. The **Position** settings control where automatic elevation dimensions are generated, relative to the model.
 - Check **Dimension on Left** to create a dimension string or story pole on the left side of the model in cross section/elevation views.
 - Check **Dimension on Right** to create a dimension string or story pole on the right side of the model.
 - When either Dimension on Left or on Right is selected, a corresponding **Reach** value can be specified. A Reach of 100% locates marks across the width of the structure while a Reach of 1% only locates marks located 1/100 of the way across. Reach is measured from the structural surface that is closest to the dimension line in the current view, including roof eaves but not including gutters or shadow boards.
 - Check **Dimension on Top** to create a dimension string above the model.
 - Check **Dimension on Bottom** to create a dimension string below the model.

2. Additional **Options** control how many dimension strings are created.
 - Check **Overall Dimension** to generate an overall dimension underneath the model when **Auto Elevation Dimensions** are created. Only available in the **Auto Elevation Dimension Defaults** dialog.
 - Check **Auto Refresh Dimensions** to delete and replace dimensions created by the Auto Dimension tool in question whenever a change is made to the model that affects them. Not available for Story Pole Dimensions.
 - Uncheck **Inner Dimension** to suppress the inner dimension string and generate only one outer dimension. Only available in the **Auto Story Pole Dimension Defaults** dialog. See “Auto Story Pole Dimensions” on page 359.
 - Uncheck **Dimensions Between Elevation Markers** to suppress the outer dimension string that measures the distances between each of the elevation markers. Only available in the **Auto Story Pole Dimension Defaults** dialog.

Inner Format Panel

The settings on the INNER FORMAT panel control the format of the inner string of dimensions on a Story Pole, if present, and are similar to those on the PRIMARY FORMAT panel of the **Dimension Defaults** dialog. See “Primary Format Panel” on page 344.

- Check **Use Default Formatting** to use the Primary and Secondary Format settings of the Dimension Defaults that are active when a Story Pole is created as the Inner Format. See “Multiple Saved Defaults” on page 67.

This panel is only available in the **Auto Story Pole Dimension Defaults** dialog. It is not found in the
Auto Elevation Dimension Defaults or the NKBA® Auto Elevation Dimension Defaults dialogs.

Outer Format Panel
The settings on the OUTER FORMAT panel control the format of the outer string of dimensions on a Story Pole and are similar to those on the PRIMARY FORMAT panel of the Dimension Defaults dialog. See “Primary Format Panel” on page 344.

- Check Use Default Formatting to use the Primary and Secondary Format settings of the currently active Dimension Defaults as the Outer Format.

This panel is only available in the Auto Story Pole Dimension Defaults dialog.

Marker Format Panel
The settings on the MARKER FORMAT panel control the format of the elevation value stated in elevation markers’ bottom line of text on a Story Pole and are similar to those on the PRIMARY FORMAT panel of the Dimension Defaults dialog. See “Primary Format Panel” on page 344.

- Check Use Default Formatting to use the Primary Format settings of the currently active Dimension Defaults as the Marker Format.

This panel is only available in the Auto Story Pole Dimension Defaults dialog. It is not found in the Auto Elevation Defaults or the NKBA® Auto Elevation Dimension Defaults dialogs.

Once a Story Pole dimension has been created, Additional Text can be added to the bottom line of marker text in the Dimension Line Specification dialog. See “Segments Panel” on page 370.

Locate Objects Panel
The settings on the LOCATE OBJECTS panel specify whether or not dimension lines locate specific types of objects and will vary depending on which Dimension Defaults dialog is open. In the NKBA® Auto Elevation Dimension Defaults dialog, only the CAD Objects options are available.

For more information, see “Locate Objects Panel” on page 346.

Locate Elevations Panel
The settings on the LOCATE ELEVATIONS panel control what marks dimension lines locate in cross section/elevation views as well as how Elevation Markers report their heights.

This panel is also found in the Dimension Defaults dialog, but is not available in other Dimension Defaults dialogs.

Automatic elevation dimensions can also be set to locate additional types of objects. See “Locate Objects Panel” on page 346.
Specify the position of the Grade Level Marker measured Relative to 1st Floor Subfloor. This value determines the height at which Grade Level is marked by dimension line Elevation Markers, but is not tied to the location of the terrain.

- If this value is greater than or less than 0 and Grade Level is a Mark to Include, it will be located at this distance above or below the Default 1st Floor Subfloor. See “Floor 1 Default Height” on page 314.
- When this value is 0, Grade Level is marked at the same elevation as the Default 1st Floor Subfloor.
- There is only one Grade Level Marker height in each plan, and it is a dynamic setting. If it is modified in one defaults dialog, its value will change automatically in the other two defaults dialogs and any dimensions with Elevation Markers in the plan will update as well.

Select the desired Elevation Reference, which is the elevation mark that all other marks’ elevations are measured relative to.

- Select Grade Level Marker to specify the elevation of the Grade Level Marker as 0 and measure all other marks relative to it.
- Select 1st Floor Subfloor to specify the elevation of the Default 1st Floor Subfloor as 0 and measure all other marks relative to it.

Specify which elevation Marks are included in vertically-oriented automatic elevation dimensions by default.

- An alphabetical list of Available Marks displays on the left.
- Select one or more names in the list, then click the Add button to move them to the Marks to Include list on the right. See “Shift and Ctrl Select” on page 170.
- You can also double-click on an item in this list to add it to the Marks to Include.
- A list of the Marks to Include displays on the right. At least one column must be included to create a vertical automatic elevation dimension.
- In the Marks to Include list, click in the Outer column of any line item to add or remove a checkmark. When checked, the selected mark will be included on the outer dimension line of an Auto Story Pole. Only available in the Auto Story Pole Dimension Defaults dialog.
- Select or double-click on an item in the Marks to Include list and click the Rename button to specify a new name.
- Click the Reset button to restore the default names for the selected Marks to Include.
- Select one or more items in the Marks to Include list, then click the Remove button to move those items back to the Available Marks list on the left.

Note: The Grade Level setting and the terrain in the plan are completely independent of one another. See "Terrain" on page 899.

Layer Panel
The Layer panel allows you to specify what layers dimensions created using each of the Auto Dimension tools are placed on. It is found in the specification dialogs for many different objects. For more information, see “Layer Panel” on page 149.

Temporary Dimension Defaults Dialog
The settings in the Temporary Dimension Defaults dialog allow you to control how Temporary Dimensions locate walls and CAD objects. See “Temporary Dimensions” on page 358.

Select Edit> Default Settings, expand the Dimension category and choose “Temporary”, and click Edit to access this dialog. You can also open this dialog by clicking the Temporary Dimension Defaults button, which you can add to your toolbars. See “To add a button to a toolbar” on page 109.

The appearance of Temporary Dimensions, including their size, format, and extension lines, are set along with those of manual and automatic dimensions in the Dimension Defaults dialog. See “Dimension Defaults Dialog” on page 343.
With Wall Selected - Specify how walls are located by temporary dimensions when a wall is selected.

- Select **Locate Wall Surface** to locate wall surfaces.
- Select **Locate Wall Dimension Layer** to locate wall dimension layers as specified in the **Wall Type Definitions** dialog. See “Wall Type Definitions” on page 292.

With Opening Selected - Specify how walls are located by temporary dimensions when a door, window, or masonry fireplace in that wall is selected.

- Select **Locate Wall Surface** to locate the wall’s surfaces, or **Locate Wall Dimension Layer** to locate the wall’s dimension layer.
- Select **Locate Primary Wall Side** to always locate the wall along the exterior side.
- Select **Automatic** to locate the wall’s exterior by clicking on the wall opening near its exterior side, or locate the wall’s interior by clicking on the wall opening near its interior side.

Check **Locate Interior Wall Centers** to locate interior walls at their centers instead of their surfaces. When checked, this option overrides the other settings in this dialog for interior walls.

CAD Options - Specify how CAD objects inside a selected CAD object are located by temporary dimensions.

The next two settings control how temporary dimensions locate interior walls.

- Select **Primary Wall Side** to locate one side of interior walls.
- Select **Both Wall Sides** to locate both surfaces of a selected interior wall. Wall thicknesses are not dimensioned.

Note: Temporary Dimension Defaults do not affect the temporary wall length dimensions that displays when a wall is selected. See “Measuring Walls” on page 279.

Clicking on the exterior side of a window

produces temporary dimensions that locate the wall’s exterior side

Clicking on the interior side of a window

produces temporary dimensions that locate the wall’s interior side

- Select **Ignore Objects Inside** for temporary dimensions to ignore any other objects inside a selected CAD object.
- Select **Locate First Objects Inside** to locate the first edge of another CAD object drawn inside a selected CAD object.
The Manually Drawn Dimension Tools

Select **CAD> Dimensions** to access the Dimension Tools. Manually drawn dimensions are created by clicking and dragging like other line-based objects and can be drawn in plan view, cross section/elevation views, CAD Details, and on layout pages.

With the exception of **Angular Dimensions** ✤, dimension lines only locate objects that are parallel or nearly parallel to one another and should be drawn orthogonal, or at right angles, to the objects being located.

Dimension lines locate objects using **Object Snaps** 🗼, although they do not need to be enabled in order to draw dimensions. See “Object Snaps” on page 131. Bear in mind, though, that Object Snaps must be enabled in order to:

- Locate parallel objects drawn at angles other than **Allowed Angles**.
- Locate more than one object drawn in the same space, such as a CAD line drawn over a wall.

The zoom factor of the current view affects whether objects drawn close together are dimensioned or not. If you try to dimension an array of objects but the dimension line locates only the first and last objects along its path, **Zoom** in on the objects and try again. Similarly, if you want to dimension between two objects but the dimension locates unwanted objects between them, **Zoom** out. See “Zoom Tools” on page 126.

Once created, both manually drawn and automatically generated dimension lines can be selected and edited. See “Editing Dimension Lines” on page 361.

Manual Dimensions

To display the distance between two objects, select **CAD> Dimensions> Manual Dimension** and drag a dimension line near or through the objects.

Manual Dimensions locate objects as specified on the **LOCATE OBJECTS** panel and lying within the Reach distance specified in the **Dimension Defaults** dialog. See “Dimension Defaults Dialog” on page 343.

End-to-End Dimensions

Use the **End-to-End Dimension** tool to dimension between any two defined objects in plan view, cross section/elevation views, CAD Details and on layout pages.

Select **CAD> Dimensions> End-to-End Dimension**, then click and drag the dimension from the first object to the second object. The dimension line snaps to each object, ignoring any other objects located between either end.

End-to-End Dimensions locate objects as specified on the **LOCATE OBJECTS** panel and lying within the Reach distance specified in the **Dimension Defaults** dialog.

Angular Dimensions

The **Angular Dimension** tool measures the angle between any two straight edges, including lines, walls, the sides of boxes, the straight sides of polylines, cabinets, and soffits. Any straight line or side within a CAD block can be dimensioned, as well. Edges nested up to four levels deep within a CAD block can be dimensioned.

To create an angular dimension, click on the first edge to be dimensioned, then drag an arc and release on the second edge.

As with other dimension lines, Angular Dimensions adjust if one of the dimensioned objects is moved. Angular Dimensions can also be selected and moved using its edit handle. As it is moved, an Angular Dimension maintains the location of its arc center.
Like other dimension lines, an Angular Dimension can be included in a CAD block. When the block is exploded, the Angular Dimension may become invalid and disappear when edited or changed. If this occurs, it can be redrawn.

Interior Dimensions

Draw Interior Dimension lines parallel to walls in plan view to create interior dimensions.

The Interior Dimension tool locates interior wall surfaces only. It does not dimension between layer surfaces in the same wall, and it does not locate walls unless it actually intersects them.

Interior Dimensions locate either wall surfaces or the Main Layer, depending on the settings in the LOCATE OBJECTS panel of the Dimension Defaults dialog. See “Locate Objects Panel” on page 346.

Point to Point Dimensions

The Point to Point Dimension tool places Point Markers at the start and end points of a dimension line as it is drawn and dimensions between them. See “Markers” on page 393.

Point to Point Dimensions can be drawn in either of two ways:

- When the Default edit behavior is active, a Point to Point Dimension places Point Markers at its start and end points, which it locates. Any objects along the dimension line’s length are ignored. See “Point Markers” on page 230.

- When the Alternate edit behavior is active, a Point to Point Dimension locates objects along its length as well as objects or Point Markers at its start and end. See “Defaults, Preferences, and Edit Behaviors” on page 163.

Point Markers can be selected and edited. See “Editing Markers” on page 395.

If the objects or Point Markers located by a Point to Point Dimension line are moved, the dimension updates to reflect the change.

Objects and Point Markers located by a Point to Point Dimension line can be accurately relocated by specifying new dimension values. See “Moving Objects Using Dimensions” on page 365.

Baseline Dimensions

The Baseline Dimension tool creates a series of dimension lines that all share the same origin instead of continuing from each previous location. Baseline Dimensions are independent and can be edited separately. This tool is not available in layout files.

In plan view, a cross section/elevation view or a CAD Detail, select CAD> Dimensions> Baseline Dimension, click near an object and drag a dimension line near or through the objects requiring dimensions.

The spacing between lines is the default Line Separation value. See “Setup Panel” on page 343.

Running Dimensions

The Running Dimension tool is similar to the Baseline Dimension tool in that it produces multiple measurements from a single point of origin. It is different, though, in that these measurements display on the same dimension line rather than on multiple lines. The start point of a Running Dimension line is marked by a circle. The circle’s size is the same as the dimension line’s Arrow Size.

Centerline Dimensions

The Centerline Dimension tool is available in floor plan and cross section/elevation views. It allows you to locate the centers of walls, wall openings, cabinets, fixtures, appliances, electrical objects, CAD blocks, and CAD arc centers using special centerline extension lines. Centerline
extensions can be distinguished by a dashed line style and a symbol.

Both free-standing fixtures and appliances as well as those placed into cabinets can be located by Centerline Dimensions.

Cabinet, fixture and appliance, furniture, and wall opening centers are only located as a dimension line is drawn when Centers is selected for these object types. See “Locate Objects Panel” on page 346.

The centers of a variety of other objects - including stairs, footings, electrical, and CAD objects - can also be located with a Centerline by adding an extension at the object’s midpoint. Electrical and CAD objects are only located when these options are selected in the Dimension Defaults dialog.

Centerline Dimensions can also locate the edges of other types of architectural objects, as well as CAD objects, and will locate walls as specified on the LOCATE OBJECTS panel of the Dimension Defaults dialog.

You can also specify any extension line as a Centerline in using the Mark as Centerline edit tool as well as in the Dimension Line Specification dialog. See “Mark as Centerline” on page 365.

Temporary Dimensions

Temporary Dimensions display when an object is selected and show the distance between the object’s selected edge and other objects. Select View> Temporary Dimensions to turn on or off the display of temporary dimensions. This toggle affects all views and is saved between launches of Chief Architect.

As with other dimension lines, Temporary Dimensions only locate objects that are parallel or nearly parallel to one another. They will also locate the endpoints of CAD lines and the corners of objects located past the end of the selected edge, within 4 feet (1200 mm) of the point where you click to select the object.

A temporary dimension will not display when an object is selected if a dimension line is already present that shows the same information.

You can control how temporary dimensions locate objects in the Temporary Dimension Defaults dialog. See “Temporary Dimension Defaults Dialog” on page 354.

Tape Measure

Use the Tape Measure tool to draw a temporary dimension line between any two points in the drawing area. The tool will place temporary markers at the start and end points of the dimension line. These points and the line both disappear when you release the mouse button. If Object Snaps are enabled and an object is located by the temporary line, you can snap to it.

The Automatic Dimension Tools

The Automatic Dimension Tools allow you to generate dimensions in floor plan and cross section elevation views for specific purposes.

If you edit an Auto Dimension line, it will be marked as edited, so if Auto Dimensions are later regenerated, your changes will not be lost. If an Auto Dimension line has been edited, the Default checkbox will be unchecked on the Layer panel of its specification dialog. See “Layer Panel” on page 370.

Each of the Automatic Dimension tools has its own defaults dialog so that you can customize the functionality of each independent of the others. See “Auto Dimension Defaults Dialogs” on page 350 and “Auto Elevation Dimension Defaults” on page 351.

Auto Exterior Dimensions

The Auto Exterior Dimensions tool generates dimensions around a plan’s exterior in plan view. The dimension lines locate walls and openings as specified in the Auto Exterior Dimension Defaults dialog.

Auto Exterior Dimensions require one or more rooms to be defined in order to generate. See “Room Definition” on page 313.
There are a maximum of three rows of automatically generated dimensions per exterior wall direction. The innermost dimension line locates exterior walls, interior walls, and all openings in exterior walls. The second dimension line locates exterior and interior walls. The outermost dimension line is the overall exterior dimension.

NKBA® Auto Dimensions

The NKBA® Auto Dimensions tool can be used to measure Kitchen, Bath and Master Bath rooms in plan view in either of two ways:

- Select CAD> Automatic Dimensions> NKBA® Auto Dimensions to generate dimensions measuring each wall that defines Kitchen and Bath types on the current floor. See “Room Types and Functions” on page 315.
- Select one or more rooms of any type and click the NKBA® Auto Dimensions edit tool to generate dimensions that measure each wall defining the selected room(s).

NKBA® Auto Dimensions locate walls and openings in accordance with NKBA® standards as specified in the NKBA® Auto Dimension Defaults dialog.

NKBA® Auto Dimensions do not recognize the No Locate setting for walls. If a wall defining a Kitchen or Bath is specified as No Locate, NKBA® Auto Dimensions will locate it anyway.

Auto Elevation Dimensions

The Auto Elevation Dimensions tool generates dimensions that locate walls and other objects in cross section/elevation views, as specified in the Auto Elevation Dimension Defaults dialog.

Auto Story Pole Dimensions

The Auto Story Pole Dimensions tool generates Elevation Markers and dimensions that locate walls and other objects in cross section/elevation views, as specified in the Auto Story Pole Dimension Defaults dialog.

Auto Interior Dimensions

Select one or more rooms and click the Auto Interior Dimensions edit button to generate interior dimensions that measure each wall defining the selected room(s).

Auto Interior Dimensions lines are generated inside of the rooms they measure and locate walls, openings, and other objects as specified in the Auto Interior Dimension Defaults dialog.

Auto Interior Dimensions do not recognize the No Locate setting for walls. If a wall is specified as No Locate, Auto Interior Dimensions will locate it anyway. See “No Locate” on page 280.

Displaying Dimension Lines

The display of dimension lines is controlled in the Layer Display Options dialog as well as by using Drawing Groups. See “Displaying Objects” on page 141.

You can customize the both appearance and the display of dimension lines for different purposes. See “Default Sets” on page 71.

Dimension lines created by any of the dimension tools share the same components.

- **Dimension Lines** run parallel with the distance being measured.
- **Extension Lines** are perpendicular to dimension lines, indicating what they locate. If a dimension line locates more than two objects, extension lines divide the dimension line into segments.
- **Arrowheads** display at the intersections of dimension and extension lines.
- **Dimension Labels** display at the midpoint of dimension line segments and indicate the distance that each segment measures.

![Dimension Labels and Arrowheads](image)

If a manual dimension line is on a layer that is turned off and you select an object located by that dimension line, it will display for reference using the Selection Line color specified in the **Preferences** dialog. See “Colors Panel” on page 82. This will happen only if **Temporary Dimensions** are turned on. See “Temporary Dimensions” on page 358.

Extension Lines

If a dimension line is offset from the objects it locates, extension lines help clarify exactly what is being located. Extension lines are numbered: when a dimension line is selected, an Extension Line Number displays at the end of each extension line.

You can specify the default length of extension lines in the **Dimension Defaults** dialog. See “Extensions Panel” on page 349.

Once drawn, the appearance of extension lines can be edited. See “Editing Extension Lines” on page 363.

Any extension line can be specified as a Centerline that displays the symbol. See “Centerline Dimensions” on page 357.

In cross section/elevation views, vertically-oriented dimension lines can display Elevation Markers along their extension lines. See “Extensions/Markers Panel” on page 369.

Dimension Labels

Manually drawn, automatic, and temporary dimension labels use the Text Style specified in the **Dimension Defaults** dialog. Unlike many objects that use Text Styles, by default dimensions use a Text Style specified in the defaults dialog rather than the Text Style assigned to their layer. See “Text Style Panel” on page 350.

By default, dimension labels have a solid fill that is the same as the **Background Color** set in the **Preferences** dialog. You can instead specify that labels use a Text Style that has a transparent or other fill.

You can also specify the minimum size of dimension numbers displaying on screen in the **Preferences** dialog. See “Appearance Panel” on page 80.

Labels can both a primary and secondary format and can be centered on dimension lines or located either above or below them. See “Primary Format Panel” on page 344.

Dimension labels have their own edit handle and can be moved when a dimension line is selected.

Dimension Arrowheads

You can specify the style, color and size of dimension arrows in the **Dimension Defaults** and **Dimension Line Specification** dialogs. See “Arrow Panel” on page 236.

The arrow at the end of a dimension line will not display if it is close enough to another dimension arrow that the two will overlap. A typical example of this is where two sections of an Interior Dimension locate two sides of an interior wall.

Elevation Markers

The **Auto Story Pole Dimensions** tool creates a story pole with dimension strings automatically. See “Auto Story Pole Dimensions” on page 359.

In addition, Elevation Markers can be added to any vertically-oriented dimension line in a cross section/elevation view.

To add an elevation marker

1. Select an eligible dimension line and note the number of the extension line that you would like to add a marker to. See “Extension Lines” on page 369.
Selecting Dimension Lines

Before a manually-drawn or automatic dimension line can be edited, it must be selected. A dimension line can be selected in one of three ways, each of which affects the ways that the dimension line can then be edited.

The standard way to select an individual dimension line is to click anywhere along its length when the Select Objects or any of the Manual Dimension tools is active. When selected in this manner, the dimension line’s full range of editing options are available.

You can instead click on one of the dimension line’s extension lines. When selected in this way, the selected extension line’s length can be edited and a Centerline marker added to or removed from it; however, fewer edit handles are available overall. See “Editing Extension Lines” on page 363.

Dimension lines can also be group-selected, with limited editing options. See “Selecting Multiple Objects” on page 169.

Editing Dimension Lines

For information about changing the value reported in a dimension line label, see “Moving Objects Using Dimensions” on page 365.

With the exception of Temporary Dimensions, dimension lines can be selected and edited using the mouse, the edit toolbar buttons, and the Dimension Line Specification dialog. See “Dimension Line Specification Dialog” on page 367.

If an Auto Dimension line is edited, it will no longer be considered an automatic dimension line and will not be deleted and replaced the next time the Auto Dimensions tool is used. An automatic dimension line that has been edited can be identified as such in its specification dialog: on the LABEL panel, the Default checkbox will be unchecked. See “Layer Panel” on page 149.

Using the Mouse

When a dimension line is selected, its edit handles can be seen. There are six types of dimension line edit handles. The total number of edit handles a dimension line has depends on how many extension lines it has.
The **Add Segments** handles are located just past the ends of the dimension line and are used to increase the length of the dimension line and locate additional objects with it. The types of objects and their mark points that can be located with this method are dependent on the Dimension Defaults that the selected dimension line inherits its settings from as well as the tool used to draw it.

The **Extension Line** handles are positioned at the point that each extension line locates and are used to move or delete extension lines. See “Moving an Extension Line” on page 363.

The **Add Extension Line** handle displays to the side of the Move handle and is used to add extension lines to the dimension line. Extension lines added in this manner are able to locate marks that the dimension line might not locate as it was being drawn. See “Adding an Extension Line” on page 363.

The **Move** handle is located where you clicked to select the dimension line and is used to move the entire dimension line, including any subsections, perpendicular to itself. Extension lines are resized as appropriate. The pointer changes to a two-headed arrow ↔ when moved over this handle.

The small, square **Move Dimension Label** handle is located at the center of the selected label. Use this handle to move the dimension number for each dimension line section. The pointer changes to a four-headed arrow ↴ when moved over this handle.

The **Rotate** handle is located past the end of the dimension line and can be used to rotate the dimension line.

Using the Edit Tools

Dimension lines can be repositioned, copied, and deleted using the edit toolbar buttons just like other objects in the program. See “The Edit Toolbar” on page 29.

Click the **Edit Extensions** edit button to edit the lengths of the selected dimension’s extension lines. See “Editing Extension Lines” on page 363.

Click the **Add Additional Text** edit button to add or replace the text in a dimension line segment’s label. See “Add Additional Text” on page 365.

Dimension Number Size

The initial size of dimension numbers is specified in the **Dimension Defaults** dialog. See “Dimension Defaults Dialog” on page 343.

You can specify number height for individual dimension lines in the **Dimension Line Specification** dialog. See “Dimension Panel” on page 367.

As with text and other objects, dimension number size is subject to scaling when sent to layout or printed. See “Printing Text, Dimensions, and Line Styles” on page 991.

Copying and Pasting Dimension Lines

Dimension lines can be copied and pasted into any view type that supports dimensions. If a dimension line is copied independent of the objects it originally locates, the pasted dimension line will locate Point Markers. See “Point Markers and Dimensions” on page 393.

Dimension lines can also be copied and pasted from one plan or layout file to another. Bear in mind that dimension lines use dynamic defaults. If the destination file has a Saved Manual Dimension Default with the same name as that used by the dimension line being copied, the pasted dimension
will refer to it. If no such saved default exists in the destination file, the pasted dimension will become associated with the currently active Saved Manual Dimension Default.

Deleting Dimension Lines

There are several ways to delete dimension lines. You can select any manual or automatic dimension line or group of dimension lines, then press the Delete key or click the Delete edit button. See “Deleting Objects” on page 220.

Editing Extension Lines

Before extension lines can be edited, either they or their dimension line must be selected. See “Selecting Dimension Lines” on page 361.

Extension lines can be added, edited, and deleted using the edit handles when their dimension line is selected. In addition, extension lines can be individually selected and edited.

Extension lines are also affected by settings in the Dimension Line Specification dialog. See “Extensions/Markers Panel” on page 369.

Adding an Extension Line

The Add Extension Line edit handle allows you to locate marks that the dimension line might not have been able to locate as it was being drawn. Interior Dimensions, for example, do not locate cabinets as they are drawn; however, you can add an extension line that locates a cabinet.

To add an extension line
1. Select the dimension line anywhere along its length.
2. Click the diamond-shaped Add Extension Line edit handle which displays near the Move edit handle. The pointer changes to a two-headed arrow.
3. Drag the handle to the object that you want to locate with a new extension handle. This example adds an extension line to the window edge.
4. Release the mouse button to add an extension line.

Moving an Extension Line

Extension lines can be moved to locate the centers, sides, or surfaces of most objects. Here, an extension line is moved from the windows edge to the center.

To move an extension line
1. Select the dimension line anywhere along its length: do not click on the extension line itself.
2. Click the Extension Line edit handle. The pointer changes to a two-headed arrow ↔.

3. Drag the handle to a new location. The extension line snaps to possible marks as the handle is moved.

4. Release the mouse button at the new location.

Deleting an Extension Line

When an extension line is deleted, the remaining dimensions update. If a dimension line has only two extension lines, they cannot be deleted.

To remove an extension line

1. Select the dimension line anywhere along its length: do not click on the extension line itself.
2. Click the Extension Line edit handle.
3. Drag it perpendicular to the direction of the arrows, away from any dimensionable object, and release the button when the extension line disappears.

In addition, individual extension lines can be selected, allowing you to resize them and/or mark them as Centerlines.

Resizing Extension Lines

You can resize extension lines in the Dimension Line Specification dialog or using their edit handles. See “Extensions Panel” on page 349.

To resize an extension line

1. Click on the extension line or select the dimension line and click the Edit Extensions edit button to display two handles along the extension line.
2. Click either handle, turning the pointer into a two-headed arrow ↔.
3. Extend or contract the extension line and release the mouse.

Using Proximity Fixed

The Proximity Fixed option allows you to specify a fixed length for one extension line that will not change if the object the extension line locates is moved.

To use Proximity Fixed

1. Select a dimension line that locates multiple independent objects and note the Extension Number of the extension line that you would like to have a fixed length.
2. Open the Dimension Line Specification dialog and go to the EXTENSIONS panel. See “Extensions/Markers Panel” on page 369.
 • Select the Extension Number that you noted in step 1 from the Selected Extension drop-down list.
 • Check Proximity Fixed.
 • Specify the desired Distance to Marked Object, which is the distance from the selected dimension line to the object that the Selected Extension locates. This distance includes the Gap From Marked Object.
 • Click OK.
To see how Proximity Fixed works, select the object that the extension line with Proximity Fixed specified and move it. Notice that the dimension line moves in response and that all extension lines’ lengths adjust except for the one with Proximity Fixed.

Add Additional Text

Text can be added to any manual or automatic dimension line using the Add Additional Text edit tool.

To add text to a dimension label

1. Select a dimension line that you would like to add text to.
2. Click the Add Additional Text edit button.
3. Click on the segment of the dimension line with the label you wish to add text to.
4. In the Additional Text dialog:
 - Type any Leading Text that you want to display before the dimension value.
 - Type any Trailing Text that you want to display after the dimension value.

Moving Objects Using Dimensions

Most objects can be moved by changing an automatic, manual, or temporary dimension value that locates it. This technique can be applied in nearly any situation where dimensions are present, including angular dimensions. See “Moving Objects” on page 192.

Mark as Centerline

Any extension line can be specified as a Centerline. Click on an extension line to select it, and then click the Mark as Centerline edit button. See “Centerline Dimensions” on page 357.

Similarly, the Centerline can be removed from an extension line using the Remove Centerline Mark edit button.

- Check **Suppress Dimension Value** to prevent the dimension value from displaying in the selected segment at all.

5. When you click OK, the segment you selected will display the added text.

Additional Text can also be added and edited in the Dimension Line Specification dialog. See “Segments Panel” on page 370.

If a dimension segment has an elevation marker associated with it, any added text will also be added to the marker’s bottom line of text. See “Marker Format Panel” on page 368.

You can check Highlight Overridden Dimension Text in the Preferences dialog to identify any dimension label text that replaces a suppressed dimension value. See “General Panel” on page 85.

Note: Dimension lines with text added are not supported when exported to .dxf/.dwg. When exported, they are converted to text and CAD lines. The same occurs when CAD Detail from View is used. See “CAD Detail from View” on page 256.

In addition, some objects can be resized using dimensions. See “Resizing Objects” on page 199.

Your pointer indicates which dimensions can be used to relocate the selected object by changing to a pointing hand icon.
Another way to tell is to select an object and drag it in the desired direction. As you drag, note which dimensions update. These dimensions are the dimensions that can be used to move that object.

To move an object using dimensions

1. Select the object and click on a dimension line that locates it. An inline text field opens at the location where you clicked.
 - The actual distance displays in the text field using the default primary format. See “Primary Format Panel” on page 344.
 - If the dimension is locating two different objects and the selected object is polyline-based, the Move Edge and Move Entire Object buttons display to the right of the text field.

 ![Move Edge (selected) and Move Entire Object](image)

 - If the dimension describes a selected wall’s length, additional buttons display to the right. See “Using Dimensions” on page 281.

2. Click the Move button of your choice.

3. Enter a new value in text field. The unit of measurement is set in the Number Style/Angle Style dialog.
 - To use a different unit, include its indicator after the value. See “Dialog Number/Angle Style Dialog” on page 105.
 - To move the selected object past a second object, to its opposite side, enter a negative value.
 - Basic math operations can also be performed in the inline text box, just as they can in dialogs. See “Math Operations in Dialogs” on page 31.

4. The selected object moves or resizes when you press the Enter key or click outside of the text field.

5. If Bumping/Pushing is enabled, the object being moved will bump into any objects in its move path and not move the entire distance. Hold down the Ctrl key when you press Enter to override this move restriction. See “Bumping/Pushing” on page 192.

A variety of polyline- and box-based objects can also be resized using dimensions.

To resize an object using dimensions

1. Select the object along the edge that you would like to move. See “Selected Edge” on page 168.
2. Click on a dimension line that indicates its distance from the object’s opposite side.
3. In the inline text field, enter a value.
4. Click Move edge to move the selected edge only.
5. The selected edge moves, resizing the object, when you press the Enter key.

Resizing Walls Using Exterior Dimensions

When resizing a structure using dimensions, it is important to work your way around it in one direction. Relocate one wall at a time in succession so that you do not redefine the same dimension more than once.

For more information, see “Measuring Walls” on page 279.

Using Angular Dimensions

Angular Dimensions are useful for adjusting the angles of polyline-based objects and walls.

To change an angular dimension

1. Draw an CAD> Dimensions> Angular Dimension, then click and drag to draw an arc within the angle you wish to measure.
2. Select the edge that you want to move.
3. Click the dimension value to open the **Set Angular Dimension** dialog.

The **Set Angular Dimension** dialog indicates the **Previous Value** in degrees, minutes and seconds.

4. Enter a value in the **New Value** field.

5. Specify what you want to rotate:
 - Select **Rotate edge** to move the selected edge when you click OK, or
 - Select **Rotate entire polyline** to rotate the entire object about the corner formed by the edges that the Angular Dimension locates, maintaining the previous value of that angle.

6. Click **OK** to apply the change.

Dimension Line Specification Dialog

To open the **Dimension Line Specification** dialog, double-click a dimension line using the **Select Objects** or **Manual Dimension** tool, or select a dimension line or group of dimension lines and click the **Open Object** edit button.

The settings in this dialog are dynamic defaults associated with a particular Saved Manual Dimension Default. See “Dimension Defaults Dialog” on page 343.

Dimension Panel

1. **Inherits Default Properties From** - The name of the Saved Dimension Default that the selected dimension line gets its default attributes from displays here.
 - If multiple dimension lines are selected, “No Change” may display here.
 - You can select a different Saved Dimension Default from the drop down list.
 - If a dimension line inherits attributes from a Saved Dimension Default, that default cannot be deleted. See “Saved Defaults Dialog” on page 68.

2. **Options** - Specify the size and display of wall widths attributes for the selected dimension line. The minimum on-screen size can be set in the **Preferences** dialog. See “Appearance Panel” on page 80.
 - Specify the **Number Height** for the selected dimension. See “Dynamic Defaults” on page 67.

 - Check **Suppress Wall Widths** to suppress those portions of the dimension line that measure between two surfaces of the same wall. Both sides of a wall may still be located, but its width will not display.

3. **Dynamic Number Height** is subject to scaling. See “Scaling Text” on page 385.
This option is checked by default for most manually drawn dimensions, but is unchecked for Interior Dimensions.

3 Specify the use and appearance of Rounded Value Indicators, which can display when the degree of accuracy in use is not sufficient to describe a dimension’s true value.

- Check Use Default to use the default indicator(s). Uncheck this box to make the options that follow active.
- Check + or - After Number to indicate that the actual dimension value is higher or lower than the value shown.
- Check ~ Before Number to indicate dimension values that are not accurate with the ~ symbol.

Dimension Panel for Angular Dimensions

- The name of the Saved Dimension Default that the selected dimension gets its default attributes from displays here. You can select a different Saved Default from the drop-down list.
- Specify a Number Height for the selected dimension. See “Dynamic Defaults” on page 67.
- Select an Angle Style radio button to specify the selected dimension’s angle format. See “Dialog Number/Angle Style Dialog” on page 105.

Primary Format Panel

To enable the settings on the PRIMARY FORMAT panel of the Dimension Line Specification dialog, uncheck Use Default Formatting.

The settings that follow are the same as those on the same panel of the Dimension Defaults dialog, but apply only to the selected dimension line(s). See “Primary Format Panel” on page 344. Not available for Angular Dimensions.

Secondary Format Panel

To enable the settings on the SECONDARY FORMAT panel of the Dimension Line Specification dialog, uncheck Use Default Formatting and then check Include Second Format.

The settings that follow are the same as those on the same panel of the Dimension Defaults dialog, but apply only to the selected dimension line(s). See “Secondary Format Panel” on page 346. Not available for Angular Dimensions.

Marker Format Panel

The settings on the MARKER FORMAT panel control the format of the elevation value stated in elevation markers’ bottom line of text on a Story Pole and are similar to those on the PRIMARY FORMAT panel of the Dimension Defaults dialog. See “Primary Format Panel” on page 344.

This panel is only available if the selected dimension line is drawn vertically in a cross section/elevation view. See “Detailing Cross Section/Elevation Views” on page 789.

- Check Use Default Formatting to use the Primary Format settings of the currently active Dimension Defaults as the Marker Format.

Leading and trailing text can be added before and after the elevation value in an elevation marker’s...
bottom line of text on the SEGMENTS panel of the **Dimension Line Specification** dialog. See “Segments Panel” on page 370.

Extensions/Markers Panel

The EXTENSIONS/MARKERS panel is not available for dimensions selected as a group or for Angular Dimensions.

- **Selected Extension** - Choose an extension line associated with the currently selected dimension from the drop-down list. The Selected Extension can then be edited here.

- **Uncheck Use Plan Default** to enable the three settings that follow. Check this box to restore the default settings to the Selected Extension line. See “Dimension Defaults Dialog” on page 343.

- The **Extension Length** settings are the same as those in the **Dimension Defaults** dialog, but apply to the extension lines associated with the selected dimension line only. See “Extensions Panel” on page 349.

- **Click Apply to All** to apply the settings for the Selected Extension line to all extension lines associated with the selected dimension.

- **Check Proximity Fixed** to specify a fixed distance between the marked object and the dimension line. You can only fix the proximity for a single extension line.

 - **Distance to Marked Object** - When Proximity Fixed is checked, you can specify the distance from the dimension line to the marked object using a positive value. See “Extensions Panel” on page 349.

- The **Style** settings provide alternatives to the standard extension line style. The selected extension line may have Mark as Centerline checked, or Display Elevation Marker, but not both.

 - **Check Mark as Centerline** to mark the selected extension line with a Centerline symbol. Not available in the **Dimension Defaults** dialog. See “Mark as Centerline” on page 365.

 - **Check Draw Elevation Marker** to add an elevation marker to the selected extension line. Only available for vertically oriented dimension lines.
in cross section/elevation views. See “Elevation Markers” on page 360.

- Specify the **Elevation Marker Text**, which is the text that accompanies an Elevation Marker. This will be pre-populated if the selected extension line locates an elevation mark recognized by the program. Only available when Draw Elevation Marker is selected, above. See “Locate Elevations Panel” on page 353.

- Specify which Saved Marker Defaults the selected extension line’s **Marker Inherits Properties From**. Only available when Draw Elevation Marker is selected above, this setting determines the marker’s size and appearance. See “Multiple Saved Defaults” on page 67.

- Click the **Define** button to modify the selected Saved Marker Defaults. See “Marker Defaults” on page 372.

Segments Panel

Additional Text can be added to the label of any segment of the selected dimension line on this panel as well as using the **Add Additional Text** edit tool. See “Add Additional Text” on page 365.

If the selected segment has an elevation marker associated with its extension line, the marker’s lower text will also receive this Additional Text. See “Auto Story Pole Dimensions” on page 359.

1. Select the **Segment** of the selected dimension line that you would like to modify using the settings that follow.

2. Check **Blank Segment** to suppress the selected segment’s dimension label.

Specify any required **Text Added to Segment** for the selected segment and elevation marker, if one is present.

- Type the **Leading Text**, which appears before the dimension value in the label.
- Type the **Trailing Text**, which appears after the dimension value in the label.
- Check **Suppress Dimension Value** to prevent the dimension value from displaying in the selected segment at all.

Layer Panel

The **Layer Panel** is found in the specification dialogs for various objects. For more information, see “Layer Panel” on page 149.

If the selected dimension line was automatically generated, the **Default** checkbox on this panel will be unchecked automatically if the dimension line is edited. See “The Automatic Dimension Tools” on page 358.

Arrow Panel

For information about the settings on this panel, see “Arrow Panel” on page 236.
The Text Tools help you draw attention to special details of your drawings. Text objects can be added in plan view, in cross section/elevation views, in CAD Details, and to layout pages.

The display of text can be controlled by layer or set specifically for each text object.

Chapter Contents
- Text Defaults and Preferences
- Fonts and Alphabets
- The Text Tools
- Creating Text, Callouts and Markers
- Displaying Text, Arrows, Callouts and Markers
- Rich Text Specification Dialog
- Text Specification Dialog
- Editing Text
- Copying and Pasting Text
- Find/Replace Text and Spell Check
- Text Arrows
- Callouts
- Callout Specification Dialog
- Editing Callouts
- Markers
- Marker Specification Dialog
- Editing Markers
- Notes, Note Types, and Note Schedules
- Note Specification Dialog
- Text Styles
- Text Macros

Text Defaults and Preferences

Text Defaults can be accessed by selecting *Edit> Default Settings* in any view in which text can be created. Click the "+" next to Text, Callouts and Markers to display the sub-headings. See “Default Settings vs Preferences” on page 65.

The default settings for Rich Text, Text, Callouts, Markers, and Arrows determine what these objects look like when they are first created. Text Style Defaults determine the appearance of text associated with things like dimensions and object labels.

Rich Text, Text, Callouts, Markers, and Arrows can support multiple Saved Defaults. In order to open the defaults dialog for of
these tools, you must first open its **Saved Defaults** dialog and choose an available saved defaults setup. See “Multiple Saved Defaults” on page 67.

- When you access a defaults dialog for any of the Text Tools via the **Default Settings** dialog, the **Saved Defaults** dialog will open first, allowing you to select which Saved Default you wish to edit. Multiple Defaults can be selected if you wish. See “Shift and Ctrl Select” on page 170.

- When you access this dialog by double-clicking a **Text Tool** button, the defaults dialog for the currently active Saved Default is opened directly. If you would like the **Saved Defaults** dialog to open first in this situation, you can enable this option in the **Preferences** dialog. See “General Panel” on page 85.

- In either case, the name of the Saved Default being edited will display in the title bar at the top of the dialog box.

Changes made to default settings do not alter existing text objects, so it is a good idea to go over these settings before placing text.

Text Style Defaults

Select “Text Style” from the list in the **Default Settings** dialog and click the **Edit** button to open the **Saved Text Style Defaults** dialog. The **Text Style** Defaults button can be added to your toolbars. See “To add a button to a toolbar” on page 109.

The **Text Style Defaults** dialog allows you to specify the attributes of the various Text Styles in use in the current file. See “Text Styles” on page 398.

Rich Text Defaults

Double-click the **Rich Text** or **Leader Line** tool to open the **Saved Rich Text Defaults** dialog and edit the currently active Saved Default.

The **Rich Text Defaults** dialog is similar to the **Rich Text Specification** dialog, but the name of the current Saved Default displays in the title bar. See “Rich Text Specification Dialog” on page 376.

Leader Lines and **Text Lines with Arrows** use the same default layer as Rich Text, so by default they have the same color, line weight and line style. See “Layers” on page 142.

Text Defaults

Double-click the **Text** tool to open the **Saved Text Defaults** dialog and edit the currently active Saved Default.

The **Text Defaults** dialog looks almost the same as the **Text Specification** dialog, but the name of the current Saved Default displays in the title bar. See “Text Specification Dialog” on page 381.

Callout Defaults

Double-click the **Callout** tool to open the **Saved Callout Defaults** dialog and edit the currently active Saved Default.

The **Callout Defaults** dialog looks almost the same as the **Callout Specification** dialog, but the name of the current Saved Default displays in the title bar. See “Callout Specification Dialog” on page 392.

Marker Defaults

Double-click the **Marker** tool to open the **Saved Marker Defaults** dialog and edit the currently active Saved Default.

The **Marker Defaults** dialog looks almost the same as the **Marker Specification** dialog, but the name of the current Saved Default displays in the title bar. See “Marker Specification Dialog” on page 394.

Arrow Defaults

Double-click the **Text Line with Arrow** tool to open the **Saved Arrow Defaults** and edit the currently active Saved Default.

The settings in the **Arrow Defaults** dialog determine the initial settings for arrows drawn using the **Leader Line**, **Text Line with Arrow** and **Line With Arrow** tools. These settings also determine the initial appearance of arrows when they are added to CAD lines, arcs, and polylines.

The **Arrow Defaults** dialog looks almost the same as the **ARROW panel of the Line Specification** dialog, but the name of the current Saved Default displays in the title bar. See “Arrow Panel” on page 236.

Avoid typing any text in any text Defaults dialog unless you want it to be present in all text objects you create.
Default Sets

The Text Tools are among the items associated with Default Sets, which are groups of Saved Defaults that can be customized and activated for specific drawing tasks. See “Default Sets” on page 71.

Fonts and Alphabets

Chief Architect allows you to use any font found in your computer’s Fonts directory.

For best printed results, using true-type or open-type fonts is recommended.

Chief Blueprint Font

The Chief Blueprint font is installed in the Windows Fonts directory when Chief Architect is installed.

On Mac systems, this font is embedded with the Chief Architect installation but not installed on the system. As such, it is available for use in Chief Architect but not in other programs.

International Alphabets

The Rich Text tool supports unicode alphabets and characters. In order to use a unicode alphabet or characters, the appropriate language support must be installed on your computer.

Special characters can be added to any Rich Text object by:

- Copying and pasting the character from another application;
- Copying and pasting the character from the Windows Character Map;
- Using the Mac Character Viewer;
- Typing the keystroke associated with the character.

See “Copying and Pasting Text” on page 386.

Character Size

Text, Callouts, Markers, Schedules, and dimension numbers can be sized to 1/128” accuracy (0.078125 mm). See “Text Style Panel” on page 399.

These objects use CAD Style Font Sizing, which specifies text size as the measurement from the baseline to the topmost part of the capital letter A, as in most CAD programs.

In legacy files migrated into Version X12, an additional Legacy Compatible Size option will be available for some objects if it was specified in the original program version. When this method is used, text size is based on information stored in the font that is then modified to approximate the specified Character Height.

Rich Text objects have two font sizing methods to choose from: CAD Style Font Sizing and a method similar to most word processing applications, where size is based on information stored in the font. See “Options Panel” on page 380.

Missing Fonts

If you open a plan or layout file that uses a font that is not installed on the current computer, the program will give you an opportunity to replace it in the Replace Fonts dialog.

The table lists all missing fonts and how they will be replaced.

- Click on a font name in the list to select it. Use the Shift or Ctrl key to select multiple fonts. See “Shift and Ctrl Select” on page 170.
- Select a replacement font from the Replace With drop-down list, or leave “No Change” as the
selection to maintain the file’s association with the missing fonts.

- A preview of the selected font displays below the Replace Width list.

If you do not plan to return the file to the computer where it was created, you may want to replace missing fonts with the fonts you normally use. On the other hand, if you do intend to return the file, you may prefer to not replace any missing fonts.

The Text Tools

Select CAD > Text to access the Text Tools. These tools are available in plan view, in cross section/elevation views, in CAD Details, and in layout files.

The Rich Text tool is used to create text objects.

The Text tool is used to create simple text objects with a single font and style format, or with Tab-delimited columns. It is not as flexible as the Rich Text tool; however, it was the tool used to create text in Chief Architect X1 and prior. See “Creating Text, Callouts and Markers” on page 374.

The Leader Line tool places either a Text or Rich Text object with an arrow attached. See “Leader Line” on page 390.

The Callout tool is used to place callouts. See “Callouts” on page 391.

The Marker tool is used to place markers for Level Lines, Test Borings and Point Markers. See “Markers” on page 393.

The Note tool is used to create callouts that are associated with a Note Schedule. See “Notes, Note Types, and Note Schedules” on page 395.

The Text Macro Management tool allows you to create and manage text macros in the current file. See “Text Macro Management Dialog” on page 1008.

The Note Type Management tool allows you to manage the different types of Notes available in the current file. See “Note Type Management Dialog” on page 396.

Creating Text, Callouts and Markers

Text, callouts and markers can be created in plan view, in cross section/elevation views, in CAD Details, and on layout pages. See “View Windows” on page 119.

Notes can be created in these views as well. In addition, they can be created in camera views. See “Notes, Note Types, and Note Schedules” on page 395.

Once created, text, callouts and markers can be selected and edited in a variety of ways. See “Editing Text” on page 383.

To create Text

1. Select CAD > Text > Rich Text.
2. Click and drag to draw a rectangle defining the area of the text object.
 - The rectangle that you drag must be at least as tall as the default line spacing for a single line of text. See “Paragraph Options Dialog” on page 378.
 - When you release the mouse button, a blank text box is created with an active cursor, ready for you to type.
3. Type or paste the desired text into the Text Field. If the program identifies any spelling issues, they will be underlined in red.

4. Use the options on the Edit Bar, which displays above the Text Field, to change the font, style and size of any portion of the text. See “Editing Text” on page 383.

5. When you are finished, simply click outside of the Text Field to close it and the Edit Bar. The Rich Text tool remains active, so you can click and drag to create additional Text objects if you wish.

Note: If you do not type anything in the Text Field, a text object will not be created when you click outside of it.

To create Text

1. Select CAD> Text> Text T.

2. Click where you want the upper left corner of the text to be located. The Text Specification dialog opens. See “Text Specification Dialog” on page 381.

3. Enter text and click OK.

Up to 32,000 characters can be inserted in one Text T object. It is usually better to use several smaller Text T objects when a lot of text must be inserted.

Displaying Text, Arrows, Callouts and Markers

As with other types of objects, the display of Text objects is controlled in the Layer Display Options dialog. By default, text objects are located on layers with “Text” at the beginning of the layer name, such as “Text, Callouts”. See “Layer Display Options Dialog” on page 144.

Text objects can only be displayed in views where text can be created.

The display attributes of each individual text object can be controlled independent of the layer it is placed on. See “Rich Text Specification Dialog” on page 376.

Placing Text from the Library

Callouts, Markers, and Notes can be added to the User Catalog in the Library and then placed into plans and layout files as needed. See “Add to Library” on page 700.

Rich Text and Text can also be added to the library, but only when included in a CAD block. See “CAD Blocks” on page 251.

Text and CAD Objects

Text can be used in combination with CAD objects to create legends, title blocks, and a wide variety of other details. See “CAD Objects” on page 225 and “Layout” on page 961.

A selection of legends and other CAD blocks that use both text and CAD can be found in the Library Browser. See “The Library” on page 691.

Custom Text Layers

Text objects do not need to be shown at all times. For instance, electrical notes will be included with the electrical plan, but are not needed in the framing plan. You can create custom layers and layer sets to control the display of text and other objects. See “Layer Sets” on page 147 and “Layer Display Options Dialog” on page 144.

To move text to a different layer, select the text object or group of text objects, then click the Open Object edit button to open the Text
Specification dialog. The selected text object’s layer can be changed on the **Line Style** panel. See “Line Style Panel” on page 235.

Text Arrows

If a text arrow is attached to a **Text** object and they are on the same layer, changing the layer of the text will also change the layer of the attached text arrow. However, changing the layer of the text arrow will not change the layer of the text it is attached to. See “Layer Attributes” on page 142.

Notes

Unlike other text objects, Notes can be created and display in camera views. See “Notes, Note Types, and Note Schedules” on page 395.

Rich Text Specification Dialog

The **Rich Text Specification** dialog opens if you select one or more Text objects, then click the **Open Object** edit button.

This dialog also opens when you select the **Rich Text** tool and then click once in the drawing area.

When Text objects are group-selected, the text content, zoom factor, and Paragraph Options cannot be changed, but everything else can be.

The **Rich Text Specification** dialog is similar to the **Rich Text Defaults** dialog but affects the selected text rather than all subsequently created text objects. Also, the name of the Saved Default being edited will display in the title bar of the defaults dialog. See “Text Defaults and Preferences” on page 371.

Text Panel

The settings on the **Text** panel allow you to type the selected Text object’s content and control many aspects of its appearance, including its font, size, color and style.

You can specify the appearance of the text before typing, and can also select and change the attributes of all or portions of the text content after it is typed.

To change text that already exists, simply highlight it using the mouse and/or the Shift + arrow keys and then make any needed changes to its attributes.

Note: Text objects have a different specification dialog. See “Text Specification Dialog” on page 381.

Note: If you do not type anything in the text field on this panel when creating a new object, no object will be created when you click OK. On the other hand, if you remove the text from an existing object and click OK, an empty text box will result.

Rich Text Specification dialog. Use the options on the Edit Bar, which displays above the Text Entry field, to change the font, size, and style of the text.

The Edit bar also displays in the drawing area above the Text object when you click the **Edit Text in Place** edit button. See “Editing Text” on page 383.

Select the desired options before typing to affect the text as it is typed, or select some or all of the text and then specify which options to apply to it.
• Select a **Font** from the drop-down list.
• Specify the **Text Size** in drawing units.

• Click the **Print Size** button to open the **Printed Size Input** dialog. See “Scaling Text” on page 385.

• Click the **Color** button to specify the color of the selected or subsequently typed text. See “Color Chooser/Select Color Dialog” on page 160. If Layer Color Text is checked on the APPEARANCE panel, any custom colors specified here are lost.

• Click the **Bold** button to specify the selected text as bold. The Ctrl+B hotkey can also be used.

• Click the **Italic** button to specify the selected text as italic. The Ctrl+I hotkey can also be used.

• Click the **Underline** button to specify the selected text as underlined. The Ctrl + U hotkey can also be used.

• Click the **Strikethrough** button to specify the selected text as stricken-through.

• Click the **Uppercase** button to display the selected text in all capital letters.

• Click the **Align Left**, **Align Center**, or **Align Right** button to specify how the selected text is aligned.

• Click the **Paragraph Options** button to specify the selected paragraph’s alignment, spacing and bullets or numbering in the **Paragraph Options** dialog.

• Click the **Spell Check** button to check the spelling in the selected text object. See “Spell Check” on page 388.

• Click the **Insert Macro** button to place a Text Macro at the location of the cursor. Not available when multiple text objects are selected. User Defined macros are only available when the selected Rich Text object points to an eligible object using a Leader Line or Text Line with Arrow. See “Text Macros” on page 400.

• Specify the **Zoom** factor of the selected text by typing a percentage value in the text field or clicking the up/down arrows. This setting only affects the text as it appears in this dialog.

Note: Some fonts cannot be drawn at certain zoom factors. When this is the case, the appearance of the text will not change.

2 Type or paste text in the Text Entry field. See “Copy, Cut and Paste” on page 386.

• Depending on the current **Preferences** settings, pressing the Enter key either forces a new line in the text box or closes the dialog. A carriage return can also be added by typing Shift + Enter or Ctrl + Enter. See “Text Panel” on page 84.

• Right-click in the Text Entry field to access a contextual menu from which you can select Undo, Redo, Cut, Copy, Paste, Spell Check and Select All. See “Contextual Menus” on page 30.

• To edit text in the entry field, click and drag to highlight any portion of it and then use the tools on the Edit Bar as needed.

• If the program identifies any spelling issues, they will be underlined in red.
Specify the Alignment of the selected paragraph(s). See “Aligning Text” on page 386.

Specify the Line Spacing of the selected paragraph(s).

Specify the appearance of the selection’s side Margins, as measured in from edges of the text box. Only positive Margin values can be used.

Specify the Indent, which is measured from the left side margin. A negative value can be used if a left Margin has been specified.

Specify the appearance of Bullets and numbering in the selection.

Select the desired bullet, numbered, or lettered Type from the drop-down list.

Specify the Number Prefix, which are any characters that you would like to display before the number or letter. Does not affect paragraphs using circle or square bullets.

Specify the Number Suffix, which are any characters that you would like to display after the number or letter and before its actual text. Does not affect paragraphs using circle or square bullets.

Leader Lines and Text Lines with Arrows use the same default layer as Rich Text, so they share the same default color, line weight and line style. See “Layers” on page 142.
Layer Information -

- Check **Default** to place the selected object on the default Text layer.
- Click the drop-down list to select from all layers available in the plan or layout file.
- Click **Define** to open the **Layer Display Options** dialog and select, modify, or add a new layer. See “Layer Display Options Dialog” on page 144.
- Check **Layer Color Text** to apply the color assigned to the selected Layer to the text on the TEXT panel.

Note: If you change the color of some or all of the selected object’s text, **Layer Color Text** will become unchecked. If it is checked again, the custom color(s) will be removed.

Check **Border** to display a border around the selected text object and enable the settings that follow.

- Check **Layer Color** to use the line color assigned to the text object’s layer, or click the **Color** bar to select a different color. See “Color Chooser/Select Color Dialog” on page 160.

- Check **Use Layer Line Style** to use the line style assigned to the text object’s layer, or choose another style either from the drop-down list or by clicking the **Library** button. See “Line Styles” on page 157.
- Check **Use Layer Weight** to use the line weight assigned to the text object’s layer, or specify a different weight. See “Line Weights” on page 992.

3 Check **Fill** to display a fill color within selected text object(s) and enable the settings that follow.

- Select **Custom Color** then click the Color bar to use a fill color of your choosing.
- Check **Use Layer Color** to use the color assigned to the text object’s layer as its fill color.
- Check **Use Background Color** to use program’s Background color as the text object’s fill color. See “Colors Panel” on page 82.
- Use the **Transparency** slider bar or text field to control how transparent the fill color is.

Specify the **Top**, **Bottom**, **Left**, and **Right Margins**, which are the distance between the text and the border of the selected text object(s).
Options Panel

1 **Options**

- Check **Add an Arrow** to add a Text Arrow to the selected text object. See “Text Arrows” on page 389.
- Check **Rotate with Plan** to rotate the selected text when **Rotate Plan View** is used. If unchecked, the selected text is unaffected when Rotate Plan View is used. See “Rotate Plan View” on page 121.

Rotate with Plan also affects text in views sent to layout if the layout box is rotated. See “CAD and Text in Layout” on page 963.

- Specify the **Layout Page** that the selected object(s) is located on. Only available in layout files, but not in the **Rich Text Defaults** dialog in layout. See “Layout” on page 961.

2 Specify the **Origin/Angle** of the selected text object.

- Specify the **X Position** and **Y Position** of the selected object relative to the origin. See “3D Drafting” on page 25.
- Specify the **Angle** of the selected text object. The default value is 0°.

3 Specify the **Size** of the selected text object.

- Specify the **Height** of the selected text object(s) or check **Auto Height** to automatically adjust the text object’s height to match its contents.
- Specify the **Width** to of the selected text object(s) or check **Auto Width** to automatically adjust the text objects width to match its contents. When Auto Width is used, text extends in a single line rather than wrap.
- **CAD Style Font Sizing** measures text size based on the total height of the capital letter A, as most CAD programs do. Uncheck this to instead size text according to information stored with the font, as most word processing programs do. See “Character Size” on page 373.

4 Select which **Drawing Group** the selected object(s) are placed in. See “Drawing Groups” on page 153.

5 Specify the desired **Bumping** behaviors for the selected object(s). See “Bumping/Pushing” on page 192.

- Check **CAD Stops Move** to bump the selected object into other CAD or CAD-based objects as it is moved.
- Check **Wall Stops Move** to stop the selected object when it bumps into a wall.
Text Specification Dialog

The **Text Specification** dialog opens if you select the **Text** tool and then click once in the drawing area. It will also open when you use the **Leader Line** tool if **Create Rich Text** is unchecked in the **Preferences** dialog. See “Text Panel” on page 84.

You can also open this dialog by selecting one or more **Text** objects, then clicking the **Open Object** edit button.

Note: Rich Text objects have a different specification dialog. See “Rich Text Specification Dialog” on page 376.

The **Text Specification** dialog is similar to the **Room Label Specification** and **Text Defaults** dialogs but affects the selected text object rather than all subsequently created text. Also, the name of the Saved Default being edited will display in the dialog title bar. See “Text Defaults and Preferences” on page 371 and “Editing Room Labels” on page 321.

You can also open this dialog by selecting one or more **Text** objects, then clicking the **Open Object** edit button.

Text Panel

The settings on the **Text panel** allow you to type the selected Text object’s content. Text cannot be added to a selected Room Label, however.

Note: If you do not type anything in the text field on this panel when creating a new object, no object will be created when you click OK. On the other hand, if you remove the text from an existing object and click OK, an empty text box will result.

1. Click **Insert** to choose from a list of special characters and text macros. User Defined macros are only available when the selected Rich Text object points to an eligible object using a Leader Line or Text Line with Arrow. See “Text Macros” on page 400. Not available when the selected object is a Room Label. See “Room Labels” on page 320.

2. Enter text in the Text Entry field. This field is not available if the selected object is a Room Label. See “Room Labels” on page 320.

3. Check **Add an Arrow** to add a Text Line with Arrow to the selected text object. See “Text Arrows” on page 389.

Check **Add an Arrow** to add a Text Line with Arrow to the selected text object. See “Text Arrows” on page 389.

- Click the **Spell Check** button to check the spelling of the text that displays in the **Text Entry** area. If Spell Check finds a word that may be spelled incorrectly, the **Check Spelling** dialog opens. See “Spell Check” on page 388. Not available when multiple Text objects are selected.

- Depending on the current **Preferences** settings, pressing the Enter key either forces a new line in the text box or closes the dialog. A carriage return can also be added by typing Shift + Enter or Ctrl + Enter. See “Text Panel” on page 84.

- Text automatically wraps to a new line without requiring a hard return.
• Tabs can be added to the text by pressing the Tab key.
• If the program identifies any spelling issues, they will be underlined in red.

A preview of the selected text object displays on the right. Not available for Room Labels. See “Dialog Preview Panes” on page 32.

Attributes Panel

1 Tabs - Check Box/Grid to have gridlines separate the rows and columns of tabbed text. When no tabs are present, a simple box is drawn around the text.
• In the text field, specify the number of spaces from the left edge of the text box where each new column begins. The first column always starts at 0 and is not listed.
• Check Display Border to turn on the display of a border polyline around the selected object.
• Check Display Grid Lines to turn on the display of the grid formed by the specified rows and columns.

2 Select an Alignment option from the dropdown list to apply to the text.

3 Specify the Origin/Angle of the selected text object.
• Specify the X Position and Y Position of the selected object relative to the origin. See “3D Drafting” on page 25.

4 Specify the Size of the selected text object(s).
• Specify the Height of the selected text object(s) or check Auto Height to automatically adjust its height to match its contents.
• Specify the Width to of the selected text object(s) or check Auto Width to automatically adjust its width to match its contents. When Auto Width is used, text extends in a single line rather than wrap.

Specifying a Height and/or Width of 0 sizes the text box as small as the text within it allows without turning on the Automatic behavior.

5 Specify the Margins to be used with the text. This is the distance between the text and the edge of the text box.

A default Left and Right margin is applied. Top and Bottom margins are measured relative to the line height and may not extend to the text box completely when given a value of 0.
A preview of the selected text object displays on the right. Not available for Room Labels.

Link Panel

Hyperlinks can be associated with web pages or files saved on your computer. If a selected Text object has a hyperlink specified, you can click the Follow Hyperlink edit button to open the linked web page or file.

1. Specify a Hyperlink for the selected Text object. Note that if no text is entered on the TEXT panel, a text object will not be created.
 - Type a web page address or the pathname of a file on your computer in the text field.
 - Click the Browse button to select a file on your computer and add its pathname to the text field above.
 - Click the Test Link button to confirm that the address or pathname in the text field is associated with a web page or available file.

2. A preview of the text entered on the TEXT panel displays on the right. Not available for Room Labels.

To use a hyperlink

1. Select the text object.
2. Click the Follow Hyperlink edit button to activate the link.

Line Style Panel

The LINE STYLE panel is found in the specification dialogs for many different objects. For more information, see “Line Style Panel” on page 235.

Fill Style Panel

For information about the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.

Dimension Format Panel

The DIMENSION FORMAT panel is available in the Room Label Defaults dialog and allows you to control the format of the portion of the room label that describes the room’s size. For information about these settings, see “Displayed Line Length Dialog” on page 227.

Text Style Panel

The TEXT STYLE panel is available for a variety of objects in the program and control the appearance of the selected object’s text. See “Text Style Panel” on page 399.

Editing Text

Once created, Rich Text objects can be selected individually or as a group and edited using the edit handles, the edit toolbar buttons, and the Rich Text Specification dialog. See “Rich Text Specification Dialog” on page 376.

Text objects can be selected and edited much the way Rich Text objects can; however, there are a few differences which are described here.
Editing Text Attributes

Most text attributes, including the font, size, style, and the content itself, are edited in the Rich Text and Text Specification dialogs.

In order to edit the attributes of an existing Rich Text object, you must select some or all of the text before making changes. See “Text Panel” on page 376.

To edit Text attributes

1. Select a Rich Text object and click the Open Object edit button.
2. On the Text panel of the Rich Text Specification dialog, click and drag to select some or all of the text typed into the Text field.
3. With some or all of the text selected, change any of the attributes available along the top of the panel, including the font, size, color, and style.
4. As changes are made, the selected text updates. Only the selected text is modified.

Text objects do not support multiple fonts or other attributes in the same text object. When you choose an attribute, it is applied to all characters in the text object.

Using the Mouse

A selected Rich Text or Text object has the same edit handles as other box-based objects. See “Editing Box-Based Objects” on page 184.

As a text box’s width is made narrower or wider using an edit handle, its height may increase or decrease so that none of the text becomes hidden. The opposite is not true, however: a text box’s height cannot be resized smaller than the height of the rows of text it currently contains, plus its margins.

Depending on the active Edit Behavior, the text box and the characters within it may or may not resize together when a corner edit handle is dragged. See “Defaults, Preferences, and Edit Behaviors” on page 163.

- If Resize editing is enabled, both the text object and the font resizes when a corner edit handle is dragged.
- If Default or Concentric editing is enabled, the text box resizes, but not the font size.
- If Fillet editing is selecting, the corners become rounded and the font size does not change. See “Behaviors Panel” on page 96.

When text is resized using the edit handles, there is a “sticky point” at the natural size of the text box. Hold down the Ctrl key while resizing to override this behavior.

Edit Text in Place

The contents and appearance of text objects created with the Rich Text tool can be edited directly in the drawing area using the Edit Text in Place edit tool.

To use Edit Text in Place

1. Select a Rich Text object and click the Edit Text in Place edit button.
 - The text appears as it did when it was first created: inside a text field with the Edit Bar above. See “To create Text” on page 374.
2. Click inside the Text Field to type or select any of the existing text.
3. Use the tools on the Edit Bar to edit any or all of the text as needed. The tools on the Edit bar are the same as those on the TEXT panel of the Text Specification dialog. See “Text Panel” on page 376.

4. When you are finished, click outside of the text field to close it and the Edit Bar.

Convert to Rich Text

Text objects cannot be edited to the same degree that Rich Text can. You can, however, convert a selected simple Text object to Rich Text by clicking the Convert to Rich Text edit button. Most attributes of the selected simple Text object are retained; however, columns created using the Tab key are not. See “Tab Spacing” on page 386.

Using the Edit Tools

A selected Rich Text or Text object can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Resizing Text

Both the border of a text object and the characters it contains can be resized.

The border of a text object can be resized using its edit handles or by specifying the Height and Width in its specification dialog.

The default character height of Rich Text and Text objects can be specified as can the character height for individual objects, in their specification dialogs. See “Text Defaults and Preferences” on page 371.

Character height can be measured in either of two ways. See “Character Size” on page 373.

Scaling Text

As with the size of other objects, text size is subject to the current drawing scale specified in the Page Setup dialog. See “Drawing Sheet Setup Dialog” on page 986.

To determine the Height in drawing units that is needed to produce text of a specific size when printed, use the Print Size Calculator dialog.

To use the Print Size Calculator dialog

1. Select the text object or Text Style that you wish to scale and click:

2. In the Print Size Calculator dialog:
 - Confirm the desired Printed Scale.
 - Enter the Desired Print Size of the text.
 - The Text Height in View required to produce the Desired Print Size displays here for reference.

3. Click OK to return to the previous dialog. The Character Height value now equals that of the Text Height in View.

Generally, the Printed Scale does not need to be changed in the Print Size Calculator dialog unless you intend to send the current view to layout at a different drawing scale. See “Sending Views to Layout” on page 965.
Aligning Text

Text can be aligned in a number of ways.

- The text content of a text object can be aligned to the left, right, center or justified in the **Rich Text Specification** dialog. See “Text Panel” on page 376.
- The text content of a text object can be also be aligned by clicking the **Align Left**, **Align Right**, **Center**, or **Justify** edit button.
- The center points of text objects can be aligned with one another by assigning them the same **X** and/or **Y Position**. See “Attributes Panel” on page 392.
- Text objects can be aligned by bumped them against a CAD line or CAD based object such as a roof plane. See “Bumping/Pushing” on page 192.

A variety of other alignment methods are also available. See “Aligning Objects” on page 194.

Copy, Cut and Paste

Copy, Cut and Paste of text into and out of the text specification dialogs can be accomplished using keyboard hotkeys:

- Press **Ctrl + X** to Cut the selected text and save it to the system clipboard.
- Press **Ctrl + C** to Copy the selected text and copy it to the system clipboard.
- Press **Ctrl + V** to paste your last cut or copied selection in a new text object.

For more, see “Copying and Pasting Objects” on page 136.

Copy, Cut and Paste use the system clipboard, making it possible to transfer text between text objects, between Chief Architect files, from a plan or layout into another application, or vice versa.

Tab Spacing

The Tab key functions differently in **Rich Text** and **Text** objects.

In **Rich Text**, the Tab key creates a space. CAD Style Font Sizing affects the size of the space created. See “Options Panel” on page 380.

Tab spacing in **Text** objects produces columns with widths that can be edited using edit handles.

To insert tab-spaced text

1. Highlight a block of text objects containing tabs from another program or text from the Materials List and press **Ctrl + C** to copy them to the system clipboard.
2. Return to the plan view, select the **Text** tool, and click to place a text object.
3. Press Ctrl + V to paste the copied materials into the text box, then click **OK**. The text object displays on-screen.
4. Select the text object and note the additional lines with handles separating each column.

Columns automatically resize to fit the contained text. When a text object is selected you can use the edit handles that display at each column to adjust spacing.

Copying and Pasting Text

The Copy, Cut and Paste commands use the system clipboard, making it possible to transfer text between text objects, between Chief Architect files, from a plan or layout into another application such as a text editor or spreadsheet program, or vice versa. See “Copying and Pasting Objects” on page 136.

All or selected portions of the Materials List can also be copied and pasted into a text object, as well as into a word processing or spreadsheet program. See “Materials Lists” on page 943.

Cut, Copy, and Paste can also be accessed from the Edit menu of many applications, including Chief Architect. These menu commands are not available when the text specification dialogs are open, but you can use the associated hotkeys.

To Copy, Cut and Paste text

1. On the **Text** panel of either text specification dialog or in another program altogether, highlight the text you wish to cut, copy or paste.
2. Press Ctrl + X to **Cut** the selected text out of its original location and save it to the system clipboard.

3. Press Ctrl + C to **Copy** the selected text to the system clipboard without removing it from its original location.

4. Open the text object or a file in another application and click to place your cursor in the Text field, writing area, or spreadsheet cell.

5. Press Ctrl + V to **Paste** the copied text at the location of your cursor.

Bear in mind that when text is copied and pasted, its formatting is not always retained. The results depend on the program or type of text object in which the content was created as well as the type of text object into which it is pasted.

Pasting into Text

Text pasted into a simple **Text** object from another source will not retain its formatting. Instead, the settings for that **Text** object are always used. See “Text Specification Dialog” on page 381.

This is the case even if the text is copied from another **Text** object unless that object happens to use the same formatting.

Text pasted into a simple **Text** object from a spreadsheet program will retain basic column and row information. Each row can only have a single line of text; however, the width of each column can be adjusted. See “Tab Spacing” on page 386.

Find/Replace Text and Spell Check

The **Find/Replace Text** and **Spell Check** tools help you make sure that the text in your files is current and correct.

Find/Replace Text and **Spell Check** locate text in Rich Text, Text, Callouts, Markers, CAD blocks, schedule titles and headings, and custom labels for objects and rooms. They do not locate text in automatic object labels, default room labels, suppressed labels, the Materials List, or in schedules, however.

Pasting into Rich Text

Text pasted into a **Rich Text** object from another source, on the other hand, will retain most - but not necessarily all - of its custom formatting. If a line of text is sufficiently long, however, it may be wrapped automatically when pasted into Rich Text.

To retain the same character size when text is pasted from a word processing program into the **Rich Text Specification** dialog, uncheck **CAD Style Font Sizing**. See “Options Panel” on page 380.

If you want to retain the original color(s) of the text being pasted into a **Rich Text** object, be sure to uncheck **Layer Color Text** in the **Rich Text Specification** dialog. See “Appearance Panel” on page 378.

Text pasted into a **RichText** object from a spreadsheet program retains basic column and row information. Column width cannot be adjusted as it can in simple **Text**; however, as you add or remove text from a cell, row height will increase or decrease to accommodate your changes.

Pasting into a View

Text can also be pasted directly into a plan view, CAD Detail, or cross section/elevation view. When you use the Paste command, a new Rich Text object is created, the text is pasted into that object, and it is selected. In order to see the new object, you may need to Fill Window.

Find/Replace Text and Spell Check

Find/Replace Text and **Spell Check** locate text even when an object’s layer is turned off and/or locked. They can also find text in objects on locked layers. See “Locking Layers” on page 143.

Select **Edit > Find/Replace Text** to find a particular word or string of text in your plan or layout file and replace it if you wish.
Find and Replace -

- Type the string of text that you want to Find in the text field.
- Type the string of text that you want the text you find to be Replaced With.
- Select the scope of your search from the Searching In drop-down list. Choose “Current View”, “Current File”, “All Open Files” or “Selected Objects”.

The Search Options allow you to refine your search.

- Check Case Sensitive to distinguish between capitalized and lowercase letters when searching. When unchecked, capitalization is ignored while searching. The Replace function is always case sensitive.
- When Expand Percent Signs is checked, the program will ignore strings of one or two % signs in a row, which may be used to mark up imported text with style commands. Uncheck this to find individual % signs in the search results.
- Check Show in File to open a new view window or go to a new layout page and highlight the object associated with the current search Result. When unchecked, the current search Result will only be highlighted if it is located in the current view window. See “Working in Multiple Views” on page 124.
- Click the Highlight Color button to specify the color used to highlight the object associated with the current search Result. This color is also used to identify misspelled words using the Check Spelling tool. See “Color Chooser/Select Color Dialog” on page 160.

The Macro Options control whether macros are included in the search Results. The text of the actual macro are searched. See “Text Macros” on page 400.

- Select Exclude Macros to ignore macros in the search.
- Select Macros Only to only include macros in the search Results.
- Select Include All to include both macros and regular text in the search Results.

The current search Results are shown for reference in the field on the left. The location of the associated object, including file name, view name, and its object type is stated above the Results field as well. Click a button to perform the associated action:

- Click Find Previous to find the previous search Results.
- Click Find Next to search for additional Results.
- Click to Replace the current search Results with the replacement specified above.
- Click to Replace All instances of the current search Results found throughout the Searching In scope, selected above.

Although the Find options do not locate text in suppressed labels, Replace All will replace that text. See “Displaying Labels” on page 516.

Spell Check

Select Tools> Checks> Spell Check to open the Spell Check dialog. The Spell Check feature checks each text object in the current .plan or .layout file consecutively for spelling errors. Spell Check can also be accessed by clicking the Spell Check button in the Rich Text, Text, or Note Specification dialog or by clicking the Spell Check edit button. When accessed in this manner, only the selected text object is checked for spelling errors. See “Editing Text” on page 383.
Spell Check looks for each word in all open dictionaries. When a word that is not recognized is found, it displays here.

- The location that the spelling error was Found in is reported at the top of the dialog for reference.
- The text where the error was found displays in the top field for reference. The error itself is highlighted.
- Click Ignore to ignore the word in question in all Spell Checks during the current program session. The word will not be ignored the next time Chief Architect is launched.
- Click Skip to ignore the current instance of the word, but find other instances that may be present.
- Click Learn to add the word in question to the User Dictionary. See “Chief Architect Data” on page 40.
- Click Delete to remove the selected word from the text.
- Click Replace to replace the word in question with the suggested word, below.

Spell check displays Suggestions for corrections here. There are two ways to replace a misspelled word:

- Type a correction in the field and click the Replace button.
- Click on a suggestion to select it, then click Replace to accept it.

Click the Color bar to specify the Highlight Color for misspelled words when Check Spelling is used. This color is used to identify misspelled words in this dialog, text objects with misspelled words in views where an error is found, and text objects located using Find/Replace Text. See “Color Chooser/Select Color Dialog” on page 160.

When Spell Check is finished checking the text object or file for errors, the Spell Check results window displays.

Note: Spell Check does not look for duplicate or repeated words.

Text Arrows

Text arrows, which are simply CAD lines with arrows drawn on the “Text” layer, can be used to connect text objects to details of interest in your drawing. See “Line Tools” on page 231.

When a selected Text Line with Arrow or Leader Line is snapped to an object on either end, its end edit handle will display the Selected Edge Handle Fill color. See “Colors Panel” on page 82.

When a selected text object is connected to another object using a Text Line with Arrow or Leader Line, a selection of Referenced Object macros that report information about that other object will be available to insert into the text. See “Text Macros” on page 400.

If a Leader Line or Text Line with Arrow is drawn with its tail end snapped to a text object or another Leader Line or Text Line with Arrow, it will be placed on the same layer as the text object and inherit all of that layer’s attributes. Regular CAD lines with arrows do not do this. See “Layers” on page 142.

Text arrows can be snapped together to form open or closed polylines. If two lines with arrows meet
within the bounding box of a text object, however, they will not join. This allows you to attach multiple, separate text arrows to a single text object. See “Editing Line-Based Objects” on page 171.

Lines with arrows can be independent or attached to other objects. If an attached object is moved, the end of the Line with Arrow will move, as well. Arrows attach to closed polyline-based objects along their edges, but can attach to Text or an architectural object anywhere within its bounding box in plan view.

If an arrow is attached to text or another object, deleting either the text or the object will also delete the arrow.

Leader Line

The **Leader Line** tool places either a Text or Rich Text object with an arrow already attached. This arrow can be selected and moved like any other line with arrow.

Note: Leader lines create Rich Text and have two leader line segments by default. You can change this in the Preferences dialog. See “Text Panel” on page 84.

To create text with a leader line

1. Select **CAD> Text> Leader Line**.
2. Starting at the point where you want the arrow to point, drag to where you want a bend in the leader line and release the mouse button.
4. Enter text and click **OK**.

Click in the same location to create a Rich Text object without a leader.

If multiple leader lines are specified, click in the same location to stop adding leader segments.

The initial alignment of text created with the **Leader Line** tool depends on the direction that the leader line was drawn:

- Leader Lines drawn from left to right produce text that is right-aligned.
- Leader Lines drawn from right to left produce text that is left-aligned.

- Leader Lines drawn from vertically produce text that is center-aligned.

Text Line with Arrow

Text Lines with Arrow can be attached to text, CAD and architectural objects by selecting **CAD> Text> Text Line with Arrow** and then clicking and dragging to draw a line. There is no limit to the number of text lines with arrows that can be attached to an object.

The endpoints of **Text Lines with Arrows** can be joined to form polylines with corners that can be adjusted using the edit handles. See “Polylines” on page 243.

A **Text Line with Arrow** behaves like a **Line With Arrow** with one exception: Text Lines with Arrow are initially placed on the default Text layer, not the Current CAD Layer. See “Layers” on page 142.

Auto Position Arrows

If either or both ends of a line with arrow are attached to an object, **Auto Position Tail** and **Auto Position Head** will be available in the **Line Specification** dialog. See “Arrow Panel” on page 236.

The Auto Position options are designed to prevent lines with arrows from crossing over the text or other objects that they are snapped to. These options snap the ends of a line with arrow to predefined points on the object(s) it is attached to. If an attached object is moved, the end of the line with arrow will update so that it is snapped to the closest Auto Position location. Similarly, if the line with arrow is moved, rotated, or resized, its end may snap to a new Auto Position location on an attached object.

There are four Auto Position locations on a text object: one at the midpoint of each side. The Auto Position locations on other objects varies by object type.

The following image illustrates the behavior of Auto Positioning. The arrow has the **Auto Position Tail** option checked, and the tail end of the line is snapped to the text object. When the head of the line with arrow is moved, the tail of the arrow snaps to different Auto Position locations on the text object, maintaining its connection.
In addition:

- If a selected Text Line with Arrow is moved away from an Auto Position location and you check **Auto Position Tail**, the tail will snap to the nearest Auto Position location.
- The first segment of a polyline arrow attached to text maintains its angle when Auto Position is off and text is moved.
- Auto Position is disabled automatically when an arrow is not attached to one of the auto position locations.
- Arcs and splines with arrows can also be attached to text and other objects.

Callouts

Select **CAD> Text> Callout**, then click at the location where you want a callout to be placed in plan view, a cross section/elevation view, a CAD Detail, or on a layout page. The **Callout Specification** dialog displays. Make any needed changes and click **OK** to place a callout. See “Callout Specification Dialog” on page 392.

Cross Section Lines

Check the **Display Cross Section Line** box in the **Callout Specification** dialog to add a cross section line perpendicular to the nearest wall. See “Attributes Panel” on page 392.

Cross section lines can be added to any callout shape. Resize or rotate the cross section line by dragging the triangular edit handle near the end of the cross section line.

Pointers and Arrows

To add an arrow or “hat” to a callout, select the callout and drag the diamond-shaped handle away from the center of the callout. An arrow is created, pointing in the direction you dragged. Arrows can also be specified in the **Callout Specification** dialog. See “Attributes Panel” on page 392.

- Change the arrow’s direction by selecting the callout and dragging the edit handle appearing just beyond the arrow.
- Remove an arrow by clicking and dragging the edit handle at the point of the arrow towards the center of the callout.

You can also add as many lines with arrows as you like to callouts. To add a line with arrow to a callout, select **CAD> Text> Text Line with Arrow**, then click and drag to create a line with arrow, which can be moved or resized as needed.

Double Callouts

Any callout can be specified as a **Double Callout** in the **Callout Specification** dialog. See “Attributes Panel” on page 392.

To resize the line between the two callout shapes, select the callout and then click and drag the edit handle at the center of either callout shape. The arrows on a double callout are always the same on both callouts.
Callout Specification Dialog

To open the Callout Specification dialog, select a callout and click the Open Object edit button. This dialog also displays when a new callout is created using the Callout tool.

The Callout Specification dialog is similar to the Callout Defaults dialog but affects the selected callouts rather than all subsequently created callouts. Also, the name of the Saved Default being edited will display in the title bar of the defaults dialog. See “Text Defaults and Preferences” on page 371.

Callout Panel

The settings on the CALLOUT panel of the Callout Specification dialog are also found on the NOTE panel of the Note Specification dialog. See “Note Panel” on page 397.

Attributes Panel

Specify the attributes of the selected callout’s Cross Section Line.

• Check Display to apply a cross section line to the selected callout. When unchecked, no cross section line is used.

• Check Double Callout to specify two identical callouts connected by the cross section line. Only available when Display is checked.

• Select the cross section line’s line Style from the drop-down list or by clicking the Library button. When By Layer is checked, the line style specified in the Layer Display Options dialog is used. See “Line Styles” on page 157.

• Specify the Weight of the cross section line or check By Layer to use the line weight specified in the Layer Display Options dialog.

Specify the attributes of the Callout Arrows.

• Specify whether the arrows are Small or Large.

• Check Filled to specify arrows with a solid fill. When unchecked, arrows are unfilled.

• Check By Layer to use the color specified in the Layer Display Options dialog or click the Color bar to choose an arrow color. See “Color Chooser/Select Color Dialog” on page 160.

• Specify the Number of Arrows.

A preview of the selected callout displays on the right. See “Dialog Preview Panes” on page 32.

Line Style Panel

The LINE STYLE panel is found in the specification dialogs for many different objects. For more information, see “Line Style Panel” on page 235.

Additional attributes for the cross section line and arrows can be specified on the Attributes panel.

Text Style Panel

The settings on the Text Style panel control the appearance of the selected object’s text. For more information, see “Text Style Panel” on page 399.
Editing Callouts

Callouts can be edited using the edit handles, the edit toolbar buttons and the **Callout Specification** dialog. See “Callout Specification Dialog” on page 392.

When a callout is selected, it has at least four edit handles. An additional rotate handle displays for each arrow added to the callout.

- The **Move** handle is located at the center of the callout and is used to move it.
- The triangular **Extend/Rotate** handle is used to extend and/or rotate the callout’s cross section line, if one exists. See “Cross Section Lines” on page 391.
- The small, square **Resize** handle is located on the edge of the callout and is used to resize it and its associated text.
- The **Add Arrow** handle is used to add arrows by dragging away from the callout shape.
- The small triangular **Rotate Arrow** handle located at the end of an arrow, if one has been added, is used to rotate that arrow around the callout shape.

Resizing Callouts

Callout shapes can be resized either in the **Callout Specification** dialog or using the edit handles. See “Callout Panel” on page 392.

Callout text can be resized in the **Callout Specification** dialog. See “Attributes Panel” on page 392.

As long as **Specify Callout Size** box is checked, a callout’s shape and text resize independent of one another. When this box is unchecked, the two are dynamically linked: if you resize the shape, the text adjusts accordingly or vice versa.

Markers

Markers for **Level Lines**, **Test Borings** and **Point Markers** can be placed in plan view, cross section/elevation views, or CAD Details. **Framing Reference Markers** should only be placed in plan views.

To create a marker, select **CAD> Text> Marker** and click at the location where you want it to be placed. The **Marker Specification** dialog opens.

You can also place a framing reference marker using **Build> Framing> Framing Reference**. See “Framing Reference Markers” on page 642.

Point Markers and Dimensions

There are a number of scenarios in which Markers may be created in conjunction with dimension lines. These Point Markers derive their initial attributes from the currently active Saved Marker Default:

- When the **Point to Point Dimension** tool is used to draw a dimension line and an object is not available to snap to at either the start or end point, a Point Marker will be automatically created and the dimension line will locate it. See “Point to Point Dimensions” on page 357.
- Dimensions drawn in a cross section/elevation view may locate Cross Section Lines that represent objects rather than the objects themselves. When this occurs, Point Markers will also be placed and the dimension lines will locate them. See “Cross Section Lines” on page 801.
- If a dimension line is copied independent of the objects it locates, the pasted dimension line will locate Point Markers. See “Copying and Pasting Dimension Lines” on page 362.

In addition, **Auto Story Pole Dimensions** and other vertically-oriented dimension lines in cross section/elevation views can display Elevation Markers along their extension lines. These markers inherit their attributes, including marker Type, from the currently active Saved Marker Defaults. See “Elevation Markers” on page 360.
Marker Specification Dialog

To open the Marker Specification dialog, select a marker and click the Open Object edit button.

This dialog also displays when a new marker is created by clicking in plan view using the Marker tool.

The Marker Specification dialog is similar to the Marker Defaults dialog but affects the selected markers rather than all subsequently created markers. The name of the Saved Default being edited will display in the title bar of the defaults dialog. See “Text Defaults and Preferences” on page 371.

Marker Panel

1. Choose a marker Type. Note that Framing Reference Markers affect the model, while the other marker types are for annotation only.

2. Specify the text and alignment of the selected marker’s Label. The label’s text style can be specified on the TEXT STYLE panel. See “Text Styles” on page 398.
 - Type the Text which displays above the marker’s line.
 - Type the Text Below Line that displays below the marker’s line, if desired. Only available for Level Lines.

3. Specify the Size of the selected marker.
 - Click the Insert button to the right of either Text option to choose from a list of special characters and text macros. See “Text Macros” on page 400.
 - When a Level Line has text both above and below the line, specify its Alignment. Select Toward Marker to align both lines of text next to the marker; select Centered to center the shorter line of text relative to the longer line; select Away From Marker to align both lines of text with the end of the line.

4. Specify the Marker Radius, which is the distance from the marker’s center to the edge of its filled shape.

5. In a cross section/elevation view, specify the Height of the marker, relative to 0. This setting is also available in plan view but does not affect the marker’s position. This value will display in the Label when a height macro is entered in either Label text field. See “Detailing Cross Section/Elevation Views” on page 789.
A preview of the selected marker displays on the right. See “Dialog Preview Panes” on page 32.

Line Style Panel

The **LINE STYLE** panel is found in the specification dialogs for many different objects. For more information, see “Line Style Panel” on page 235.

Editing Markers

Markers can be edited using the edit handles, edit toolbar and **Marker Specification** dialog. See “Marker Specification Dialog” on page 394.

When a marker is selected, it has four edit handles.

- The **Move** handle is located at the center of the marker and is used to move it.
- The **Resize** handle is located on the edge of the marker and is used to resize the marker and associated text.
- The triangular **Rotate** handle is used to rotate the marker and associated text.
- The **Extend** handle is used to adjust the distance between the marker and its associated text.

Text Style Panel

The settings on the **TEXT STYLE** panel control the appearance of the selected object’s text. For more information, see “Text Style Panel” on page 399.

Notes, Note Types, and Note Schedules

Notes are a special type of callout that link directly to a line item in a Note Schedule. Notes can be created for a variety of purposes, such as General Notes and Framing Notes. See “Note Type Management Dialog” on page 396, below.

Notes are typically used in plan view but can also be created in CAD Details, cross section/elevation views, and camera views. Like other schedules, it is recommended that Note Schedules be placed in CAD Details; however, they can also be placed in plan and cross section/elevation views. See “CAD Details” on page 255.

A Note created in plan view can be seen in camera views, and vice versa, provided that its layer is turned on. In contrast, a Note created in a cross section/elevation view only exists in that view. If the note’s position in plan view puts it behind one or more surfaces in a camera view, it will be partially transparent.

Notes created in either plan or camera view can be included with exported Chief Architect 3D Viewer models. See “Export Chief Architect 3D Viewer File” on page 880.

Once created, Note callouts can be edited much like standard Callouts. One exception is that standard Callouts can display arrows and cross section lines while Notes cannot. See “Editing Callouts” on page 393.

To create a note schedule with notes

1. Select **CAD> Text> Note** , then click at the location where you want a note callout to be placed.
2. The **Note Specification** dialog opens automatically. On the **NOTE** panel:
 - Type the desired **Text** that you would like the new Note callout to be associated with in its Note Schedule.
 - Specify the **Type** of Note Schedule to associate the new Note with.
 - Notice that the **Label Text Above Line** uses the %simple_schedule_number% text macro by default. See “Text Macros” on page 400.
3. Make any other needed changes, and click OK to place a Note callout. See “Note Specification Dialog” on page 397.
4. Open a CAD Detail window and select **Tools> Schedules> Note Schedule**.

5. Select the new schedule and click the **Open Object** edit button.

6. On the **GENERAL** panel of the **Note Schedule Specification** dialog:
 - Type the desired **Main Title** for the schedule.
 - Under **Objects to Include**, all Note Types that are currently present in the plan will be listed. Choose the Types that you wish to include in this schedule.

7. Make any other needed changes to the schedule’s settings and click **OK**. See “Schedule Specification Dialog” on page 512.

8. Return to the view where you created the Note in step 1 and notice that the Note callout now displays a schedule row number.

Note Schedules

The **Note Schedule** tool allows you to produce customizable schedules that report information about Note objects created for a variety of purposes. See “The Schedule Tools” on page 506.

All Note Types present in the current plan are listed in the **Schedule Specification** dialog, under the **Categories to Include** heading. See “General Panel” on page 512.

By default, when a new Note Type is created, it will not be included in any existing schedules or in the Note Schedule Defaults automatically. You can specify which Note Types to include in a selected Note Schedule in the **Schedule Specification** dialog. See “General Panel” on page 512.

You can also create a Note Schedule in the current orthographic view by selecting one or more Note callouts and clicking the **Create Note Schedule from Note(s)** edit button. The resulting schedule will only report information about the selected Note Type(s). This edit tool is not available in camera views or overviews.

Note Types

Note Types are used to indicate a unique purpose for each Note Schedule and to determine which Note objects each schedule lists.

Note Types are saved with each plan, so if you expect to use certain custom Note Types on a regular basis, you should add them to your plan template file(s). See “Template Files” on page 73.

Note Types can be exported from a plan file and then imported into other plans. Select **File> Export Note Types** or **File> Import Note Types**. They can also be imported and exported using the Note Type Management dialog. See “Importing Files” on page 48 and “Exporting Files” on page 44.

Note Type Management Dialog

Select **CAD> Text> Note Type Management** to manage the various Note Types available in the current file.

The **Available Note Types** in the current plan file are listed on the left. Click on a name to select it.

The buttons on the right let you manage the Note Types in the list:

- Click the **New** button to create a new Note Type. In the **New Note Type** dialog, type a short, descriptive, unique name for the new Note Type.
- Click the **Rename** button to open the **Rename Note Type** dialog and type a new name for the selected Note Type.
- Click the **Delete** button to remove the selected Note Type from the list. Only available when a custom Note Type is selected in the list.
- Click the **Import** button to import Note Types previously exported from another plan into the current file.
- Click the **Export** button to export the Note Types in the current file into a .json file so that they can be imported into other plan files.

You can specify a selected Note object’s Note Type in the **Note Specification** dialog. See “Note Panel” on page 397.
Note Specification Dialog

To open the Note Specification dialog, select a note callout and click the Open Object edit button. This dialog also displays when a new note callout is created using the Note tool. See “Notes, Note Types, and Note Schedules” on page 395.

The Note Specification dialog is similar to the Note Defaults dialog but affects the selected Note callout(s) rather than all subsequently created Notes. Also, the name of the Saved Default being edited will display in the title bar of the defaults dialog. See “Text Defaults and Preferences” on page 371.

Note Panel

Many of the settings on the NOTE panel of the Note Specification dialog are also found on the CALLOUT panel of the Callout Specification dialog. See “Callout Panel” on page 392.

1. The Schedule settings determine how and where the selected Note will be represented in a Note Schedule. These settings are not available for Callouts. See “Notes, Note Types, and Note Schedules” on page 395.
 - Specify the Text associated with the selected Note that will display in the Note Schedule.
 - Click the Insert button to the right of the Text field to choose from a list of special characters and text macros. See “Text Macros” on page 400.
 - Click the Spell Check button to check the selected Note’s Text for errors. See “Spell Check” on page 388.
 - Specify the Type of Note Schedule to associate the selected Note with. See “Note Type Management Dialog” on page 396.
• Click the New Note Type button to create a new type to choose from. See “Note Types” on page 396.

Specify the selected Callout or Note’s Label.

By default, the Text Above Line for Notes is populated by the %simple_schedule_number% macro. See “Schedule Number Format” on page 509.

• Type the Callout Label or Text Above Line, which displays inside the callout shape. This text is centered in the callout shape when no Text Below Line is specified.

• Type the Text Below Line for the bottom row, if desired. If Text Below Line is added, a line centered in the callout shape will separate this text from the Text Above Line.

Specify the Shape of the Callout or Note callout.

• Check Generate Shape from Schedule to use the callout shape set in specification dialog of the Note Schedule associated with the selected Note. See “Labels Panel” on page 515.

• Select a callout shape by clicking the radio button beside one of the options.

Specify the Callout or Note callout’s Size/Orientation.

• Check Generate Size from Schedule to set the Note’s callout size based settings in the Note Schedule Specification dialog.

• Uncheck Automatic to enable the Size field and specify a new value. When checked, the callout is sized so that it encompasses its Label.

• Specify the Angle of the Note’s callout shape. Does not affect Ellipse, Capsule, or Rectangle shaped callouts.

Specify the X, Y, and Z Position of the selected Note relative to the origin. These settings are not available for Callouts. See “3D Drafting” on page 25.

As in many specification dialogs, a preview of the selected object displays on the right. See “Dialog Preview Panes” on page 32.

When the %simple_schedule_number% macro is used in a Note’s Label, the schedule number it reports will not be shown in this preview.

Line Style Panel

The LINE STYLE panel is found in the specification dialogs for many different objects. For more information, see “Line Style Panel” on page 235.

Text Style Panel

The settings on the TEXT STYLE panel control the appearance of the selected object’s text. For more information, see “Text Style Panel” on page 399.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in Note Schedules. For more information, see “Object Information Panel” on page 519.

You can create your own or edit existing Text Styles to suit your needs in the Text Style Defaults dialog.

Text Style Defaults

Select Edit> Default Settings, expand the Text, Callouts and Markers category, click on “Text Styles” and click Edit to open the Text Style Defaults dialog. The Saved Defaults dialog will open, allowing you to select which Saved Text Style
Defaults you would like to edit. See “Multiple Saved Defaults” on page 67.

The Text Style Defaults dialog can also be accessed:
- From the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.
- By clicking the Text Style Defaults button, which can be added to your toolbars. See “To add a button to a toolbar” on page 109.
- By clicking the Define button on the Text Style panel of various objects specification dialogs.

Text Style Panel

The Text Style panel is found in various specification and defaults dialogs in the program. The settings on this panel are also found in the Text Style Defaults dialog, where they affect all objects using that style rather than a single selected object.

Specify where the selected object should draw its Text Style from. These options are not available in the Text Style Defaults dialog.
- Select Use Layer for Text Style to use the Text Style assigned to the layer that the selected text is located on.
- Select Use Text Style, then choose a style from the drop-down list to apply that style to the selected object, regardless of what layer it is on. When this is not selected, the name of the selected object’s Text Style displays here for reference.
- Select Use Custom Text Style to enable the settings below and customize the selected objects Text Style attributes.

Check Use Default Text Style to use the default style for the selected object type, or uncheck this box to enable the settings below and define a custom style.

The settings that follow are only editable when Use Custom Text Style is selected. When it is not selected, information about the Text Style that is assigned to the selected object displays for reference.

Specify the attributes of the selected Text Style’s Font.
- Select a font from the drop-down list.
- The text styles Bold, Underline, Italic, Strikeout, and Uppercase are available. Check any of the boxes to apply that style.

Specify the Character Height of text using the selected Text Style.
• Enter the **Character Height** in drawing units. This height is subject to the current drawing scale.

• Click the **Scale** button to open the **Printed Size Input** dialog. See “Scaling Text” on page 385.

• If the selected object was originally created in an older program version and had **Legacy Compatible Size** checked in that version, this check box will be available. If you uncheck the box and click OK, however, the option will be removed. See “Character Size” on page 373.

Options:

• Check **Rotate with Plan** to rotate text using the selected Text Style when **Rotate Plan View** is used. If unchecked, the text is unaffected when **Rotate View** is used. See “Rotate Plan View” on page 121.

Rotate with Plan also affects text in a view sent to layout if the layout box is rotated. See “CAD and Text in Layout” on page 963.

Text Macros

Text macros insert dynamic information relevant to the current plan or layout file, or a selected object. Macros can be used to create customized object labels and Materials List formulas. See “Creating User Defined Macros” on page 1001.

Macros can be inserted into Text objects as well as added to object labels, object information, and in the materials list. There are four categories of insertable text macro:

• **Global** macros have information about the project, the plan or layout file, a room, and the date and time. They can also be used to insert special characters.

• **User Defined** macros can include a wide range of values, including global and object specific information and text. They can also be written to perform calculations.

• **Object Specific** macros have information specific to a selected object type and can be included in object information and labels. See “Label Panel” on page 516.

• Some **Object Specific and User Defined** macros can also be inserted into Materials List cells and used to create custom Materials List formulas. See “Materials List Formulas” on page 952.

• **Referenced Object** macros can be inserted into text objects that have an arrow attached to another object. These macros report information about that object rather than the text. See “Text Arrows” on page 389 and “Referenced Object Context” on page 1004.

In layouts, macros can be used to add page numbers, drawing scale, and information to identify drawings can be inserted to improve organization and clarity.

To insert a macro

1. The **Insert Macro** button can be found on a variety of dialog panels where text can be specified.

2. When you click it, a menu of macros displays. Move your cursor over a menu item to view its submenu.

3. Select from the list of available macros. In this example **Global> Time Date> Short Date** (%date.short%) is used.
4. Click OK to close the dialog.
5. The text object displays the date rather than the macro formula.

As an alternative to creating and then inserting a custom macro, you can also type ruby macro code directly into a text object or label and it will be evaluated provided that it is placed between two percent signs.
Chief Architect comes with tools for creating a wide variety of interior and exterior doors. In addition, the library offers a large selection of specialty doors and doorways including hinged, sliding, pocket, bifold, and garage doors. Additional name-brand door catalogs are also available for download from our web site, chiefarchitect.com.

Chapter Contents

• Door Defaults
• Door Tools
• Displaying Doors
• Editing Doors
• Changing Door Swings
• Special Doors
• Door Specification Dialog
• Door Schedules

Door Defaults

There are several defaults dialogs for doors. Default Settings are accessed by selecting Edit> Default Settings. Click the arrow next to “Doors” to expand the category. Select a subheading and click the Edit button to open the defaults dialog associated with your selection.

Door Defaults can also be accessed by double-clicking the Door Tools parent button or the Hinged Door or Sliding Door child button. Double-clicking the other Door Tools child buttons will open the defaults dialog for that particular door type.

The various Door Defaults in the list can be multiple-selected by holding down the Shift or Ctrl keys. See “Shift and Ctrl Select” on page 170.

The Door Defaults dialogs look nearly the same as the Door Specification dialog. See “Door Specification Dialog” on page 412. There are only a couple of differences:
• Since default settings are specified here, “Use Default” is not an option for some settings as it is in the Door Specification dialog.

• The Door Type cannot be changed in the Defaults dialogs.

Because Hinged and Sliding Doors are often used in both interior and exterior applications, they have both Interior and Exterior Door Defaults.

Interior vs Exterior Doors

Regardless of its Door Type or the tool used to create it, a door will be:

• An Interior Door if it is placed into a wall that separates two interior rooms;

• An Exterior Door if it is placed into a wall that separates an interior room from either an exterior room or the building’s exterior. See “Room Types and Functions” on page 315.

This rule applies to doors copied and pasted from one location to another just as it does to those created using the Door Tools.

Dynamic Door Defaults

A variety of door default values are dynamic, including the Add for Rough Opening values, Casing and Lintel Specifications, and Hardware. When a dynamic default is changed, existing doors using the default value are affected. See “Dynamic Defaults” on page 67.

All Materials listed under “Doorway” on the Materials panel are also dynamic. Materials assigned to doors and hardware items from the library are listed separately and are dynamically linked to the “Interior Door”, “Exterior Door” and “Fixture Trim” and “Hardware” materials set in the Material Defaults dialog rather than the Door Defaults dialogs. See “Material Defaults Dialog” on page 759.

Door Framing

The default headers, trimmers, rough opening, and sill for doors can be defined in the Door Defaults dialogs. You can also specify an additional amount to cutout for door openings in concrete garage curbs and foundation walls. See “General Panel” on page 413.

Additional header defaults can also be specified in the Build Framing dialog. See “Framing Defaults” on page 625.

Doors cannot be placed in a wall specified as Invisible or if the wall in question is on a locked layer. See “Locking Layers” on page 143.

Once placed, any door may be changed into any other type of door in the Door Specification dialog. See “General Panel” on page 413.

Hinged Doors

Hinged doors have separate defaults for interior and exterior doors. By default, a hinged door becomes a double door when its width is four feet (1200 mm) or greater.

The initial swing direction of a hinged door depends on the location of the mouse pointer relative to the wall when you click. The door will swing towards the side of the wall that you click nearest.

The initial hinge side of a hinged door can be set by clicking to place the door and then holding the mouse.
button down rather than releasing it. Move the mouse toward the end of the door that you would like the hinges to be on: as the mouse pointer nears either end, the door preview’s hinge side will move to that end. You can also adjust the door’s swing direction in this manner. When the swing direction and hinge side are correct, release the mouse button.

Doorways

Select **Build > Door > Doorway** and click on a wall to place a doorway. Doorways are simply openings without a door and can be placed in interior and exterior walls, railings, and fences. You can assign a door from the library to a doorway if you wish.

Sliding Doors

Select **Build > Door > Sliding Door** and click on a wall to place a sliding door. Sliding doors have separate defaults for interior and exterior doors: interior sliding doors are typically solid while exterior sliding doors are Glass Panel doors.

The initial opening side of a sliding door can be specified by moving the mouse pointer along the wall while the mouse button is still pressed.

Pocket Doors

Select **Build > Door > Pocket Door** and click on a wall where you want to place a pocket door.

As with sliding doors, the initial opening side of a pocket door can be specified by moving the mouse pointer along the wall while the mouse button is still pressed.

By default, a pocket door becomes a double pocket door if its width is four feet (1200 mm) or greater.

Bifold Doors

Select **Build > Door > Bifold Door** and click on a wall where you want to place a bifold door.

Like a hinged door, the initial opening side of a bifold door depends on the location of the mouse pointer relative to the wall when you click. The door will open towards the side of the wall that you click nearest.

Similarly, the initial hinge side of a bifold door can be specified by moving the mouse pointer along the wall while the mouse button is still pressed.

By default, a bifold door becomes a double bifold if its width is greater than three feet (900 mm).

Garage Doors

Select **Build > Door > Garage Door** and click on a wall to place a garage door.

In plan view, dashed lines show the size and location of the garage door when open.

Garage doors will build into a garage stem wall provided the room is designated as a garage before the door is inserted. See “Room Types and Functions” on page 315.

Fixed Door

Select **Build > Door > Fixed Door** and click on a wall to place a fixed door.

Barn Door

Select **Build > Door > Barn Door** and click on a wall to place a surface mounted sliding door, sometimes referred to as a barn style door.

Shower Door

Select **Build > Door > Shower Door** and click on a wall to place a hinged glass slab shower door.

The **Doors & Doorways Library Catalog** can be accessed by selecting **View > Library Browser** and browsing to Chief Architect Core Catalogs > Architectural > Doors and Doorways. This catalog contains a variety of interior and exterior doors, as well as special entryways and wrapped openings.

Entryways and wrapped openings are examples of Doorways, which are wall openings that do not have doors within them.
To add a door to the Doorway, select a **Door Type** other than “Doorway” from the drop-down list in the **Door Specification** dialog. See “General Panel” on page 413.

You can also select a door from the library and place it into a doorway in plan view or any 3D view.

To place a library door in a doorway

1. Go to plan view or any 3D view.

2. Open the Library Browser.

3. Browse or search to find a door style that suits your needs.

4. Select the door in the Library Browser, then click on the doorway to place the selected door within it. If a door already exists, it is replaced.

5. Continue clicking other doorways as needed.

Custom Doors and Doorways

You can import or create custom doors and doorways and save them in your own library for use in future plans. See “Custom Symbols” on page 713.

You can also specify the Door Type associated with a custom door symbol saved in the library in its **Symbol Specification** dialog. See “Options Panel” on page 717.

Displaying Doors

- The display of doors, door labels, opening indicators, header lines, and casing is controlled in the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.

Doors can only be placed in walls, so if a wall’s layer is turned off in plan view, any doors placed in that wall will not display, either. Doors can display independent of their containing walls in 3D views, however. See “Displaying Walls” on page 277.

If the “Doors” layer is turned off, doors and their casing do not display but openings in the walls where they are located are visible.

In Plan Views

A door’s jamb, casing, and swing are all represented in plan view. If a door is recessed, the affected wall layers will adjust to accommodate the casing.

A threshold line will display across a door opening in plan view when the door:

- Is located in an exterior wall. See “Exterior and Interior Walls” on page 268.
- Opens to an exterior room such as a Garage or Deck. See “Room Types and Functions” on page 315.
- Is located between rooms with different floor heights. See “Stepped Floor and Ceiling Platforms” on page 326.

Doorways display dashed lines that represent the wall surface between the doorway and the ceiling. Other types of doors do not display these wall surface lines, however, you can specify that any door display them or not in its specification dialog. See “Options Panel” on page 415.

If an exterior door to a Garage room on Floor 1 extends into a Garage stem wall or curb on Floor 0, its location will be indicated on Floor 0. You can control the display of this concrete cutout in the **Door Specification** dialog. See “Garages” on page 529.

When the “Opening Header Lines” layer is turned on in plan view, headers are represented by dashed lines within each door’s opening. These lines do not correspond to actual framing objects and cannot be selected. In addition, header framing members can be set to display. See “Wall Framing” on page 626.
The vertical casing on the sides of doors will display in plan view when the “Casings, Exterior” and “Casings, Interior” layers are turned on. See “Casing Panel” on page 416.

In 3D Views

You can specify whether a selected door is shown open or closed in 3D views by clicking the Show Door Open in 3D and Show Door Closed in 3D edit buttons as well as in the Door Specification dialog. See “Options Panel” on page 415.

If a door is set to display open in 3D, the angle of the open door can be changed using the edit handles in plan view. See “Using the Mouse” on page 408.

You can specify whether an exterior door has a threshold in the Door Specification dialog. See “Casing Panel” on page 416.

To display opening indicator arrows in Vector Views, turn on the “Opening Indicators” layer in the Layer Display Options dialog. See “Vector View” on page 829.

Door Labels

Door labels display in floor plan and cross section/elevation views, centered on the doors they represent, when the “Doors, Labels” layer is turned on and use the Text Style assigned to their layer. See “Object Labels” on page 515.

Automatic door labels indicate Width and Height. For example:

- In Imperial plans, the automatic label for a 3'-0” wide, 6'-8” high double hung window will read 3068.
- In metric plans, the automatic label for a 900 mm wide, 2100 mm high double hung window will read 900x2100.

If you prefer, you can use one of two other formats: Height/Width and Width Only. Label formats are specified in the Door Specification dialog or in the Door Defaults dialog if no schedule is present. See “Labels Panel” on page 515.

Customized labels using text and Object Specific Text Macros as well as label position and orientation can also be specified in the Door Specification dialog. See “Text Macros” on page 400.

When displayed as opaque, window and door glass uses the Material Color set in the Define Material dialog. See “Pattern Panel” on page 769.

Editing Doors

Before a door can be edited, it must be selected. To select a door, click it when the Select Objects tool or any of the Door Tools are active. Doors and/or windows can also be group selected and edited. See “Selecting Objects” on page 167.

Blocked units are made up of individual doors and windows that have been grouped together to act as one object. You can create a blocked door unit by creating a Mulled Unit composed of doors and/or windows. See “Make Mulled Unit” on page 431.

Select a blocked unit by clicking on it in any view. To select a door that is a component of a blocked unit, click at the location of the component in question, then click the Select Next Object edit button. See “Selecting Objects” on page 167.

In the Specification Dialog

The most precise method of editing a door or group of doors is to use the Door Specification dialog. Door type, size, casing, materials, shape, and more can all be specified in this...
dialog. See “Door Specification Dialog” on page 412.

Using the Mouse

In plan view, click either of the two end handles and drag along the wall to change the width. The label showing the size updates as the handles are dragged. Click and drag the Move handle at the center to move the door along the wall it is placed in. Use the triangular Rotate handle to adjust the door’s swing. If the door’s label displays, an additional handle is available to move it.

In 3D views, a selected door has five edit handles: the Move handle at the center and a Resize handle on each edge. Click and drag an edge handle to resize the door.

Using the edit handles, doors resize according to the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

A door or window moved against an intersecting wall temporarily stops when the casing meets the intersecting wall. You can continue to drag and it resumes movement past the intersecting wall.

Using Dimensions

Like various other objects, doors can be moved using dimensions. See “Moving Objects Using Dimensions” on page 365.

You can specify how doors and windows are located by dimensions in the Dimension Defaults dialog. Dimensions can be set to locate the centers, sides, casing, and/or rough openings of doors and windows, or you can choose to not locate them at all. See “Locate Objects Panel” on page 346.

Once a dimension line has been drawn, you can move or add its extension lines to locate non-default locations on a door. See “Editing Extension Lines” on page 363.

Using the Edit Tools

A selected door or doors can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

- Click the Change Opening/Hinge Side edit button to change the side of the door that its hinges are on. See “Changing Door Swings” on page 409.

- Click the Change Swing Side edit button to change which direction the selected door swings.

- Click the Show Door Open in 3D or Show Door Closed in 3D edit button to control the selected door’s appearance in 3D views. See “In 3D Views” on page 407.

- Click the Gable Over Door/Window to create a gable over the selected door(s) the next time the roof is rebuilt. See “Gable/Roof Lines” on page 610.

Centering Doors

The Center Object edit button allows you to center a selected door along a wall within a room or relative to a cabinet or window. See “Using Center Object” on page 197.

To center a door along a wall

1. Select a door or combination of windows and doors in plan view.

2. Click the Center Object edit button then choose from one of the following options:
 - Click near a wall inside a room to center the door along that wall in that room.
 - Click outside the house (on the exterior room) near an exterior wall to center the door along an exterior wall.

Door Style and Panels

There are a number of Door Styles available for use, including Slab, basic Panel, and Louvered. In addition, a selection of door panel symbols is available in the Library. See “Placing Library Objects” on page 704.

By default, most door types are either single or double, depending on their width. You can specify how many panels a selected door has in the Door Specification dialog. See “Options Panel” on page 415.

Door Sides

Like walls, all doors have two sides: an interior side and an exterior side. This is the case even for doors placed in interior walls. See “Exterior and Interior Walls” on page 268.

By default, the interior side of the door will face the direction that the door swings to open. If you prefer,
you can specify that the interior side face the opposite direction in the **Door Specification** dialog. See “General Panel” on page 413.

You can specify the materials for the two sides separately in the **Door Specification** dialog. See “Materials Panel” on page 424.

You can also specify different casing for the interior and exterior sides of exterior doors - that is, doors placed in exterior walls or walls defining a Garage or other exterior room type. See “Room Types and Functions” on page 315.

Door Casing

Doors typically feature casing, or trim, on both sides of the wall opening. See “Applying Moldings” on page 680.

- By default, interior doors use the same casing profile on both sides. You can specify that both sides be edited separately in the **Door Specification** dialog. See “General Panel” on page 413.
- Exterior doors can have different casing profiles on their interior and exterior sides.

Changing Door Swings

Door swing direction and hinge side can be changed using the edit handles and the **Change Opening/Hinge Side** and **Change Swing Side** edit buttons.

Swing and hinge side can also be applied from one door to another using the **Match Properties** tool. See “Matching Properties” on page 219.

The **Change Opening/Hinge Side** edit button is available for all doors except doors with multiple panels and garage doors.

The **Change Swing Side** edit button is available for all doors except pocket doors.

Hinged Doors

In addition to using the edit buttons, Hinged Doors and Shower Doors’ hinge side and swing direction can be changed using the triangular Rotate edit handle.

To adjust the angle of swing:

1. In plan view, select the door and grab the triangular handle.
2. Drag to change the amount of swing.
3. Release the mouse.

If you drag near the closed position, the door snaps to a closed position.

To change the swing using edit handles:

1. In plan view, select the door and grab the triangular edit handle.

The default casing for interior and exterior doors is a basic rectangular stock profile. You can specify a door’s casing profiles in the **Door Specification** dialog, or you can choose to suppress casing altogether. See “Casing Panel” on page 416.

A separate molding profile can be specified for the lintel, or top horizontal molding. See “Lintel Panel” on page 418.

Exterior and interior door casing will display in all views when the “Casings, Exterior” and “Casings, Interior” layers are turned on. In plan view, only the vertical side casing is shown.

Door Hardware

Handles, locks, and hinges can be assigned to a door in the **Door Specification** dialog. See “Hardware Panel” on page 421.

In 3D views, handles and locks can also be applied directly from the Library Browser. Select a hardware item in the library, then click on the door to apply it to that side of the door. See “Inserted Objects” on page 705.
2. Drag the pointer along the path of the new arc to change the hinge side and/or swing direction.

3. Release the mouse.

To change the swing using edit buttons:

1. In plan view, select the door.
2. To change the hinge side, click the Change Opening/Hinge Side edit button.
3. To change the swing direction, click the Change Swing Side edit button.

Garage Doors

To change the side of a garage door that it faces, select it and click the Change Swing Side edit button.
Unlike other door types, the Swing side of a garage door cannot be modified using the edit handles.

Special Doors

A variety of special doors and doorways can be created in Chief Architect.

Transoms Above Doors

Transom windows above doors are created the same as other stacked windows. See “Grouped Windows” on page 431.

Wrapped Openings

Wrapped openings of various shapes are available in the Doors & Doorways Library.

You can also create a wrapped opening by unchecking Use Interior Casing and/or Use Exterior Casing in a Doorway’s Door Specification dialog. See “Casing Panel” on page 416. If base molding is present, it will wrap around the opening.

Recessed Doors

A door placed in a brick or stone wall is often recessed into the wall’s exterior. In the illustration below, the door to the right is recessed, so the brick wraps the opening. The door on the left is not recessed, so the casing is outside the brick.

You can specify a door as recessed in the Door Specification dialog. See “Options Panel” on page 415.

In Door Schedules

Both Hinge Side and Swing can be included in Door Schedules. See “Columns to Include” on page 509.

Blocked Doors and Windows

Combinations of doors and windows can be blocked. Blocked units are mulled together and can be copied together as a unit. Blocked units containing doors can be treated as either windows or doors for materials list and schedule generation. See “Make Mulled Unit” on page 431.

Openings in Railings

Use the Doorway tool to open a railing for a stairway or other access.

To open a railing across an entire section, resize the doorway’s Width so that it is greater than the length of the railing in the Door Specification dialog. The opening resizes to the maximum width possible for that space. See “General Panel” on page 413.

To add a gate, specify the doorway’s Door Type as a Door, then choose an appropriate gate as the Door Style. A selection of gates is available in the Fences & Railings library folder. See “Placing Library Objects” on page 704.
Creating a Doorway with a Railing

When a railing is specified as No Room Def, it can be positioned within a Doorway.

To create a doorway with railing

1. Place a Doorway at the desired location in your plan.
2. Select Build > Railing and Deck > Straight Railing, then click and drag to draw a railing parallel to the wall with the doorway.
3. Select the railing, then use the Resize edit handles to adjust the length of the railing as needed. See “Using the Edit Handles” on page 171.
4. With the railing selected, click the Open Object edit button.
5. On the General panel of the Railing Specification dialog, check No Room Def and click OK. See “General Panel” on page 297.
6. With the railing still selected, Ctrl + drag it into position within the doorway. See “To move an object freely” on page 193.

Positioning a Gable in a Doorway

Placing a Gable Over a Door

Click the Gable Over Door/Window edit button to produce a gable roof over the selected door(s) the next time automatic roofs are built. See “Gable/Roof Lines” on page 610.

You can manually edit or delete this gable line at any time. Your changes take effect when the automatic roofs are rebuilt. This can also be used with group selected doors.

Custom Muntins

Like windows, doors that are specified as “Glass” can have custom muntins. Custom muntins are created from CAD lines. See “Custom Muntins” on page 437.

Door Specification Dialog

To open the Interior or Exterior Door Specification dialog, select a door or group of doors and click the Open Object edit button or double-click on a door using the Select Objects tool.

Whether a selected door is Interior or Exterior depends on where it is placed. See “Interior vs Exterior Doors” on page 404.

You can also open the specification dialog for the door(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

The Lintel, Framing, and Energy Values panels are also found in the Window Specification dialog. In addition, the Frame panel for windows is similar to the Jamb panel for doors. See “Window Specification Dialog” on page 438.
General Panel

1. **General** -
 - **Door Style** - Select Slab, Glass Slab, Panel, Glass Panel, Louvered, or Glass Louver from the drop-down list; select a style from the Library; or choose “Use Default” to use the default door style set in the Door Defaults dialog. See “Door Defaults” on page 403.
 - Select “Library” from the drop-down list or click the Library button to choose a door symbol from the library. Once a library door is selected, its name is added to the Door Style list. See “Select Library Object Dialog” on page 705.
 - Specify the **Door Type** as Doorway, Hinged, Sliding, Pocket, Bifold, Garage, Fixed, Barn, or Shower. In the Door Defaults dialogs, the Door Type cannot be changed.
 - Specify the **Swing Angle** of the selected door in plan view, between 0° and 180°. An angle of 0° displays the door as closed and an angle of 180° displays it as wide open. The Swing Angle for Bifold doors and double doors that swing from the center can be no more than 90°.
 - The Swing Angle also affects the door’s appearance in 3D views if **Draw Closed** is unchecked on the OPTIONS panel.

2. Specify the **Size and Position** of the selected door.
 - Specify the **Width**, **Height**, and **Thickness** of the door. These values do not include the jamb.
 - Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their labels.
 - Specify the height to **Top**, measured from the selected Elevation Reference to the top of the door frame.
• Specify the height to Bottom, measured from the selected Elevation Reference to the bottom of the door frame.

3 The Sliding Doors settings are available for Slider, Pocket, and Barn Doors.

• Specify the Side and Top Overhang values, which control how much the selected door extends past its wall opening. Only available for Barn Doors.

• Specify the Offset from Wall, which is how far the selected door is offset from its default location. Slider and Pocket Doors are centered in the wall’s Main Layer by default, while Barn Doors are positioned against the wall surface.

4 Panel Frame Widths - Specify the dimensions of the selected door’s rails and stiles. Only available for Glass, Panel, and Louvered doors.

• Specify the Width of the stiles and top rail. Uncheck Uniform to specify separate values for the Left, Right, and Top of the frame, or leave it checked to use the same value for all three.

• Specify the height of the Bottom rail.

5 Louvers -

• Specify the Size, or vertical height, of the selected door’s louvers. Only available for Louvered and Glass Louvered doors.

• By default, louvers face the direction that the door swings. Check Reverse Direction to reverse the direction that they face.

6 Options -

• Check Reverse Interior/Exterior to reverse the two sides of the selected door so that they face the opposite direction. Only available when a door symbol from the Library is specified as the Door Style. See “Door Sides” on page 408.

• Check Separate Trim and Materials for Each Side to specify the casing, lintels, and all materials for each side of the selected interior door independently. When unchecked, the two sides of the door use the same trim and materials. Only available when the selected door is placed in an interior wall. See “Exterior and Interior Walls” on page 268.

7 A preview of the door displays on the right side of the dialog box. A label indicates which side of the door is its Interior and which is its Exterior. See “Dialog Preview Panes” on page 32.
Specify the number of door panels or sections that the selected door has. See “Door Style and Panels” on page 408.

- Select **Single Door Only** to force the selected hinged, pocket or bifold door to be a single door, regardless of its width.

- Select **Double Door Only** to force the selected hinged, pocket or bifold door to be a double door, regardless of its width.

- Select **Calculate From Width** to use the program defaults. Hinged and pocket doors default to **Single Door** when less than four feet (1200 mm) wide; bifold doors do so when less than three feet (900 mm) wide. If the width is greater than this, **Double Door** is the default.

- Select **Custom**, then specify the number of panels on the **Left** and/or **Right** door components. Only available for sliding, pocket, and bifold doors.

- For a selected Garage Door, specify the number of **Vertical Panels**.

- When **All Glass** is unchecked, only the third panel from the bottom the door is a glass panel: the rest are solid panels. Check this box to make all of the panels glass. The number and style of the lites and the Muntin Width can be specified on the **LITES** panel.

2 The **Plan Display** settings control the display of dashed wall surface lines above the door in plan view. See “In Plan Views” on page 406.

- Select **Automatic** to display wall surface lines only when the selected door is a Doorway.

- Select **Show Top Edge** to display wall surface lines regardless of the door type.

- Select **Hide Top Edge** to not show wall surface lines regardless of door type.

3 **3D Display** - Specify whether the selected door is shown open or closed in 3D and cross section/elevation views.

If **Show Open** is selected, the Swing Angle set on the General Panel is used.
4 Door Swing - Specify how the selected door swings. Most options here are only available when the selected Hinged or Pocket door is a Double Door. Not available for Bifold, Slider or Garage doors. See “Changing Door Swings” on page 409.

- Check Both Doors Swing to allow both sides of a Double Door to swing.
- Check Left Swing Only or Right Swing Only to allow only the left or right side of a Double Door to swing.
- Check Swings from Center to create a Double Door with hinges at the center rather than at the outside edges.
- Check Swings Both Directions to allow a door or both sides of a Double Door to swing both directions.

5 The Safety settings affect how the selected door is listed in the Door Schedule. See “Schedules and Object Labels” on page 505.

- Check Tempered Glass to specify the selected door as having tempered glass.
- Check Fire Door to specify the selected door as being a fire door.

6 The Recessed into Wall options allow you to recess the selected door’s jamb into a wall, away from the exterior surface. This setting also affects the exterior casing and lintel, if used. Only available if the door is placed in a multi-layered wall. See “Wall Type Definitions” on page 292.

7 In Curved Wall - Specify whether a door placed in a curved wall is Straight or Curved. Curved is selected for Slider, Pocket, and Barn Doors and cannot be changed. See “Drawing Curved Walls” on page 275.

8 Plinth Blocks - Add an Interior Plinth Block and/or Exterior Plinth Block to the selected door. Plinth blocks do not display in 3D views, but are counted in the Materials List.

9 A preview of the door displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Casing Panel

By default, interior and exterior casing is suppressed for doorways placed into railings: including solid railings and railing pony walls.
Check **Use Interior Casing** to enable the settings that follow, then specify the interior casing for the selected door(s) using those settings. When this box is unchecked, no casing is used.

- **Casing Profile** - Click the **Library** button to select a molding profile for the casing. A preview of the casing profile displays to the right. See “Select Library Object Dialog” on page 705.
- Click the **Clear** button to remove a selected casing profile from the door.
- Specify the **Width** of the selected casing.
- Define the **Depth** of the selected casing, as measured from the back to the front of the casing profile.
- Define the **Reveal**, which is the distance between the inside edge of the door frame and the inside edge of the casing.

Check **Use Exterior Casing** to enable the settings that follow, then specify the exterior casing for the selected door(s) These settings are the same as those for the Interior Casing, and are not available for doors in interior walls unless **Use Exterior Trim and Materials** is checked on the GENERAL panel. See “General Panel” on page 413.

Uncheck **Use Sill/Threshold** to prevent a sill from being generated under the door. See “Displaying Doors” on page 406.

The **Double Wall Options** affect doors placed in a Double Wall. See “Double Walls” on page 291.

- Select **Through** to create a single jamb running through both Double Walls. This option is selected by default.
- If **Enlarged** is selected, casing is created only on the wall the door is inserted in. The opening on the other wall is enlarged to accommodate the casing.
- Select **Double** to place a second door in the Double Wall opposite the selected door. This second door cannot be selected. Casing is produced as with the **Through** type window.
- Select **Not Through** to place the door in one wall with no corresponding opening in the other wall.
The Curved Wall Casing settings are enabled if the selected door is located in a curved wall. See “Drawing Curved Walls” on page 275.

Door and window casing and jamb can be constructed three ways in curved walls:

- **Straight** - Both the door and casing are straight. This can be used where the wall’s curvature is not too sharp and the opening is not too wide. Not available for Sliding, Pocket, or Barn Doors.

- **Radial** - A vertical surface that would be perpendicular to a straight wall has its plane pass through the wall's center of curvature.

- **Parallel** - A vertical surface that would be perpendicular to a straight wall remains parallel to the line from the wall center through the opening center.

A preview of the door displays on the right side of the dialog box. If casing is not specified for a Doorway, the Show Wall option will be toggled on automatically. See “Dialog Preview Panes” on page 32.

Lintel Panel

The settings on the LINTEL panel allow you to assign a lintel, or top molding that meets the side casing using a butt joint instead of a mitered joint. These settings are not available if the door has a reflected arch. See “Arch Panel” on page 420.

The profiles and materials of door and window lintels can be included in Room Finish Schedules. See “The Schedule Tools” on page 506.

Check **Use Interior Lintel** to enable the settings that follow, then specify the lintel applied to the interior side of the selected door(s) using these settings. When this box is unchecked, no lintel is used.

- **Lintel Profile** - Click the Library button to select a molding profile for the lintel. A preview of the selected profile displays to the right. See “Select Library Object Dialog” on page 705.
- **Clear** button to remove a selected lintel profile from the door.
• Specify the **Width** of the lintel. This value is independent of the casing’s width; however, the lintel does inherit its depth from the casing.

• Specify how far to **Extend** the lintel past the outside edges of the casing on each side.

• Check **Wrap** to wrap the lintel profile back toward the wall.

2 Check **Use Exterior Lintel** to enable the settings that follow, then specify the exterior lintel for the selected door(s) using these settings. These settings are the same as those for the Interior Lintel, and are not available for doors in interior walls unless Use Exterior Trim and Materials is checked on the **GENERAL** panel. See “**GENERAL Panel**” on page 413.

3 A preview of the door displays on the right side of the dialog box. See “**Dialog Preview Panes**” on page 32.

Lites Panel

The settings on the **LITES** panel of the **Door Specification** dialogs are only available when the selected door is specified as a Glass door on the General Panel. These settings are also found on the **LITES** panel of the **Window Specification** dialog. See “**Lites Panel**” on page 445.

Jamb Panel

The settings on the **JAMB** panel are similar to those on the **FRAME** panel of the **Window Specification** dialog. See “**Frame Panel**” on page 444.

By default, Has Jamb is unchecked for doorways placed into railings: including solid railings and railing pony walls.

1 Check **Has Jamb** to enable the settings that follow, then specify the attributes of the selected door’s jamb using those settings. The jamb is not included in the door’s size, which is set on the **GENERAL Panel**.

• Specify the **Sides Width**, which is the thickness of the pieces of the door jamb that display in plan view. Changing this value does not affect the door’s size.

• Uncheck **Fit Jamb to Wall** to specify the Depth and Inset of the selected door’s jamb. When this box is checked, the jamb Depth automatically extends from the Recessed Into Wall layer to the wall’s inside surface with an Inset of 0”. The Recessed Into Wall layer is specified on the **Options Panel** of this dialog.

• Specify the **Depth** of the door jamb from front to back.

• Specify the jamb’s **Inset**, which is measured from the Recessed Into Wall layer and moves the door jamb towards its interior side. If used, the casing and lintel are not affected by this setting.

2 A preview of the door displays on the right side of the dialog box. See “**Dialog Preview Panes**” on page 32.
Arch Panel

The settings on the ARCH panel are also found in the Window Specification dialog.

The settings on this panel are not available if the selected door is a Sliding, Bifold or Garage door, or if the selected door has been assigned a lintel. See “Lintel Panel” on page 418.

The ARCH panel is not available for window symbols, and its settings are not available if a selected window has been modified using the SHAPE panel. See “Shape Panel” on page 447.

1 Define the style and size of the Arch.
- Select a Type of arch from the drop-down list.
- Specify the Height of the arch, as measured from the base of the arch to the top of the door. Not available for Round Top and Octagonal Arches.
- The Radius can also be defined for Tudor and Double Arches.

2 Options - Define the orientation of the arch.
- Check Reflect to reflect the arch, top to bottom. This is typically used with windows rather than doors. Not available if a lintel is specified for the selected door. See “Lintel Panel” on page 418.
- Select Full Arch to produce an arch with the apex at the door’s center.
- Select Left Arch to produce an arch with the apex on the door’s right side.
- Select Right Arch to produce an arch with the apex on the door’s left side.

Note: The Left and Right settings here on this panel refer to the door or window as viewed from its exterior.

3 A preview of the door displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.
Hardware Panel

Many of the settings on the HARDWARE panel are Dynamic Defaults: if “Use Default” is selected, the setting in the Door Defaults dialog for the selected door’s Type is used. See “Dynamic Defaults” on page 67.

1. Specify the Handles to be used on the selected door.
 - Select an Interior Handle and/or Exterior Handle from the drop-down lists. Select “Library” or click the Library button to select a handle from the library. See “Select Library Object Dialog” on page 705.
 - Specify the location of the door handles In From Door Edge.
 - Specify the location of the door handles Up From Bottom.

2. Specify the door’s interior and exterior Locks.
 - Select an Interior Lock and/or Exterior Lock from the drop-down lists. Select “Library” or click the Library button to select a lock from the library.
 - Specify the location of the door locks Up From Bottom. The locks use the same In From Door Edge value as the handles.

3. Specify the Hinges to be used on the selected door.
 - Select a style of Hinges from the drop-down list. Select “Library” or click the Library button to select a hinges from the library.
 - Specify the distance In From Top/Bottom of the door to the center of the top and bottom hinges.

 Note: For hinges to look right, it is best to have at least a 1/4” (6 mm) reveal for the interior, or hinge side, door casing.

4. Specify the Sliding Tracks.
 - Select a Sliding Track from the drop-down list. Select “Library” or click the Library button to select a sliding track from the library.
 - Specify the Height Above Door. The height above the door is measured from the top of the door to the top of the track.
 - Specify the distance In From Top/Bottom of the door to the center of the top and bottom tracks.

5. Specify the Number of Hinges on the selected door. Interior hinged doors and bifold doors typically have two hinges while exterior hinged doors have three.
Specify the **Sliding Tracks** to be used on the selected Barn Door.

- Select a **Sliding Track** from the drop-down list. Select “Library” or click the **Library** button to select a track from the library. See “Select Library Object Dialog” on page 705.
- Specify the track’s **Height Above Door**.
- Select a style of **Hangers** from the drop-down list. Select “Library” or click the **Library** button to select a hanger from the library.
- Specify the distance **In From Sides** of the door to the center of the outermost hangers.

- Specify the number of **Hangers** to be evenly spaced along the door.

5. Check **Hardware on Fixed Section** to include handles, locks, and hinges on the fixed side of a double hinged door. Only available for Double Doors with Left or Right Swing Only selected. See “Options Panel” on page 415.

6. A preview of the door displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Shutters Panel

The settings on the **SHUTTERS** panel of the **Door Specification** dialogs are also found on the Shutters panel of the **Window Specification** dialog. See “Shutters Panel” on page 422.

Framing Panel

The settings on the **FRAMING** panel control how the selected door or doors is framed. A similar panel is also found in the **Window Specification** dialog. See “Window Specification Dialog” on page 438.

Chief Architect is dependent upon user input and does not calculate loads or perform structural analysis. Always consult your local building authorities and contact a licensed engineer for structural calculations.

![Image of Door Specification dialog](image-url)
Specify the characteristics of the selected door’s **Header**.

- Uncheck **Include Header** to prevent a structural header from generating when wall framing is created. When this box is checked, a header as defined below is generated; when it is unchecked, a single, non-structural, horizontal framing member of the same type as the wall studs is created above the door opening.

- Select the header’s framing member **Type** from the drop-down list. See “Structure Types” on page 650.

- When **Automatic** is checked, the program will confirm that the Type selected above agrees with the framing material used by the wall, and will generate a different header Type if it does not. The Type that will be generated is reported in parentheses for reference. When unchecked, the specified Type is used regardless of the wall’s structural material. See “Headers” on page 626.

- Specify the **Thickness** of each header framing member.

- Specify the **Count**, which is the number of the framing members used to create the header. Up to 10 headers can be specified, but only those that fit within the wall’s framing layer will be generated when wall framing is created.

- Specify the vertical **Depth** of the header. This value does not include the top and bottom chords of a Box Header.

- In the **Door** and **Window Defaults** dialogs, an additional **Calculate from Width** check box is available. When checked, the header Depth is automatically calculated based on settings in the **Framing Defaults** dialog and the door’s current width. See “Openings Panel” on page 635.

- Check **Box Header** to add horizontal top and bottom rails above and below the vertical rails. These horizontal boards are not included in the header Depth. See “Headers” on page 626.

- Specify the attributes of the **Header Label** for the selected door’s headers. See “Framing Labels” on page 646.

- Specify the number of **Trimmers** to be generated on each side of the selected door.

- **Rough Opening** - Specify the amount to add to Each Side, the **Top** and the **Bottom** for the door’s framed rough opening. The rough opening should be large enough to accommodate the door frame and space for shims. Window frames do not need to be included in the rough opening: only shim space. If the Bottom Rough Opening value is greater than the Floor to Bottom value, the difference is added to the top of the rough opening when framing is built.

- **Add for Concrete Cutout** - Specify the amount to add to Each Side of the door opening when the upper part of the door is in a framed wall and the lower part is located in a concrete or masonry wall, stem wall, or garage curb. See “Wall Type Definitions” on page 292.

- Uncheck **Show in Plan** to suppress the display of the concrete cutout in plan views. A concrete cutout will only display in plan views if it is located in a garage curb. See “In Plan Views” on page 406.

- **Sill** - When the bottom of a door is raised sufficiently off the floor, it will require a sill as part of its framing.

- Specify the vertical **Thickness** of the sill.

- Check **Double Sill** to generate two sill members of the specified thickness instead of one.

Energy Values Panel

The settings on the **Energy Values** panel let you specify information used for export to REScheck. See “Export to REScheck” on page 897.
Assembly - Select a Door Type from the drop-down list.

Energy Values -
- Specify the selected door’s U-Factor.
- Specify the selected door’s SHGC (Solar Heat Gain Coefficient).

Layer Panel
The Layer panel is available for a variety of different objects. For more information, see “Layer Panel” on page 149.

Materials Panel
The Materials panel is available for a variety of objects throughout the program. For more information, see “Materials Panel” on page 761.

Label Panel
Door labels display in plan view and cross section/elevation views when the “Doors, Labels” is turned on and use the Text Style assigned to that layer. See “Door Labels” on page 407.

Door Schedules
The Door Schedule tool allows you to produce customizable door schedules as well as door labels that display schedule numbers. See “The Schedule Tools” on page 506.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel
The information on the Components panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel
The information entered on the Object Information panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel
The settings on the Schedule panel determine which schedule categories the selected door is included in. See “Schedule Panel” on page 519.

Manufacturer Panel
The Manufacturer panel provides contact information for the selected door’s manufacturer. Only available for doors from Manufacturer library catalogs. See “Manufacturer Catalogs” on page 697.

If a door is included in a Mulled Unit, it may instead be listed in a window schedule. See “Make Mulled Unit” on page 431.

Door casing profiles and materials can also be included in Room Finish Schedules.
Hinge and Swing Side

Hinge Side and Swing Side columns can be added to door schedules. See “Columns to Include” on page 509.

There are various methods for describing hinge side as well as door swing direction, or door hand. In Chief Architect, both are described from the perspective of someone standing on the exterior side of the door.

- The hinge side will be described as L if the hinges are on the left side of the door, as viewed from its exterior side. If the hinges are on the right side, they will be described as R.
- The swing direction will be Out if the door swings towards the viewer on the exterior side.
- The swing direction will be In if the door swings away from the viewer, towards the interior.

Regardless of where they are located in a plan, all doors have an interior and an exterior side, as do the walls they are placed in. See “Interior and Exterior Surfaces” on page 294.
Chief Architect can model a wide variety of windows. Fixed glass, hung, casement, sliding, awning, hopper, and louver window styles can all be created with the standard Window tool. The shape of a window can be angled or made into a round top or other arch styles. Chief Architect can create bay, box, and bow windows with a single click. In addition, the library contains many mulled window combinations and additional name-brand door catalogs are also available for download from our web site, chiefarchitect.com.

Once windows have been placed in the model, the program can automatically generate a window schedule. See “The Schedule Tools” on page 506.

Window Defaults

Default Settings can be accessed by selecting **Edit> Default Settings**. Select Window from the Default Settings dialog and click the Edit button.

You can also double-click the Window Tools parent button to open the Window Defaults dialog.

The settings in the Window Defaults dialog control the attributes of a window when it is initially placed in a plan, so you should define the type of window that will be placed most often in your model. See “Default Settings” on page 65.

The panels in the Window Defaults dialog are similar to those found in the Window Specification dialog, with one exception:

On the **GENERAL** panel of the Window Defaults dialog, you can specify the **Minimum Separation** between window and/or door units in the plan.

The Minimum Separation value in the Window Defaults dialog specifies how close window and/or door units can be to each other. This setting also determines the width of the shared casing between windows.

For more information, see “Window Specification Dialog” on page 438.
Dynamic Window Defaults

A variety of window default values are dynamic, including the Window Type, Add for Rough Opening values, Casing, Lintel and Sill Specifications, Sash and Frame sizes, and Treatments. All Materials are also dynamic. When a dynamic default is changed, existing windows using the default value are affected. See “Dynamic Defaults” on page 67.

Window Tools

To place a window, select Build> Window and choose the desired Window Tool. Move your mouse pointer over a wall section, then click to place a window in the wall at that location.

- If there is room enough along the wall to fit a 6” (150 mm) wide Standard Window, a preview of the window will display and a window can be placed.
- The Bay, Box, and Bow Window tools do not have preview outlines. If a minimum width of 30” (725 mm) cannot be accommodated at the location where you click, a warning message will display and a window unit will not be created.

Standard Windows can be placed in both straight and curved walls, as well as span across straight, collinear wall segments. In contrast, a Bay, Box, or Bow Window can only be placed in a single, straight wall.

Windows cannot be placed in a wall specified as Invisible or if the wall in question is on a locked layer. See “Locking Layers” on page 143.

Standard Windows

Select Build> Window> Window, then click on a straight or curved wall to place a Standard Window at that location.

A Standard Window is a single window that is not a bay, box, bow window, a corner window or a blocked unit. These special types are made up of multiple Standard Windows.

A Standard Window that is part of a special window is called a Component Window.

Standard Windows can be specified as any of a variety of window types, such as double hung, casement and awning. See “Window Specification Dialog” on page 438.

Window Framing

The defaults for window framing can be defined in the Window Defaults dialogs. You can also specify an additional amount to cutout for window openings in concrete walls when the upper part of the window is located in a framed wall. See “Framing Panel” on page 451.

Bay Windows

A Bay Window is composed of three wall sections, each with a single component window. The two side walls are at an angle to the main wall. Select Build> Window> Bay Window and click on a straight wall to produce a bay window.

When initially placed, bay windows measure 2’-2” across at the front, 4’-2” across at the back, and are 1’-0” deep. The component windows are specified in the Window Defaults dialog and their sizes adjust to fit the available space.

Box Windows

A Box Window is a bay window with side angles set at 90°. Select Build> Window> Box Window and click on a straight wall to produce a box window.

Box windows initially measure 4’-2” wide with a depth of 1’-6”. The component windows are specified in the Window Defaults dialog and their sizes adjust to fit the available space.

Bow Windows

A Bow Window is a group of identical wall segments that form a segmented curve. Select
Build> Window> Bow Window and click on a straight wall to produce a 5-section bow window.

Bow windows can be composed of between two and twenty sections. The number of bow window components can be changed in the Bow Window Specification dialog. See “Bay/Box and Bow Window Specification Dialogs” on page 454.

The component windows are specified in the Window Defaults dialog. Their sizes adjust to fit the available space.

The 5-section bow below has a 4’-10” radius centered 3’-9” inside the wall, giving an opening 5’-10” across and a depth of 11½”.

Note that for a bow with an odd number of sections, the radial dimension is from the center of the arc to an outside corner where two window sections join. The depth (11 ½”) is measured to the flat area of the center section, not to a corner. As a result, the radius is a bit greater than the sum of the depth and the distance from the center of the bow’s curve to the exterior of the wall.

Note: Bay, box, and bow window areas are not included in the living area or in room standard area calculations. They are included in room interior area calculations.

Special Windows

A variety of special windows can be created using multiple standard windows, the edit tools or custom symbols.

Creating Manual Bay, Box and Bow Windows

Sometimes it is easier to draw bay, box and bow windows manually than to use the automatic tools. Bays created using walls can have more than one window per section, which is not possible using a bay window unit.

Bear in mind that moving a manually created bay, box or bow window is generally more difficult than moving a unit created with one of the Window Tools since it is composed of individual walls.

Pass-Throughs

Select Build> Window> Pass-Through, then click on a straight or curved wall to place a Pass Through at that location.

A Pass-Through is simply a wall opening without a window unit placed inside. Like a window, it can have casing and a sill. It does not, however, have a sash, frame, or glass. It is one of the window Types available in the Window Specification dialog. See “General Panel” on page 438.

Wall Niches

Select Build> Window> Wall Niche, then click on a straight or curved wall to place a Wall Niche at that location.

A Wall Niche is a wall opening that does not extend through the entire depth of the wall. You can specify the niche’s depth in the Window Specification dialog. See “General Panel” on page 438.

Windows Library

Select View> Library Browser, then browse to Chief Architect Core Catalogs> Architectural> Windows to access a selection of special window units. Select the desired window, then click on a wall to place the window at that location.

Corner Windows

To create a corner window, first create the desired window on each side of the corner. For best results, the heights, casing, and sills of both windows should be the same. For glass that meets at the corner:

- Specify both windows as Fixed Glass.
- Use each window’s Move edit handle to position it all the way in the corner. To do this, drag the Move handle past the corner and parallel to the wall that the window is placed in. When the pre-
view outline moves into the middle of the wall corner, release the mouse button.

- You can also position a window in a corner using its end Resize handle.

- Uncheck Has Corner Post in the Window Specification dialog. See “Frame Panel” on page 444.

Angled top, or shaped windows can be components of corner windows as long as their heights are equal at the corners. Windows with single or two segment tops can be used, but windows with three cannot. If a two segment window is used, the segment nearest the corner must be flat.

When a corner post is required, there are a number of ways to control its size.

- Use dimensions to position the windows relative to the corner. By default, windows will stop when their interior casing bumps into the adjacent wall. See “Editing Windows” on page 436.

- To move a window all the way into a corner, check Ignore Casing for Opening Resize. See “General Plan Defaults Dialog” on page 77.

- To produce a minimal corner post and no siding or casing between the windows, use their Move edit handles. Click and drag each window past the exterior corner until its preview outline moves into the middle of the wall corner.

Special Window Shapes

A selection of special shaped windows is available in the Windows Library, including arched windows and mulled units.

In addition, you can create a wide variety of window shapes in the Window Specification dialog, including:

- Arched windows. See “Arch Panel” on page 448.
- Trapezoidal windows. See “Shape Panel” on page 447.
- Round windows can be created by reflecting an Round Arch window vertically. See “Arch Panel” on page 448.

Recessed Windows

A window or mulled unit placed in a brick or stone wall is often recessed into the wall’s exterior, so the brick wraps the opening.

You can specify a window as recessed in the Window Specification dialog. See “Options Panel” on page 439.

Window Symbols

You can import custom windows and save them in your own library for use in future plans. See “Custom Symbols” on page 713.

By default, window symbols are assigned the “Custom” Type in Window Schedules and in the Window Symbol Specification dialog, and they use automatic labels appended with the letters CU. The Type is derived from the Symbol Specification dialog, where you can also select the CAD block used to represent the symbol in plan view. See “Symbol Specification Dialog” on page 713.

Placing a Gable Over a Window

Click the Gable Over Door/Window edit button to produce a gable roof over the selected window(s) the next time automatic roofs are built. See “Gable/Roof Lines” on page 610.

You can manually edit or delete this gable line at any time. Your changes take effect when the automatic roofs are rebuilt. This tool can also be used with group selected windows.
Stained Glass

A selection of solid stained glass materials is available in the Chief Architect Core Catalogs> Materials> Glass library. See “Materials” on page 757.

Vents

A selection of attic, foundation and gable vents are available in the Library Browser. See “The Library” on page 691.

Vents are placed in the same manner as regular windows and can be edited in much the same way, as well.

Grouped Windows

Windows can be grouped together to create a wide variety of custom configurations. Stacked windows are easy to create in 3D views, particularly cross section/elevation views, using their edit handles. See “Editing Windows” on page 436.

Notice how the windows and door in this example are separate, with spaces between them. Doors and/or windows can also be organized into a unit in which there are no spaces between the windows and door units, and the casing between them is shared. To help organize their display in plan view, you can place stacked windows of varying heights on different Window Levels. See “Window Levels” on page 433.

Automatically Mulled Openings

To form a mulled group of windows and/or doors, move them close enough together so that their casings touch. Once the casings touch, the windows are mulled together with one casing between the two of them.

The sill of each window in the group must be at the same level for them to share the middle casing. The casing tops do not have to be at the same level. The casings are modeled as if they are one unit but the windows remain separate objects for dimensioning and the Materials List.

Windows can be automatically mulled to doors if the bottom of the window is at the elevation of the floor, equal to the bottom of the door.

The Minimum Separation value in the Window Defaults dialog specifies how close window and door units can be to each other. This setting also controls the width of the shared casing between adjacent windows. See “Window Defaults” on page 427.

Mulled Units in the Library

A selection of mulled window units is available in the Windows library. To place one in your plan, select it and click on a wall in any view. See “Placing Library Objects” on page 704.

Make Mulled Unit

Windows and doors can be selected as a group and blocked together into a single unit by clicking the Make Mulled Unit edit button.

Make Mulled Unit

The Make Mulled Unit edit tool allows you to block a group of selected windows and/or doors into a single unit.

Wall openings in a mulled unit are referred to as components. Components of a mulled unit must be within 24” (600 mm) of one another in order to become a blocked unit; however, their casings do not have to touch.
the windows and doors the desired distance apart. See “Moving Objects Using Dimensions” on page 365.

2. In any view, group-select multiple windows and doors on the same wall that are within 24” of each other.

3. Click the Make Mulled Unit edit button to create a block.

The Make Mulled Unit edit tool can be used to block component windows and/or doors only if they meet the following requirements:
- They must be placed in the same wall.
- Adjacent objects be within 24” (600 mm) of one another (side to side or top to bottom).
- The edges of adjacent components that face one another must be parallel.
- The edges of adjacent components that face one another must be straight, not curved.
- The selected components can be adjacent vertically or horizontally, but not a combination of the two. Complex units can be formed only by mulling several blocks together.

Unlike automatically mulled openings, adjacent component edges of mulled units do not need to be the same length.

Mulling Stacked Openings
Group selection can be done in plan view or any 3D view. Plan views work well for blocking windows that are side-by-side, but a camera or elevation view is needed to block vertically stacked objects.

To block stacked openings
1. In a cross section/elevation view, select the door and the windows on level 1 and 2 above it, then click the Make Mulled Unit edit button.
2. Repeat step 1 with the sidelight on the right and the window above it.
3. Repeat step 1 with the sidelight on the left and the window above it.
4. Group select the three vertically joined units and click the Make Mulled Unit edit button to join them side to side.

The configuration of the horizontal and vertical mullions in a mulled unit will vary depending on the order in which you block stacked openings.

- If you form a mulled unit by first blocking objects vertically, the vertical mullions of the larger unit will extend continuously from the bottom to the top of the entire unit, breaking any horizontal mullions.
- If you form a mulled unit by first blocking objects horizontally, the horizontal mullions of the larger unit will extend from side to side, breaking any vertical mullions.

In a complex unit composed of smaller units, there may be a variety of ways to organize the sub-units.

Selecting Components of Mulled Units
To select a component of a mulled unit, click at the location of the component in question, then click the Select Next Object edit button or press the Tab key until that individual component is selected. Only the component clicked on is selectable using this method. If you need to select a different component, click on it and repeat the process.

The selected component may be on any window level in the mulled unit. If there are multiple levels, it is easiest to select the components in a 3D view. When you have selected an individual component, you can change its parameters in the Window Specification dialog. See “Window Specification Dialog” on page 438.

If the selected component is not itself a mulled unit and has no components above it, its Height and Arch parameters can be changed. Changing the Height causes the component top to move. The bottom remains stationary.

Displaying Mulled Units
As with other windows, the display of mulled window units is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

Mulled units are placed on the “Windows” layer by default and have a single label, which is on the “Windows, Labels” layer. Mulled units are also included in the windows category of the Materials List and in window schedules. If the component objects of a mulled unit have unique moldings or materials, they will not be noted in the Materials List or in room finish schedules. See “Schedules and Object Labels” on page 505.
If a mulled unit includes a door, Treat as Door will be checked in the Mulled Unit Specification dialog. When this box is checked, the unit’s default layer is “Doors” and its label is placed on the “Doors, Labels” layer. Units set to Treat as Door are also included in the “Doors” category of the Materials List, and these units’ Auto Schedule Category is “Mulled Door Units” instead of “Mulled Window Units”. Similarly, their casing is recognized as door casing in Room Finish Schedules. See “Options Panel” on page 439.

You can, if you wish, display a mulled unit’s individual component labels instead of a single label for the unit. Labels are placed on the layers they would be on were the unit not mulled. A mulled unit’s label setting also affects how it is listed in schedules and in the Materials List. See “Object Labels” on page 515.

- When Suppress All Labels is selected, individual components are counted in schedules and in the Materials List.
- When Show Component Labels is selected, components are counted in schedules and in the Materials List.
- When Show Single Label for Entire Unit is selected, the unit is treated as a single object in schedules and the materials list.

Mulled units can be placed on different Window Levels to control their appearance in plan view. See “Window Levels” on page 433.

Editing Mulled Units

A mulled unit moves as a single standard window in both floor plan and 3D views.

The components of a mulled unit cannot be moved relative to one another. If this is required, you will first need to explode the mulled unit.

To explode a mulled unit

1. Select the mulled unit.
2. Click the Explode Mulled Unit edit button.

Window Levels

It is often necessary to position more than one window, mulled unit, and/or door at the same location along a wall in plan view: for example, to create an entry with side lites and transom.

To help control and organize the appearance of stacked wall openings in plan view, you can assign windows at various heights to different Window Levels.

Window Levels do not define the height of a window, just the appearance and behavior of windows and doors in plan view.

- In plan view, windows and doors on the Default Level display the line color and style of the layer they are on. See “Layers” on page 142.
- Windows on any other level appear light gray, regardless of the layer they are on.

The Default Level

The Default Level is the Window Level that Standard Windows are initially placed on when created and affects several things:

- In plan view, windows and doors on the Default Level display the line color and style of the layer they are on.
- When Show Component Labels is selected, components are counted in schedules and in the Materials List.
- When Show Single Label for Entire Unit is selected, the unit is treated as a single object in schedules and the materials list.

Window Level Zero

Window Level 0 (zero) is the level that all bay, box and bow windows and doors are always placed on. Typically, it is also the Default Level that standard windows are placed on, as well.

Because doors are always on Level 0 and because Window Levels affect line colors in printouts, it is usually best to keep the Default Level at 0. If you do change the Default Level, remember to change it back before printing.

If you specify the Default Level as a value other than zero and then place a window in your plan, it will not use all Window Defaults settings. Instead:

- The program will position it above any windows that are at the same location but on a lower level rather than use the default Floor to Top height;
- Its Type will be Fixed Glass;
• Its Height will be 12” (300 mm);
• It will have no Sill.

Once the window is created, its parameters can be changed. See “Editing Windows” on page 436.

Using Window Levels

The door and windows in the illustration below were created on different Window Levels.

To stack windows using Window Levels
1. Place the door and side lites on Window Level Zero.

2. Open the Window Defaults dialog and change the Default Level to 1.
3. Place the second row of windows above the door and side lites on Level Zero. The program will automatically position fixed glass windows above the door and side lites.
4. Edit these fixed glass windows’ Widths and other attributes as needed.
5. Open the Window Defaults dialog and change the Default Level to 2.
6. Place the top window above the others. The program will place a fixed glass window above the windows on Level 1.
7. Edit this window’s Arch and other attributes as needed.
8. When you are finished, open the Window Defaults dialog and change the Default Level back to 0.

In addition to using Window Levels to place and manage stacked windows, you can combine them into a single blocked unit. See “Make Mulled Unit” on page 431.

Displaying Windows

The display of windows, window labels, openings, casing, and headers in floor plan and 3D views can be controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Windows can only be placed in walls, so if a wall’s layer is turned off in plan view, any windows placed in that wall will not display, either. Windows can display independent of their containing walls in 3D views, however. See “Displaying Walls” on page 277.

If the “Windows” layer is not set to display, window casing and other components are not visible, but the openings in the walls where they are located can still be seen.

In Plan View

A window’s frame, glass, casing, and sill are all represented in plan view. This makes some window types, notably Sliding and Double and Triple Casement windows, distinguishable.

In Plan View

Double Hung

Left Sliding

Triple Casement

Window types in plan view

Interior and exterior window casings will display in all views when the “Casings, Exterior” and “Casings, Interior” layers are turned on. In plan view, the sills and vertical side casings will be shown, but the horizontal top casing or lintel will not. If a window is recessed, the affected wall layers will adjust to accommodate the casing.

When the “Opening Header Lines” layer is turned on in plan view, headers are represented by dashed lines within each window. These lines do not correspond...
to actual framing objects and cannot be selected. In addition, header framing members can be set to display. See “Wall Framing” on page 626.

If a window is placed in a Garage room at a height where it extends into the stem wall or curb, a cutout in the concrete will display on the floor below. You can specify the cutout’s size and whether it displays in plan view in the Window Specification dialog. See “General Panel” on page 438.

By default, when a window is located entirely in one part of a pony wall, and that part is not displayed in plan view, the window’s outline is shown but the wall’s layer lines and fill drawn through it. You can instead display windows in the non-displayed parts of pony walls the same as in the displayed parts, or not at all. See “Pony Wall Defaults” on page 264.

Bay, box, and bow windows have dimensions lines associated with them.

- You can suppress their display by turning off the “Manual Dimensions” layer or on a unit by unit basis in the unit’s specification dialog. See “Bay/Box and Bow Window Specification Dialogs” on page 454.
- The arrow style and fill are set in the Dimension Defaults dialog. See “Dimension Defaults Dialog” on page 343.

In 3D Views

To show opening indicator arrows in Vector Views, turn on the “Opening Indicators” layer in the Layer Display Options dialog. See “Vector View” on page 829.

When displayed as opaque, window and door glass uses the Material Color set in the Define Material dialog. See “Pattern Panel” on page 769.

Window Labels

Window labels display in floor plan and cross section/elevation views, centered on the windows they represent, when the “Windows, Labels” layer is turned on and use the Text Style assigned to their layer. See “Object Labels” on page 515.

Automatic window labels indicate Width and Height, followed by Type. For example:

- In Imperial plans, the automatic label for a 3’-0” wide, 4’-0” high double hung window will read 3040 DH.
- In metric plans, the automatic label for a 900 mm wide, 1200 mm high double hung window will read 900x1200 DH.

If you prefer, you can use one of two other formats: Height/Width followed by Type and Width Only followed by Type. Label formats are specified in the Window Schedule Specification dialog or in the Window Schedule Defaults dialog if no schedule is present. See “Labels Panel” on page 515.

You can specify whether a Bay, Box or Bow Window displays a single label or displays the labels of its component windows. This choice will affect how the unit displays in schedules.

- When Suppress All Labels is selected, individual components of Bay, Box and Bow Windows are counted in schedules and in the Materials List.
- When Show Component Labels is selected, components of Bay, Box and Bow Windows are counted in schedules and in the Materials List.
- When Show Single Label for Entire Unit is selected, the Bay, Box or Bow Windows is treated as a single object in schedules but not in the materials list.

These options are also available for mulled units but affect their display in schedules and the materials list somewhat differently. See “Displaying Mulled Units” on page 432.

Customized labels using text and Object Specific Text Macros as well as label position and orientation can also be specified in the Window Specification dialog. See “Text Macros” on page 400.
Wall Niches can also display labels when the “Wall Niches, Labels” layer is on. Unlike other windows, these objects’ Automatic Labels are blank; however, you can specify a custom label in their specification dialog.

Editing Windows

Before a window can be edited, it must be selected. Click on a window when the Select Objects tool or any of the Window Tools are active. Doors and/or windows can also be group-selected and edited. See “Selecting Objects” on page 167.

To select a window that is part of a blocked unit, click the component window, then click the Select Next Object edit button. See “Selecting Components of Mulled Units” on page 432.

Windows can be edited using their edit handles, the edit toolbar buttons, and the Window Specification dialog. See “Window Specification Dialog” on page 438.

When you select a window in plan view, the window size label displays the width followed by the height. For example, a 3036 window is 3'-0" wide by 3'-6" high.

In the Specification Dialog

The most precise method of editing an individual window or group of windows is to use the Window Specification dialog. The window type, size, casing, materials, shape, and more can all be specified in this dialog. See “Window Specification Dialog” on page 438.

Using the Mouse

In plan view, click either of the two end handles and drag along the wall to change the width. The label showing the size updates as the window is resized.

In 3D views, a selected window has five edit handles: the Move handle at the center and a Resize handle on each edge. Click and drag an edge handle to resize the window.

• Using the edit handles, a window resizes according to the currently active Edit Behavior. See “Defaults, Preferences, and Edit Behaviors” on page 163.

A single window or a group of windows can be moved with the center edit handle.

Using Dimensions

Like various other objects, windows can be moved using dimensions. See “Moving Objects Using Dimensions” on page 365.

You can specify how windows and doors are located by dimensions in the Dimension Defaults dialog. Dimensions can be set to locate the centers, sides, casing, and/or rough openings of windows and doors, or you can choose to not locate them at all. See “Locate Objects Panel” on page 346.

Once a dimension line has been drawn, you can move or add its extension lines to locate non-default locations on a window. See “Editing Extension Lines” on page 363.

Using the Edit Tools

A selected window or windows can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

• Click the Gable Over Door/Window edit button to create a gable over the selected window(s) the next time the roof is rebuilt. See “Gable/Roof Lines” on page 610.

• Click the Change Wall Side edit button to move the selected Wall Niche to the opposite side of the wall. See “Wall Niches” on page 429.
Window Casing, Sills, and Millwork

Windows often feature casing, or trim, on both sides of the wall opening as well as a sill on one or both sides. See “Applying Moldings” on page 680.

The default casing for windows is a basic rectangular stock profile. You can specify a window’s casing profiles in the Window Specification dialog, or you can choose to suppress casing altogether. See “Casing Panel” on page 441.

Custom Muntins

You can design your own muntins for the glazing of a window or door. Muntins are formed from a CAD block composed of lines and arcs drawn over window or door glass in a cross section/elevation view. The CAD block should cover at least half the glass horizontally and one quarter of the area vertically, but should not overlap it in either direction by more than five percent. Nested CAD blocks cannot be used. See “CAD Blocks” on page 251.

Creating Muntins

Custom muntins are created by drawing their pattern using the CAD tools, blocking the pattern to create a CAD block, and then selecting the window and clicking the Load Muntins edit button.

To create custom muntins

1. Create a Cross Section/Elevation view of the wall the window or door is in and Zoom in on the window or door.
2. Use the Draw Line and Draw Arc tools to design the desired muntins. Try to make them start and end as close to the edge of the glass as possible.
3. When the muntin design is complete, group-select all lines and arcs and click the Make CAD Block edit button. See “Selecting Objects” on page 167.
4. Select the door or window and click the Load Muntins edit button to convert the CAD block into custom muntins.

A separate molding profile can be specified for the lintel, or top horizontal molding. A sill profile can be specified, as well. See “Lintel Panel” on page 442.

Additional millwork items can be applied above and below the window’s casing on its exterior side. See “Treatments Panel” on page 448.

Each of these objects can be replaced with a different profile or object directly from the library in 3D views. Select a molding profile or millwork item, then click on the window component you want it to replace. See “Replace From Library” on page 706.

Custom muntins move with the opening and copy with their opening. They also stretch or compress when the glass area is resized. This stretching may not be perfect for non-rectangular glass areas that are resized by a large amount.

Custom muntins can be created for the components of Bay Windows, Box Windows, and mullled units. To create custom muntins for a Bow Window, you must draw them on the one component that is selectable. When the muntins are loaded, they will applied to all of the components. See “Component Windows” on page 452.

The Load Muntins edit tool can also be used to add custom muntins to glass doors. See “Special Doors” on page 411.

A selection of CAD blocks created for use as custom muntins is available in the library in Chief Architect Core Catalogs> Architectural> Windows> Custom Muntins.
Editing Muntins

Once blocked and loaded, custom muntins cannot be edited. If you wish to make changes to them, you must first remove them.

Removing Muntins

Remove custom muntins from a door or window by selecting the opening in cross section/elevation view and clicking the Unload Muntins edit button. The muntins disappear and the original CAD block takes their place.

Window Specification Dialog

To open the Window Specification dialog, select a window or a group of windows and click the Open Object edit button; or double-click the window using the Select Objects or a Window tool.

You can also open the specification dialog for the window(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

General Panel

In the Wall Niche Specification dialog, only the Size and Position and Include in Schedule settings on this panel are available. See “Wall Niches” on page 429.

1. **Window Type** - Select the type of window from the list. The first entry in the list is the “Use Default”, which is set in the Window Defaults dialog.

2. **Specify the Size and Position of the selected window.**

3. **Specify the Elevation Reference from the dropdown list.** This determines where the next two settings are measured from and also affects their setting labels.

4. **Specify the window’s Width and Height.** These values include the window frame.

5. **Select the Elevation Reference from the dropdown list.** This determines where the next two settings are measured from and also affects their setting labels.

6. **Exterior**
• Specify the height to **Top**, measured from the selected Elevation Reference to the top of the window frame.

• Specify the height to **Bottom**, measured from the selected Elevation Reference to the bottom of the window frame.

• Specify the **Depth** of the selected Wall Niche, measured from the wall surface to the back of the niche. Only available for Wall Niches.

The **Component Options** affect windows with movable sections and are not available for Pass-Throughs, Fixed glass windows, mulled units, or window symbols.

- Specify the **Bottom Component Size** for Single Hung, Double Hung, Double Awning, Double Hopper, and Triple Hopper windows; specify the **Top/Bottom Component Size** for Triple Awning windows; or,
- Specify the **Side Component Size** for Triple Casement and Triple Sliding windows, the **Right Component Size** for Left Sliding windows, or the **Left Component Size** for Right Sliding and Double Casement windows.

A **Component Size** value of 0 creates a window with identically sized components.

- Specify how each **Component Opens** from the available options. Only available for Casement, Double and Triple Awning, and Double and Triple Hopper windows.

4 **Interior Windows** settings are only present when the selected window is a Pass-Through placed in an interior wall. See “Exterior and Interior Walls” on page 268.

- Check **Separate Trim and Materials for Each Side** to specify the casing, lintels, sills, and all materials for each side of the selected Pass-Through independently. When unchecked, the two sides use the same trim and materials.

Options -

- **Louver Size** - Specify the vertical height of the selected window’s louver. Only available for Louvered and Glass Louver windows.
- Check **Include in Schedule** to include the selected window(s) in Window Schedules. See “The Schedule Tools” on page 506.

6 A preview of the selected window displays here. A label indicates which side of the window is its Interior and which is its Exterior. See “Dialog Preview Panes” on page 32.

Window opening directions can best be seen using the Vector View Rendering Technique.

Options Panel

The **Options panel** is not available in the **Wall Niche Specification** dialog.

The Mulled Units and Mullion Depth settings on the **Options panel** are only available in the **Mulled Unit Specification** dialog. See “Grouped Windows” on page 431.
Options -

- Check **Interior Corner Block** to count interior corner blocks in the materials list. These do not display in 3D views.
- Check **Exterior Corner Block** to count exterior corner blocks in the materials list. These do not display in 3D views.
- Check **Egress** to specify the window as an egress window in the Window Schedule and Materials List. Not available for Pass-Throughs.
- Check **Tempered Glass** to specify the selected window’s glass as tempered in the Window Schedule. See “Columns to Include” on page 509.
- Check **Reverse Symbol** to reverse a window symbol as though it were reflected about a vertical line through its center. Only available in the Window Symbol Specification dialog. See “Window Symbols” on page 430.

Consult your local building and fire code authorities for your local egress window requirements.

- Check **Tempered Glass** to specify the selected window’s glass as tempered in the Window Schedule. See “Columns to Include” on page 509.
- Check **Reverse Symbol** to reverse a window symbol as though it were reflected about a vertical line through its center. Only available in the Window Symbol Specification dialog. See “Window Symbols” on page 430.

The Mulled Units options are only available when a mulled unit is selected.
- Check **Treat as Door** to include the unit in the “Doors” category of the Materials List and in the “Mulled Door Units” Auto Schedule Category. Only available when the selected unit contains a door. See “Displaying Mulled Units” on page 432.
- Uncheck **Single Wall Hole** to produce individually framed wall openings for each unit in a mulled unit. When this box is checked, a single wall opening with one header for the entire unit is produced.

Specify the **Mullion Depth** for the casing between the components of a mulled unit, measured from wall surface. Positive values move the mullion surface towards the wall center; negative values, away from it. Only available when a mulled unit is selected.
- Specify the **Inside** depth of the mullion on the interior surface of the wall.
- Specify the **Outside** depth of the mullion on the exterior surface of the wall.

The **Recessed into Wall** options allow you to recess the selected window or mulled unit into a wall, away from the exterior surface. Only available if the window or mulled unit is in a multi-layered wall. Check **Recessed** to enable these options.
- Select **To Main Layer** to recess the window to the wall’s Main Layer.
- Select **To Sheathing Layer** to recess the window to the wall’s sheathing layer, which is the layer located just outside of the wall type’s Main
Layer(s). See “Wall Type Definitions” on page 292.

5 **Vertical Stacking** - Specify the window level that the selected window is placed on. Not available for mulled units or window symbols. See “Window Levels” on page 433.

6 A preview of the selected window displays here. See “Dialog Preview Panes” on page 32.

Casing Panel

The Casing panel is not available in the Window Symbol Specification dialog.

Check **Use Interior Casing** to enable the settings that follow, then specify the interior casing for the selected window(s) using those settings. When this box is unchecked, no casing is used.

1 **Use Interior Casing** - Click the Library button to select a molding profile for the casing. A preview of the casing profile displays to the right. See “Select Library Object Dialog” on page 705.

2 **Use Exterior Casing** - Click the Library button to select a molding profile for the casing. A preview of the casing profile displays to the right. See “Select Library Object Dialog” on page 705.

3 **Casing Profile** - Click the Clear button to remove a selected casing profile from the window.
• Specify the Width of the selected casing.
• Define the Depth of the selected casing, as measured from the back to the front of the casing profile.
• Define the Overlap Frame value, which is the distance between the outside edge of the window frame and the inside edge of the casing. The default is 0", which places the inside edge of the casing against the outside edge of the frame.

Type a positive value to overlap the casing over the frame by that amount.

Type a negative value to produce a gap between the casing and the frame.

To produce a reveal of a certain width, subtract the desired reveal from the total width of the frame and type the result here.

Check Use Exterior Casing to enable the settings that follow, then specify the exterior casing for the selected window(s) using those settings. These settings are the same as those for the Interior Casing. If the selected window is a Pass-Through placed in an interior wall, these settings will be unavailable unless Separate Trim and Materials on Each Side is checked on the General panel. See “General Panel” on page 438.

The Double Wall Options affect windows placed in a Double Wall. See “Double Walls” on page 291.

• Select Through to create a single frame running through both Double Walls. This option is selected by default.

• If Enlarged is selected, casing is created only on the wall the window is inserted in. The opening on the other wall is enlarged to accommodate the casing.

• Select Double to place a second window in the Double Wall opposite the selected window. This second window cannot be selected. Casing is produced as with the Through type window.

• Select Not Through to place the window in one wall with no corresponding opening in the other wall.

4 Curved Wall Casing - This section is enabled if the window is placed in a curved wall. See “Drawing Curved Walls” on page 275.

Door and window casing and jamb can be constructed three ways in curved walls:

• Straight - Both window sash and casing are straight. Straight casing may not fit properly into a wall if the window is too wide or the curvature of the wall, too tight.

• Radial - The sides of the casing or jamb are inserted in the wall at an angle that passes through the center of the curve.

• Parallel - The sides of the casing are inserted in the wall at a right angle to the line tangent to the curved wall at the center of the window.

Normally, parallel casing has a straight sash. Radial casing is more like traditional curved windows, and typically has a curved sash.

A preview of the selected window displays here. You may need to rotate the preview to see the casing on the side of the door you are editing. If casing is not specified for a Pass-Through, the Show Wall option will be toggled on automatically. See “Dialog Preview Panes” on page 32.

Lintel Panel

The settings on the LINTEL panel of the Window and Mulled Unit Specification dialogs are also found on the panel of the same name in the Door Specification dialog. See “Lintel Panel” on page 418.

The LINTEL panel is not available in the Window Symbol Specification dialog.

These settings are not available if the window has a reflected arch. See “Arch Panel” on page 448.

The profiles and materials of window lintels and sills can be included in Room Finish Schedules. See “The Schedule Tools” on page 506.
Sill Panel

The settings on the SILL panel of the Window and Mulled Unit Specification dialogs are not available if the window has a reflected arch. See “Arch Panel” on page 448.

The SILL panel is not available in the Window Symbol Specification dialog.

The profiles and materials of window lintels and sills can be included in Room Finish Schedules.

Check Use Interior Sill to enable the settings that follow, then specify the sill applied to the interior side of the selected window(s) using these settings. When this box is unchecked, no interior sill is used.

- **Sill Profile** - Click the Library button to select a molding profile for the sill. A preview of the selected profile displays to the right. See “Select Library Object Dialog” on page 705.
- Click the Clear button to remove the selected sill profile from the window. When no library profile is selected, a basic rectangular profile is used.
- Specify how far to **Extend** the sill past the outside edges of the casing on each side. If an Apron is specified, it will also be affected by this setting.
- Specify how far to **Inset** the sill into the window. A value of 0 positions the sill profile against the surface of the wall. Only available when a sill profile from the library is selected.
- Check **Wrap** to wrap the sill profile back toward the wall.
- Check **Apron** to include an apron under the sill. When Wrap is checked, the apron will be 1/2” (12 mm) shorter than the sill on each side; when it is unchecked, it will be the same length as the sill.

Check Use Exterior Sill to enable the settings that follow, then specify the exterior sill for the selected window(s) using these settings. These settings are the same as those for the Interior Sill.

A preview of the selected window displays here. See “Dialog Preview Panes” on page 32.

Sash Panel

The settings on the SASH panel control the size and position of the selected window’s sash. Note that increasing the Side, Middle, Top or Bottom Width decreases the area of the glass and vice versa.

The SASH panel is not available in the Wall Niche, Mulled Unit, and Window Symbol Specification dialogs, and the settings on this panel are not available for Pass-Throughs.
Specify the width and depth of the selected window’s Sash, which are the pieces of the window that hold the glass; or, uncheck this box to prevent it from having a sash.

- Specify the Side Width of all vertical sash members: those at the window sides as well as the central members of Casement and Sliding windows. This is also the width of the top portion of the window when an arch is specified.
- Specify the Middle width of horizontal components between the top and bottom sash in Double Hung, Double and Triple Awning, and Double and Triple Hopper windows. It does not affect Casement and Sliding windows.
- Specify the Top and Bottom Widths. The Top value is not used if the window has an arch.
- Specify the Depth, or thickness, of the sash stock measured from the exterior to the interior.
- Specify the Inset, the distance between the frame and the outermost sash. If there is no frame, the inset is measured from the outer surface of the wall’s Main Layer.

- **Curved Options** - When the selected window is placed in a curved wall, specify whether it has a curved or straight sash. A curved sash is typically used with Radial casing. See “Casing Panel” on page 441.

A preview of the selected window displays here. See “Dialog Preview Panes” on page 32.

Frame Panel

The FRAME panel is not available for mulled units or window symbols.

The settings on the FRAME panel are similar to those on the JAMB panel of the Door Specification dialog. See “Jamb Panel” on page 419.
Specify the attributes of the selected window’s Frame. Note that a window’s frame is included in its size, while a door’s jamb is not.

- Check Has Frame to include a frame and enable the settings below. When this is unchecked, the selected window has no frame around it.
- Specify the Side, Top, and Bottom Widths of the window’s frame. Changing these values modifies the interior of a window but does not affect its size.
- Uncheck Fit Frame to Wall to specify the Depth and Inset of the selected window’s frame. When this box is checked, the frame Depth automatically extends from the Recessed Into Wall layer to the wall’s inside surface with an Inset of 0”. The Recessed Into Wall layer is specified on the Options Panel of this dialog.
- Specify the Depth of the window frame from front to back.
- Specify the frame’s Inset, which is measured from the Recessed Into Wall layer and moves the window frame towards its interior side. If used, the casing and lintel are not affected by this setting.

Has Corner Post is only available when the selected Fixed glass window is one of a pair forming a corner window. See “Corner Windows” on page 429.

A preview of the selected window displays here. See “Dialog Preview Panes” on page 32.

Lites Panel

The LITES panel allows you to add muntins to windows, and is also available for Glass doors. See “Doors” on page 403.

There are four possible styles of muntin bars for regular windows, plus two additional options for arched windows.

A window that has been modified using the SHAPE panel cannot have divided lites or shutters added. You can, however, create Custom Muntins for such a window. See “Custom Muntins” on page 437.

The LITES panel is not available in the Wall Niche, Mulled Unit, and Window Symbol Specification dialogs, and the settings on this panel are not available for Pass-Throughs.
Specify the number, position and style of **Lites** for the selected window.

- Select a **Type**, or style, of window lite from the drop-down list.

 - **Normal** style is the most common, with muntins going horizontally and vertically. Colonial windows are an example of the normal style.

 - **Diamond** style uses angled muntin bars to divide up the lites. French windows are an example of the diamond style.

 - **Prairie** style is based on the normal style, but with all the central muntin bars removed, leaving only the two outside muntin bars both horizontally and vertically. Typically, both Lites Across and Lites Vertical should be set between 6 and 8. Federal or Federation windows are an example of the Prairie style.

 - **Craftsman** style is based on the normal style, but only the topmost horizontal muntin bar is kept with all the portions of the vertical muntin bars above it. Typically, both Lites Across and Lites Vertical should be set between 4 and 8.

- Enter the number of horizontal **Lites Across** in each sash.

- Enter the number of vertical **Lites Vertical** in each sash.

- Specify the **Muntin Width**, which is the width of the bars dividing the panes of glass.

- Check or uncheck **Lites in Top** and/or **Lites in Bottom** - or **Lites in Left** and/or **Lights in Right** - to specify either one or both of the sashes to have divided lites.

- Check **Muntin in Corner** to add a vertical muntin bar where two corner windows meet. Only available when Has Corner Post is unchecked on the FRAME panel. See “Corner Windows” on page 429.

- Check **Auto Adjust Lites for Component Size** to have the program produce lites that are consistent in size across all components. When this is checked, the window’s lites and its specification settings may not agree; when unchecked, lites in the components may not be consistent in size.

- **Note:** Because the fixed window in a Triple Sliding window is twice the size of the movable windows, the fixed section has a vertical muntin bar. To eliminate this, uncheck Auto Adjust Lites for Component Size.

- The **Arch Options** are only available if the window has an Arch specified.

 - Specify a **Ray Count** of up to 10 radial muntin bars in the portion of the window within the arch. There is one more pane of glass than the number of rays specified. See “Arch Panel” on page 448.
• Check **Concentric** to produce muntins radiating from a curved inner muntin that is concentric with the window’s arch. You must have at least three Lites Across for this to be used.

A preview of the selected window displays here. See “Dialog Preview Panes” on page 32.

Shape Panel

The settings on the SHAPE panel control the position of the selected window’s corners, allowing you to create angled edges and mitered top corners.

If any of these settings are used to create a custom shape, the selected window will be automatically specified as “Fixed Glass” on the GENERAL panel. If the selected window has an arch specified on the ARCH panel, it will be removed.

The SHAPE panel is not available for mulled units or window symbols.

Window Specification Dialog

1. **Window Width** displays for reference. It can be changed on the General Panel.

2. Click **Match Roof** to match the angle of the top of the window to the pitch of the roof above by changing its Sides heights, below. If either Top Inside Corner box is checked, it will become unchecked.

 Match Roof does not work for curved roofs, has no effect if the window is not in a gable end wall, and is not available in the Window Defaults dialog.

3. **Click Revert All** to restore the window to its original shape, type and arch settings.

4. Specify the height of the window’s **Left** and **Right Sides**, as measured from the bottom of the window. By default, these settings match the window’s Height.
The Top Inside Corners settings allow you to create a second set of top corners with angled edges between them and the outside top corners.

- Check **Left** to add an additional corner along the top edge.
- Specify the **Height** of the left inner corner, as seen from the exterior, measured from the bottom of the window.
- Specify the **Offset** of the left inner corner, as measured from the left side of the window.
- An additional **Right** Inside Corner can be specified in a similar manner.

The Bottom Corners settings allow you to raise the heights of the bottom corners, as measured from the bottom of the window specified on the General Panel.

- Check **Left** to raise the height of the bottom left corner.
- Specify the **Height** of the bottom left corner. This value cannot exceed the Height of the Left Side.
- The height of the Bottom Right corner can be raised in a similar manner.

A preview of the selected window displays here. You may want to rotate the view so the window’s exterior can be seen. See “Dialog Preview Panes” on page 32.

The following diagram represents added Inner corners using open circles and the left and right corners using solid black circles:

- **A** has different left and right Side Heights with no Top Inside Corner added.
- **B** has matching left and right heights with an added Top Inside Corner.
- **C** is the same as **B**, except that the left and right Side Heights have been shortened to 1/4”.
- **D** is the same as **B** except it has two added Top Inside Corners.
- **E** is the same as **A** except that the Bottom Right Corner has been raised.

Arch Panel

The settings on the ARCH panel of the Window and Mulled Unit Specification dialogs are also found on the panel of the same name in the Door Specification dialog. See “Arch Panel” on page 420.

The settings on this panel of the Mulled Unit Specification dialog define the overall shape of the blocked unit’s top. If the mulled unit already includes a component window with an arch, these settings cannot be modified. If you intend to arch the top of a mulled unit, the top components should be constructed with horizontal, straight tops all at the same height.

The ARCH panel is not available for window symbols, and its settings are not available if the selected window has been modified using the SHAPE panel.

Treatments Panel

The settings on the TREATMENTS panel allow you to add embellishments to the interior and exterior of the selected window or mulled unit.

The TREATMENTS panel is not available in the Wall Niche and Window Symbol Specification dialogs.
Specify **Curtains** for the selected window or mulled unit’s interior side.

- Specify a style of **Curtains** by selecting “Use Default”, “None” or “Library” from the drop-down list. If a non-default library item has been selected, its name will display in the list, as well.
- Click the **Library** button or select “Library” from the drop-down list to choose a style of curtain from the library. See “Select Library Object Dialog” on page 705.
- Specify the **Height Off Floor** of the bottom edge of the curtains.
- Specify the **Height Above Casing** of the top of curtains.

Specify a style of **Blinds** in the same manner that Curtains are chosen, above.

Specify an **Exterior Millwork Above Casing** in the same manner that Curtains are chosen, above, and specify its **Height** and **Width**.

Specify an **Exterior Millwork Below Casing** in the same manner that Curtains are chosen, above. Specify the **Height** of the millwork and the distance that it should **Extend** past the side casing.

A preview of the selected window displays on the right. You may want to rotate the view so the window’s interior or exterior can be seen, as needed. See “Dialog Preview Panes” on page 32.

Shutters Panel

The settings on the SHUTTERS panel allow you to specify exterior shutters for the selected window or mulled unit.

The SHUTTERS panel is not available in the **Wall Niche** and **Window Symbol Specification** dialogs.
Select a **Type** of **Shutters** from the drop-down list or click the **Library** button to select a style of shutters from the Library Browser. See “Select Library Object Dialog” on page 705.

Specify the **Size** of the selected shutters.

- When **Match Opening Width** is checked, each shutter’s width is exactly half that of the window, excluding casing.
- Uncheck **Match Opening Width** to specify a **Width** in the text field. If the window is later resized, the shutters will not adjust in response.
- When **Match Opening Height** is checked, each shutter’s height equals that of the window, excluding casing.
- Uncheck **Match Opening Height** to specify a **Height** in the text field. If the window is later resized, the shutters will not adjust in response.

Specify the **Position** of the shutters relative to the window.

- Select **On Casing** to position the shutters just outside the window frame, like functional shutters.
- Select **Outside Casing** to position shutters outside the window casing, as decorative shutters often are.

- Select **Custom** to create a custom position for the shutters by specifying the **Offset from Side** and **Offset from Bottom** in the fields below.

Additional shutter **Options** can be specified here.

- Check **Reverse Direction** to orient the shutters so their exterior sides face outward and their interior sides face the wall. For functional shutters, this should remain unchecked.
- Check **No Arch** for shutters with flat tops that reach the bottom of the curved portion of an arched window. Only available when an Arch is selected. See “Arch Panel” on page 448.

Shutter Sides - Specify which sides of the selected window receive shutters.

- Select **Automatic** to assign shutters to both sides of the window as long as there is sufficient room on the wall. If the window is next to a wall intersection or corner, the shutter closest to the intersection will not generate.
- Select **Left Side Only** to assign a shutter to the left side of the window and none on the right.
- Select **Both Sides** to assign shutters to both sides of the window under all circumstances, even if
Bay, Box, and Bow Windows

Bay, Box, and Bow Windows are created much the way regular windows are: select a tool, then click a wall to place that window type.

Chief Architect automatically builds a foundation under bay/box/bow windows placed on floor 1 unless they are raised from their original position. That section of the foundation wall is also a bay/box/bow, but without windows. If the foundation was generated before the window is placed, the foundation must be rebuilt or edited manually.

Editing Bay, Box and Bow Windows

Bay, box, and bow windows are edited similar to regular windows with one exception: in plan view, a diamond-shaped Depth edit handle displays on the section. Drag this Depth handle outward to increase...
the depth, or inward to decrease the depth of the unit. See “Editing Windows” on page 436.

Bay, box and bow windows can also be edited in their respective specification dialogs. See “Bay/Box and Bow Window Specification Dialogs” on page 454.

Displaying Bay, Box and Bow Windows

The display of bay, box and bow windows is controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Like other windows, bay, box and bow windows can display labels: either a single label for the unit, or one for each component. See “Window Labels” on page 435.

Bay, box and bow window width and radius dimensions, which display in plan view when specified to do so in the window’s specification dialog, are placed on the “Dimensions, Manual” layer. See “Options Panel” on page 456.

Component Windows

A component window within a bay, box or bow window can be resized like any other standard window. To select a component window, click at the location of the component in question, then click the Select Next Object edit button or press the Tab key.

- Only the bay or box window component that was clicked on is selected using this method. If you need to select a different component, click on it and repeat the process.
- In a bow window, all components are identical, so only one component can be selected. Changing this component changes them all.

Resizing Components

An individual component window can be resized using the edit handles, by changing settings in the component’s Window Specification dialog, or by using the Transform/Replicate Object dialog. See “Transform/Replicate Object Dialog” on page 208.

When a bay/box/bow window is first created, there is room for one standard trimmer on each side of each component window. When the bay as a whole is moved and resized, its components automatically resize so that a standard trimmer is still accommodated.

If you increase a component window’s width to the point where there is not enough room for standard trimmers, a thinner trimmer can be used. The size of this thinner trimmer is specified in the Build Framing dialog. See “Openings Panel” on page 635.

If a component window is resized, it retains its size if at all possible when the containing bay/box/bow window is moved or resized. If the bay is resized in such a way that the component is too large to fit even with a thinner trimmer, the component resumes its default behavior, resizing as the containing bay window is resized.

Floors and Ceilings

When originally created, the floor and ceiling within a bay, box, or bow window are the same heights as the floor and ceiling of the room in which it is placed.

Both the top and bottom heights of these window units can be adjusted in its specification dialog or a 3D view using its edit handles to create a lowered ceiling and/or a bench seat or garden window.
When the ceiling is lowered, the top heights of the walls that define the window unit are also lowered. When a roof is built over the unit, its height will be affected, as well.

Bay, Box, Bow Windows and Roofs

Several different roof styles can be specified for bay, box and bow window units in the Bay/Box and Bow Specification dialogs. See “General Panel” on page 455.

If you change a bay, box, or bow window’s roof specification, you will need to rebuild the roofs to see the changes. See “Rebuilding Roofs” on page 585.

Hip Roofs

By default, a hip roof is built above the unit when roofs are automatically generated. No roof directives need to be selected in the specification dialog to produce this roof.

Use the Existing Roof

To generate a standard roof that ignores a bay, box, or bow window, check Use Existing Roof.

With this option the bay, box, or bow windows is tucked under the roof eave. You may find it helpful to increase the width of the eaves. See “Roof Panel” on page 587.

Extend the Existing Roof

To have the main roof extend down over the window unit and follow the shape of the unit, select Extend Existing Roof Over.

For this roof style, the ceiling heights of the window unit and the adjacent room must be the same. If you lower the ceiling of the window unit and then build the roof, a lower hip roof over the window is created. See “Floors and Ceilings” on page 452.

When the bottom of the window is raised to create a bench seat, the unit’s walls will not reach the ground. As a result, window units with bench seats will have no foundation beneath them when the foundation is built.
If a header is desired over the window unit, first build the roof, then lower the ceiling of the window unit. Once the ceiling is lowered, select Rebuild Walls/Floors/Ceilings. Do not rebuild roof planes.

Rectangular Hip Roofs

To create a rectangular-shaped hip roof above a bay, box, or bow window, select Rectangular Roof Over.

Extend Existing Roof - Rectangular

To extend the main roof down over a window unit to create a rectangular roof over it rather than one that follows its shape, select both Extend Existing Roof over and Rectangular Roof Over.

Gable Roof

A gable roof is not one of the automatic options for the roof above a bay, box, or bow window. A gable can be created by manually editing the rectangular hip roofs that are automatically created. See “Roof Planes” on page 591.

To create a gable over a bay window

1. Select the front ridge corner handle of each side hip roof plane and drag the edge forward until the fascia snaps to the edge of the front hip section.
2. Delete the front hip section.
3. Adjust the roof’s overhang as needed.

Bay/Box and Bow Window Specification Dialogs

To open the Bay/Box Window Specification or the Bow Window Specification dialog, select one or more Bay/Box or Bow Windows and click the Open Object edit button.

The options in this dialog can only be set for objects placed in a plan: Bay, Box, and Bow Windows do not have defaults dialogs.

The settings that are available in these dialogs depend on whether the selected object is a Bay, Box, or Bow Window.
Bay/Box and Bow Window Specification Dialogs

General Panel

1. **Sections** - The setting that displays here depends on whether the selected window is a Bay, Box, or Bow Window.
 - Specify the **Bay Angle**, which is the angle of the side components of a Bay or Box Window. Bay Windows have an angle of 45° by default; Box Windows have an angle of 90°.
 - Specify the **Quantity**, which is the number of component windows in a Bow Window.

2. **Size** - Specify the **Width** and **Depth** of the selected Bay, Box, or Bow Window.

3. Specify the **Wall Type** used by the walls embedded in the selected Bay, Box, or Bow Window. See “Wall Type Definitions” on page 292.
 - Select “Use Main Wall Type” from the drop-down list to use the same wall type as that of the wall that the window unit is placed in. If the main wall is a Pony Wall, both wall types are used.
 - Select a specific wall type from the drop-down list to use it instead of the Main Wall Type.
 - When a specific wall type is selected, click the **Define** button to modify its definition. See “Wall Type Definitions Dialog” on page 294.

4. Specify the height and structure of the **Ceiling** within the selected window.
 - Check **Has Lowered Ceiling** to enable the settings that follow. When this is unchecked, the ceiling height and finish material within the window is the same as that for the adjacent room.
 - Specify the **Height Lowered**, which is measured from the ceiling height of the adjacent room.

5. Specify the height and structure of the **Floor** within the selected window.
 - Check **Has Raised Floor** to enable the settings that follow. When this is unchecked, the floor height and material within the window is the same as that for the adjacent room.
 - Specify the **Height Raised**, which is the measured from the floor height of the adjacent room.

Note: If the Height Lowered is 0", Has Lowered Ceiling will become unchecked when you click OK.

Note: If the Height Raised is 0", Has Raised Floor will become unchecked when you click OK.
• Check **Use Floor Finish** to measure the Height Raised distance from the surface of the floor finish. When unchecked, as it is by default, this height is measured from the subfloor.

• Specify the **Finish Thickness**, which is the thickness of the floor’s finish material.

• Specify the **Structure Thickness**, which is the thickness of the floor’s structural layer.

Check **Include in Schedule** to include the selected window(s) in Window Schedules. See “The Schedule Tools” on page 506.

Options Panel

1. Specify the structure of the automatic **Roof** over the selected window unit. See “Bay, Box, Bow Windows and Roofs” on page 453.

• Check **Use Existing Roof** if the existing roof needs no changes to accommodate the bay window.

• Check **Extend Existing Roof Over** to extend the existing roof plane to cover the bay window below.

• Check **Rectangular Roof Over** to create a roof over the bay window that is square across the end instead of following the profile of the roof.

2. Specify the appearance of the selected window unit’s **Dimensions** in plan view.

• Check **Display Standard Dimension** to display the automatically-produced dimensions that show the window’s width and depth.

• Check **Display Dimensions to Center** to display a Bow Window’s radial dimension.

3. Specify the structure of the selected window unit’s **Components** and the wall sections containing them.

• Uncheck **Has Component Windows** to remove the component windows of the selected Bay, Box, or Bow Window and disable the settings that follow.

• Check **No Framing Between Components** to eliminate the trimmer studs for Bay and Box Window components, allowing the width of each component window to increase. See “Wall Framing” on page 626.

• Check **No Framing Between Components** to remove both studs between the component windows.

Note: If the selected unit is moved or resized, its components automatically resize to use a standard trimmer, regardless of whether either of the two options above are selected.

• Check **Connect Outer Casing** to have exterior casing surround the component windows of a Bow Window as a group rather than individually. Mullions are provided between components. This is how interior casing is always created.

• Check **Components Recessed** to recess the component windows into the wall and enable the settings that follow. Typically used if the window is placed in a brick wall and you want to produce a brick molding.
• Select To Main Layer to recess the components to the wall’s Main Layer instead of the exterior wall surface. See “The Main Layer” on page 293.
• Select To Sheathing Layer to recess the components to the sheathing layer instead of the exterior wall surface.

Layer Panel
For information about using the Layer panel, see “Layer Panel” on page 149.

Materials Panel
The settings on the Materials panel are the same as those found on the same panel in dialogs throughout the program. See “Materials Panel” on page 761.

Label Panel
Bay, Box, and Bow Window labels display in plan view and cross section/elevation views when the “Windows, Labels” layer is turned on and use the Text Style assigned to that layer. See “Window Labels” on page 435.

For more information about the settings on this panel. See “Label Panel” on page 516.

Components Panel
The information on the Components panel can be used in the materials list. See “Components Panel” on page 959.

Object Information Panel
The information entered on the Object Information panel can be used in Window Schedules and the materials list. See “Object Information Panel” on page 519.

Window Schedules

The Window Schedule tool allows you to produce customizable window schedules as well as window labels that display schedule numbers. See “The Schedule Tools” on page 506.

Window casing profiles and materials can also be included in Room Finish Schedules. See “Room Finish Schedules” on page 340.
With Chief Architect’s cabinet tools you can create base, wall, and full height cabinets as well as soffits, shelves, partitions, and custom countertops. These objects are very versatile, allowing for a wide range of customization.

A selection of cabinet door and drawer styles are available in the Library Browser and, in addition, a numerous cabinet manufacturer catalogs are available for download on our web site, chiefarchitect.com.

Chief Architect also has many customized cabinets and cabinet groups available in the library. Cabinets you have customized can be saved to your own library for future use.

Cabinet Defaults

There are several defaults dialogs for cabinets. Access Default Settings by selecting **Edit > Default Settings**, then clicking the arrow beside “Cabinets”. Select a subheading and click the **Edit** button to open the defaults dialog associated with your selection.

The Cabinet Defaults dialogs can also be accessed by double-clicking the **Cabinet Tools** parent button.

Chapter Contents

- Cabinet Defaults
- The Cabinet Tools
- Cabinet Fillers
- Placing Cabinets and Fillers
- Countertops
- Displaying Cabinets
- Cabinet Labels
- Editing Cabinets
- Editing Cabinet Styles
- Special Cabinets
- Cabinet Specification Dialog
- Cabinet Shelf Specification Dialog
- Shelf/Partition Specification Dialog
- Custom Countertop Specification Dialog
- Cabinet Schedules

Double-clicking a Cabinet Tools child button also opens its corresponding defaults dialog, if that object has a defaults dialog.
The Base, Wall, and Full Height Cabinet Defaults can be multiple-selected by holding down the Shift or Control keys. See “Shift and Ctrl Select” on page 170.

Each type of cabinet object has default definitions for size, style, materials and much more. In fact, the default dialog for each cabinet type is similar to its corresponding specification dialog. For descriptions of these settings, see “Cabinet Specification Dialog” on page 475, “Shelf/Partition Specification Dialog” on page 486 and “Soffit Specification Dialog” on page 746.

Cabinet Fillers and Custom Countertops do not have defaults dialogs. Instead, their initial settings are based on the those of other objects.

- Base Cabinet Fillers’ initial settings are based on Base Cabinet Defaults.
- Wall Cabinet Fillers’ initial settings are based on Wall Cabinet Defaults.
- Full Height Cabinet Fillers’ initial settings are based on Full Height Cabinet Defaults.
- Custom Countertops’ initial settings are based on Base Cabinet Default settings but are also influenced by the settings of cabinets beneath them. See “Custom Countertops” on page 462.

Dynamic Cabinet Defaults

When a dynamic default is changed, existing cabinet objects using the default value are affected. See “Dynamic Defaults” on page 67.

The following cabinet default values are dynamic: Separation, Backsplash Height and Thickness, Countertop Overhang and Thickness, Toe Kick Height and Depth, Side and Vertical Overlap, Stiles, and Hardware spacing.

All Materials are also dynamic. In addition, the Cabinet Defaults can be set up to refer dynamically to information in the Material Defaults dialog. This makes it easy to have all cabinet objects in a plan use the same default materials. See “Material Defaults Dialog” on page 759.

To use dynamic cabinet Material Defaults

1. Specify the desired materials for the cabinet categories in the Material Defaults dialog:
 - “Cabinets” can be linked to the default cabinet box, cabinet interior, shelves, and toe kicks as well as to Shelves and Partitions.
 - “Cabinet Door/Drawer” can be linked to the default frames and panels of cabinet doors and drawers.
 - “Countertop” can be linked to the default countertop.
 - “Hardware” can be linked to the default door and drawer pulls and hinges.

2. On the Materials panel of the Base Cabinet Defaults dialog, select the first object component and click the Select Material button.

3. The Select Material dialog opens:
 - On the Library Material panel, check Use default material, or
 - On the Plan Material panel, select “Use Default” at the top of the list.

4. Click OK, then repeat this step for each of the components in the list.

5. Repeat steps 2-4 in each of the Cabinet Defaults dialogs.

Set as Default

You can set the attributes for a cabinet placed in your plan as the defaults for that cabinet type. See “Set as Default” on page 67.

Note: Set as Default is not available for special shaped cabinets. Only Standard cabinets can be the default cabinet type. See "Special Cabinets" on page 472.

General Cabinet Defaults

The General Cabinet Defaults dialog can be accessed only from the Default Settings dialog.
The Cabinet Tools

Select **Build > Cabinet** to access the Cabinet Tools.

Cabinets are easily created with a single click in plan view or any camera view. See “Click-to-Create” on page 134.

Typically, groups of cabinet objects are positioned closely together and arranged to form work spaces, and there are some special behaviors and techniques to be aware of. See “Placing Cabinets and Fillers” on page 464.

Once created, cabinets, soffits, shelves, partitions and fillers can be selected and edited much like other box-based objects. See “Editing Cabinets” on page 469.

Base Cabinets

Select **Build > Cabinet > Base Cabinet** and click in any view. Base cabinets can be placed directly under wall cabinets and generate a countertop and toe kick by default.

Wall Cabinets

To place a wall cabinet, select **Build > Cabinet > Wall Cabinet** and click in any view. Wall cabinets can be placed directly over base cabinets.

Full Height Cabinets

To place a full height cabinet, select **Build > Cabinet > Full Height** and click in any view. Full height cabinets generate a toe kick by default and cannot be placed on top of other cabinets.

Soffits

Soffits typically fill the space between cabinet tops and the ceiling, but can also be used to

1. Specify the **Minimum Cabinet Width**. The smallest allowable value is 1/16 of an inch (10 mm).
2. Uncheck **Create Automatic Fillers** to prevent fillers from automatically generating in spaces between cabinets. This setting is dynamic: changing it will affect cabinets already present in your plan. See “Cabinet Fillers” on page 463.
3. Uncheck **Create Automatic Fillers for Angled Connected Cabinets** to prevent fillers from automatically generating in spaces between cabinets that meet at only one corner.

Uncheck **Create Automatic Blind Corner Cabinets** to prevent blind corner cabinets from being created. This setting is dynamic: changing it will affect cabinets already present in your plan. See “Blind Cabinets” on page 474.

Specify how **Cabinet Resizing** takes place when the edit handles are used.

- Select **Use Grid Snaps** to resize cabinets using Snap Grid increments. See “Grid Snaps” on page 133.
- Select **Use Resize Increment** to resize cabinets using the increment specified here.
- Set the **Resize Increment** at which cabinets resize. The minimum allowable increment is 1/16 of an inch (10 mm).

Display Options

Check **Show Partial Module Lines** to represent module lines as grey lines that do not extend across the cabinets. When this is unchecked, lines between merged cabinet modules display as specified by the “Cabinets, Module Lines” layer. See “Displaying Cabinets” on page 466.

- Check **Show Closed Doors/Drawers in Plan Views** to display closed cabinet doors and drawers in plan view. When unchecked, closed doors and drawers are not shown. See “Displaying Cabinets” on page 466.
create any object that can be modeled as a 3D box. To place a soffit, select **Build > Cabinet > Soffit** and click in any view.

By default, soffits use the material assigned to interior walls in the **Material Defaults** dialog. Like cabinets, soffits can have molding profiles applied to them.

For more information about using soffits for a variety of purposes, see “Other Objects” on page 731.

Shelves

Select **Build > Cabinet > Shelf** and click in any view to create a shelf.

Create corner shelves by placing one shelf on each wall, then moving or stretching them until they touch.

Once created, shelves can be selected and edited. See “Shelf/Partition Specification Dialog” on page 486.

You can also specify shelves inside of base, wall, and full height cabinet boxes. See “Cabinet Shelf Specification Dialog” on page 485.

Partitions

Select **Build > Cabinet > Partition** button and click in any view to create a vertical partition.

Like shelves, partitions can be selected and edited after they are placed.

Partitions can be used with shelves to create complex storage systems.

Custom Countertops

Custom Countertops are drawn and edited just like other closed-polyline based objects. Select **Build > Cabinet > Custom Countertop**, then either click and drag a rectangle or single-click to place a 2’x2’ countertop. See “Countertops” on page 465.

You can also generate a custom countertop over one or more base cabinets using the **Generate Custom Countertop** edit tool. See “Using the Edit Tools” on page 470.

Custom Counter Holes

Select **Build > Cabinet > Custom Counter Hole**, then either click and drag a rectangle or single-click to place a 2’x2’ countertop hole. Custom Counter Holes must be drawn within an existing Custom Countertop, can be drawn in any view except cross section/elevation views and can be edited to any shape. See “Editing Custom Countertops” on page 465.

Custom Backsplashes

Select **Build > Cabinet > Custom Backsplash** while an elevation or camera view is active, then either click and drag a rectangle or single-click on a wall surface to place a Custom Backsplash Layered Material Polyline on that wall. See “Custom Backsplashes” on page 749.

Cabinet Library Catalogs

In the Library Browser, browse to Chief Architect Core Catalogs > Architectural > Cabinets to access a selection of specialty cabinets. Select the library object you want, then click in any view to place it in the plan. Once placed, library cabinets can be edited. See “The Library” on page 691.

A selection of cabinet manufacturer catalogs is also available for download. These catalogs include door and drawer styles and may also provide moldings and millwork, finishes, and hardware. See “Manufacturer Catalogs” on page 697.

In addition, you can add single cabinets and blocked units to the library. See “Adding Library Content” on page 700 and “Architectural Blocks” on page 725.

Cabinet Doors, Drawers, and Panels Catalogs

A selection of cabinet door, drawer, and panel styles is available in Chief Architect Core Catalogs > Architectural. Select an item, then click on a cabinet in your plan to place the door or drawer onto that cabinet. Doors, drawers, and panels can be assigned to a cabinet in its specification dialog, as well. Cabinet doors, drawers, and panels can also be placed as stand-alone fixtures.

You can create custom cabinet doors and drawers and save them in the library for future use. See “Convert to Symbol” on page 721.

Built-In Sinks and Appliances

A variety of fixtures and appliances such as sinks, cooktops, and dishwashers can be placed into cabinets. See “Inserted Objects” on page 705.
To insert a fixture into a cabinet, select the fixture in the Library Browser, then click on a cabinet. There must be enough space in the cabinet or adjoining cabinets to contain the selected fixture.

Only one front mounted appliance can be inserted in this manner. Additional front fixtures can be added in the Cabinet Specification dialog. See “Front/Sides/Back Panel” on page 478.

If a sink or cooktop is inserted into a cabinet with a top Drawer or Double Drawer, its Item Type will automatically change to a False Drawer or False Double Drawer.

Once placed, an inserted fixture can be selected and edited:

- To select a fixture in a cabinet top, click on it and then click the Select Next Object edit button. See “Select Next Object” on page 169.
- Front fixtures can only be modified or deleted in the Cabinet Specification dialog. See “Front/Sides/Back Panel” on page 478.

When a cabinet has a fixture on either its top or front, the Open Symbol edit button opens its specification dialog. When a cabinet has both, the Open Symbol button opens the specification dialog for the fixture on the front. When a cabinet has multiple front appliances, the Open Symbol edit button will not be available.

Fixtures can be added to both the top and front of the same cabinet. It is up to you to determine which can be effectively and safely combined in the real world.

Storage and Organization Inserts

Rollout organizing and storage items can be specified for any Door or Opening front item in the Cabinet Shelf Specification dialog. See “Rollout Shelves and Storage” on page 467.

Inserts for drawers and the backs of doors can be specified in the Door and Drawer Face Item Specification dialogs. See “Door/Drawer Panel” on page 481.

Electrical Switches and Outlets

Electrical switches and outlets can be placed on cabinets in most views. See “The Electrical Tools” on page 493.

Cabinet Fillers

Cabinet fillers can be created automatically or placed manually. See “General Cabinet Defaults” on page 460.

Both automatic and manually placed cabinet fillers are included in the Materials List. Cabinet filler sizes in the Materials List are rounded to the nearest 1/16” (1 mm). Only manually placed Cabinet Fillers can be listed in Cabinet Schedules, however.

Automatic Fillers

By default, Chief Architect models a continuous countertop and generates fillers automatically when cabinets of the same height are either touching or placed with 3” (75 mm) of one another.

If two cabinets meeting at a corner are separated from each other by 3” (75 mm) or less, the program will automatically generate a filler in the angle between them. A filler is used to separate the front of one of these cabinets from the one it meets so that drawers and doors have room to operate.

Cabinet Filler Tools

If you prefer, you can place cabinet fillers manually using the Cabinet Filler Tools. Select Build> Cabinet Filler to access these tools.
To create a cabinet filler, select **Build > Cabinet Filler**, choose the desired tool from the submenu, then click to place a filler just as you would a cabinet, in any view.

- **Base Cabinet Fillers** are composed of a front surface, a toe kick and a section of countertop.
- **Wall Cabinet Fillers** are composed of a front surface only.

Full Height Cabinet Fillers are composed of a front surface and a toe kick.

You can also convert a regular base, wall or full height cabinet into a filler by checking **Filler** in the **Cabinet Specification** dialog. Similarly, a cabinet filler can be converted to a regular cabinet by unchecking this box. See “General Panel” on page 475.

Once created, manually placed cabinet fillers can be edited much like regular cabinets.

Placing Cabinets and Fillers

Cabinets and cabinet fillers are easily created with a single click in any view. See “Click-to-Create” on page 134.

When used near a wall corner, the Cabinet Tools will produce corner cabinets and soffits. See “Corner Cabinets” on page 472.

When created, cabinets are positioned relative to the floor of the room in which they are placed. Base and full height cabinets typically rest on the floor while wall cabinets are placed a set distance above the floor. See “Cabinet Defaults” on page 459.

If the ceiling height of the room does not accommodate the height of a cabinet, its **Floor to Bottom** value will be retained and its **Height** will be reduced so that it fits under the ceiling. When this happens, some front items may be removed from the cabinet if there is not enough room for them. See “Front/Sides/Back Panel” on page 478.

Because cabinets are typically organized into groups with shared attributes, they have some special behaviors.

Cabinet Snapping and Aligning

Cabinets have several special snapping and aligning behaviors which help you create precisely aligned cabinets quickly and easily.

- When Base and/or Full Height cabinets are within 3” of one another’s sides, they will snap together. Wall cabinets snap in a similar manner, but only with other Wall cabinets.
- When Base and/or Full Height cabinets are within 3” of one another’s sides and their front or back surfaces are within 3” of aligning, they will become aligned. Wall cabinets snap in a similar manner with other Wall cabinets as well as Full Height cabinets.

- When a Base and/or Full Height cabinet is placed against the back of another Base or Full Height cabinet, its back surface will automatically face the other cabinet’s back. Wall cabinets snap in a similar manner with other Wall as well as Full Height cabinets.
- When a cabinet or cabinet filler is placed against a wall, its back and/or side will snap to the wall and, if the wall is moved, the cabinet will move with it.

When cabinets are snapped to a wall or to other cabinets, only exposed end cabinets have side counter overhangs, closed toe kicks, feet and corner pilasters. Adjacent cabinet fronts share front pilasters.

Cabinet snapping and aligning occurs even when **Object Snaps** are turned off; however, you can override this behavior by moving a cabinet into the desired position using dimensions. See “Moving Objects Using Dimensions” on page 365.

Cabinet Merging

When cabinets of the same height and type are placed side-by-side within 3” (30 mm) of one another they will automatically merge, making any shared components such as the toe kick, countertop, backsplash, and moldings continuous. Any gap between merged cabinets will be automatically filled.

The exposed ends of merged cabinets have side counter overhangs, closed toe kicks, feet and corner pilasters. Adjacent merged cabinets share front pilasters.

Cabinets placed at different angles will also merge if they face toward one another and meet at a front corner. Cabinets that meet at a back corner will also merge provided that they face away from one another.
at an angle no greater than 87°. In either case, a filler is created in the angle between the two.

If the side of a cabinet is placed within 3" (30 mm) of a wall, the countertop will extend to the wall and a filler will be created.

Cabinet merging occurs even when Object Snaps are turned off; however, you can suppress this behavior for cabinets that do not actually touch by turning off Create Automatic Fillers. See “General Cabinet Defaults” on page 460.

Countertops

Countertops are automatically generated on top of base cabinets. These default countertops are basically components of the cabinets. They can be edited in the Cabinet Specification dialog but cannot be selected and modified separately.

Custom Countertops

When automatic countertops do not meet your needs, you can instead use Custom Countertops, which can be selected independent of the cabinets beneath and are drawn and edited just like other closed-polyline based objects. See “Rectangular Polyline” on page 246.

Select Build> Cabinet> Custom Countertop, then either click and drag a rectangle or single-click to place a 2’x2’ countertop. Custom Countertops can be drawn in any view except cross section/elevation views.

You can also generate a custom countertop over one or more selected base cabinets by clicking the Generate Custom Countertop edit button. See “Using the Edit Tools” on page 470.

When a Custom Countertop covers any portion of a base cabinet, it overrides the default countertop.

Minimum Cabinet Size

If you try to place a cabinet into a space that is too narrow for its default size, the program will place a smaller cabinet with a width that is a multiple of the default Resize Increment. For example, if you try to place a 24” wide cabinet in a 20” wide space and your Resize Increment is 3”, the program places an 18” cabinet. See “General Cabinet Defaults” on page 460.

If you try to place a cabinet into a space narrower than the default Minimum Cabinet Width, a cabinet will not be placed. If, for example, you have a space that is 8” and your Minimum Cabinet Width is 9”, no cabinet is placed.

Base and Wall Cabinets

Base and wall cabinets have different default heights, so they can be placed directly above or below one another without interference. You can use Object Snaps to center a wall cabinet’s back center point above that of a base cabinet, or vice versa. See “Click-to-Create” on page 134.

Cabinet Fillers

By default, the program will automatically place a filler between cabinets that are within 3” of one another. You can instead turn off Create Automatic Fillers and place fillers manually.

If a sink or built-in appliance is added to the cabinet, a hole for the fixture is automatically cut in the custom countertop.

A custom countertop bases its thickness and height on the base cabinet(s) below.

- If there are multiple cabinets below, it uses the specifications for the cabinet with the greatest overall height.
- If there is no base cabinet below, its height and thickness are based on the base cabinet defaults. See “Cabinet Defaults” on page 459.

Editing Custom Countertops

Once created, a custom countertop or Custom Counter Hole can be selected in 2D and 3D views and edited like other closed-polyline based objects. See “Editing Closed Polyline-Based Objects” on page 180.
Custom countertops initially use the default countertop material set in the Base Cabinet Defaults dialog. You can specify a different material as well as the height and position in the Custom Countertop Specification dialog. See “Custom Countertop Specification” on page 487.

You can also specify the edge profile of a custom countertop in the Custom Countertop Specification dialog. See “Moldings Panel” on page 486.

Waterfall Countertops

To add a vertical waterfall to the edge of a Custom Countertop, select that edge and click the Add Waterfall to Selected Edge edit button. See “Selected Edge” on page 168.

You can also specify a waterfall edge as well as edit its attributes in the Custom Countertop Specification dialog. See “General Panel” on page 487.

To remove a waterfall from a countertop edge, select that edge and click the Remove Waterfall from Selected Edge edit tool.

Displaying Cabinets

The display of the various cabinet object types, labels, module lines, door opening indicators and more is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

In Plan View

Fill Styles and colors can be assigned to cabinet objects in plan view. See “Fill Styles” on page 155.

Like other objects, cabinets are placed in Drawing Groups that affect whether they display in front of or behind other objects in plan view. By default, wall cabinets, soffits and shelves are drawn in front of base and full height cabinets, countertops and partitions. You can modify a selected cabinet’s place in the drawing order by clicking the View Drawing Group Edit Tools edit button. See “Drawing Group Edit Tools” on page 153.

Objects assigned to cabinets, including hardware and moldings, are located on the same layer as their parent object. They display in 3D views, but are not shown in plan view. There are two notable exceptions: countertops and doors/drawers.

• Both automatic and Custom Countertops are drawn on the “Cabinets, Countertops” layer in all views. In plan view, countertops use the line style, color, and weight assigned to this layer; in 3D views, the line attributes of the parent object’s layer is used instead.

• Cabinet doors and drawers are drawn on the “Cabinets, Doors & Drawers” layer in all views, but only display in 3D views by default. See Cabinet Doors and Drawers, below.

Custom Countertops can be assigned an edge profile, and can display the width of this profile if Display Molding Edges is selected in the Custom Countertop Specification dialog. See “General Panel” on page 487.

By default, cabinet module lines display in plan view when cabinet objects of the same type are placed side by side. If you prefer that these lines not display, turn off the “Cabinets, Module Lines” layer. You can also specify whether module lines are full or partial. See “General Cabinet Defaults” on page 460.

You can also display cabinet front indicator arrows in plan view by turning on the “Cabinets, Front Indicators” layer.

Cabinet labels display in plan and cross section/elevation views when the “Cabinets, Labels” layer is turned on Text Style assigned to their layer. See “Cabinet Labels” on page 468.

In 3D Views

A cabinet’s label will display in cross section/elevation views when the “Cabinets, Labels” layer is turned on and the center point of the cabinet’s front is visible in the view. See “Cabinet Labels” on page 468.

To show door opening indicator arrows in cross section/elevation and Orthographic views, turn on the “Opening Indicators” layer. Opening indicators display in Vector Views only. See “Vector View” on page 829.
Cabinet Doors and Drawers

There are several options for controlling the display of cabinet doors and drawers in plan and 3D views.

Cabinet doors and drawers are drawn on the “Cabinets, Doors & Drawers” layer. In plan view, they use the line style, color, and weight assigned to that layer when they are set to display. In 3D Vector Views, they use the line style, color, and weight assigned to their parent cabinet’s layer.

Cabinet doors and drawers can be drawn open or closed in both plan and 3D views.

- To draw a selected cabinet’s doors open in all views, click the Open Cabinet Doors button. Any shelves set as Rollout will display in 3D views as well.
- To draw its drawers open in all views, click the Open Cabinet Drawers button.
- To close the doors and/or drawers, click the Close Cabinet Doors or Close Cabinet Drawers button.

Cabinet doors and drawers also can be set to Show Open in the Cabinet Specification dialog. In addition, you can specify how far open each is drawn. See “Front/Sides/Back Panel” on page 478.

By default, doors and drawers do not display in plan view when they are closed—even when the “Cabinets, Doors & Drawers” layer is set to display. You can, however, check Show Closed Doors/Drawers in Plan Views in the General Cabinet Defaults dialog. See “General Cabinet Defaults” on page 460.

Rollout Shelves and Storage

Shelves can be specified for Door and Opening cabinet front items and are visible in 3D views. Those inside of Doors will display in 3D views only when Doors and Rollout Shelves are set to Show Open. See “Front/Sides/Back Panel” on page 478.

Shelves can be specified as Rollout, each with its own rollout percentage, and will display in 3D views when Doors and Rollout Shelves are set to Show Open. If a Rollout shelf is in a Door item, the door must be set to 100% Percent Open in order for the shelf to draw open. See “Cabinet Shelf Specification Dialog” on page 485.

Cabinet shelves and added storage items do not display in plan view.

In the Materials List

The materials associated with cabinet objects are listed under different Categories in the Materials List:

- **Cabinets** - Lists Cabinets, Shelves, Partitions, Custom Countertops, Custom Backsplashes, Cabinet Fillers, storage and organization inserts, and cabinet doors and drawers placed independently from the library.
- **Interior Trim** - Lists Soffits and any moldings assigned to cabinet objects located in Interior room. Note that Soffits are not listed in the Materials List unless a non-default material is applied to them. See “Calculating Materials on Soffits” on page 745.
- **Exterior Trim** - Lists any Soffits and moldings assigned to cabinet objects located in Exterior rooms. See “Room Types and Functions” on page 315.
- **Fixtures** - Lists any sinks inserted into base cabinets. See “Inserted Objects” on page 705.
- **Appliance** - Lists any appliance fixtures inserted into cabinets. If a base cabinet has an under-counter appliance inserted into it, that cabinet will not be counted in the Materials List - only the countertop and backsplash materials associated with it will be listed. The cabinet will also display the appliance’s label information instead of its own.

As with other objects, there are a number of ways to control how, or whether, cabinets are included in the Materials List. See “Organizing Materials Lists” on page 947.

You can add and edit information about a cabinet’s accessories in the Cabinet Specification dialog. See “Components Panel” on page 959.

Note that cabinet door and drawer height is described in two different ways:

- In the Cabinet Specification dialog, the Item Height for cabinet doors and drawers describes the height of the opening in the cabinet box rather than that of the door or drawer front. See “Front/Sides/Back Panel” on page 478.
- In the Materials List, the full height of cabinet door and drawer front is listed in the Size column.
Cabinet Labels

Labels for cabinets and cabinet fillers display in plan and cross section/elevation views when the “Cabinets, Labels” layer is turned on. See “Object Labels” on page 515.

Shelves and Partitions can also display labels when the “Cabinets, Labels” layer is turned on, while Custom Countertop labels display when the “Polylines 3D, Labels” layer is turned on. Unlike cabinets and cabinet fillers, the Automatic Label for these objects is blank; however, you can specify a custom label in their specification dialogs.

Cabinet labels have their own edit handles and can be moved and rotated when a cabinet is selected. They use the Text Style specified for the “Cabinets, Labels” layer. See “Text Styles” on page 398.

If a base cabinet’s only front item aside from Separations and Blank Areas is an Appliance, the appliance’s label will display instead of the cabinet’s, and will be placed on the “Cabinets, Labels” layer.

Cabinet labels are available in three different formats:

- **Automatic Labels**, which include size, type and other information in abbreviated form.
- **User-Specified**, which are entered in the Cabinet Specification dialog. See “Label Panel” on page 516.
- **Schedule Callout Labels**, which are specified in the Cabinet Schedule Specification dialog. See “Labels Panel” on page 515.

The minimum on-screen display size of object labels can be specified in the Preferences dialog. See “Appearance Panel” on page 80.

Automatic Labels

The format for automatic cabinet labels has four parts: Key, Code, Size, and Door Swing.

The **Key** provides basic information about the cabinet box and its use. B refers to base cabinets, W refers to wall cabinets and U refers to full height cabinets.

Together with the key, the **Code** provides additional information about the shape of the cabinet box:

<table>
<thead>
<tr>
<th>Code</th>
<th>All Cabinets</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS + Key</td>
<td>Lazy Susan</td>
</tr>
<tr>
<td>LSD + Key</td>
<td>Lazy Susan Diagonal Door</td>
</tr>
<tr>
<td>DC + Key</td>
<td>Diagonal Door</td>
</tr>
<tr>
<td>LC + Key</td>
<td>Left Corner</td>
</tr>
<tr>
<td>BC + Key</td>
<td>Blind Corner</td>
</tr>
<tr>
<td>PBC + Key</td>
<td>Peninsula Blind Corner</td>
</tr>
<tr>
<td>Key + P</td>
<td>Peninsula</td>
</tr>
<tr>
<td>Key + F</td>
<td>Filler</td>
</tr>
<tr>
<td>E + Key</td>
<td>Right or Left End</td>
</tr>
<tr>
<td>A + Key</td>
<td>Angled Front</td>
</tr>
<tr>
<td>PR + Key</td>
<td>Peninsula Radius</td>
</tr>
<tr>
<td>R + Key</td>
<td>Radius End</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>Oven Base</td>
</tr>
<tr>
<td>SB</td>
<td>Sink Base</td>
</tr>
<tr>
<td>RB</td>
<td>Range Base</td>
</tr>
<tr>
<td>#DB</td>
<td>Drawer Bank (# is the number of drawers</td>
</tr>
<tr>
<td>FHB</td>
<td>Full Height Base (1 full height door</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code from above + #D</td>
<td>Drawer (# is the number of drawers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>Full Height (Utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTC</td>
<td>Tall Oven</td>
</tr>
<tr>
<td>RTC</td>
<td>Tall Refrigerator</td>
</tr>
</tbody>
</table>

Blind corner cabinets are dependent on the cabinet’s position in the plan. A cabinet can only be a blind corner cabinet when its front is partially hidden by another cabinet. See “Blind Cabinets” on page 474. If a cabinet is moved, therefore, its Code information may change.

Peninsula cabinets are only designated as such when they have one or more doors on the back side. See “Front/Sides/Back Panel” on page 478.

The **Size** follows the Code in a cabinet label. Cabinet width is always included in the label; depth and height, on the other hand, may be included depending on the cabinet type and whether they are standard or non-standard.

Base and full height cabinet labels present Size information in this order: width, depth, height. Wall cabinet labels present it in a slightly different order: width, height, depth.
Editing Cabinets

Cabinets and cabinet fillers can be selected in 2D and 3D views both individually and in groups and edited using the edit handles, the edit toolbar and their specification dialog.

Using the Mouse

Cabinets can be edited like other box-based objects. See “Editing Box-Based Objects” on page 184. The edit handles that a cabinet displays when selected will vary depending on the view.

When a cabinet is selected in plan view or on its top surface in a 3D view, ten edit handles display: the Move handle at the center, the Rotate handle, and a Resize handle on each edge and at each corner.

In 3D views, cabinets can be selected on any surface: front, side, back or top. When the side of a cabinet is selected, five edit handles are available: the Move handle and a Resize handle on each edge.

Door Swing is included at the end of the label as either L or R, but only if all the doors on a cabinet have the same swing.

Here are a few examples of automatic cabinet labels and their meanings:

- **3DB24**: Base cabinet with 3 drawers, 24” wide. Depth and height are standard.
- **SB24R**: Sink base, 24” wide, with a right door. Depth and height are standard.
- **BCW2436R**: Blind wall cabinet, 24” wide, 36” high, with a right door. Depth is standard.
- **DCW2436L**: Diagonal corner wall cabinet, 24” wide, 36” high, with a left door. Depth is standard (equal to width).
- **OTC362490**: Full height cabinet with oven, 36” wide, 24” deep, 90” high.

The Automatic Labels for Shelves and Partitions are blank, but you can specify custom labels for both. See “Shelf/Partition Specification Dialog” on page 486.

Sizes

<table>
<thead>
<tr>
<th></th>
<th>Base (W)(D)(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (W)</td>
<td>Always included</td>
</tr>
<tr>
<td>Depth (D)</td>
<td>24” (60 cm)</td>
</tr>
<tr>
<td>Height (H)</td>
<td>34 1/2” (90 cm)</td>
</tr>
<tr>
<td>Corner</td>
<td></td>
</tr>
<tr>
<td>Depth (D)</td>
<td>Depth = Width</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wall (W)(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (W)</td>
<td>Always included</td>
</tr>
<tr>
<td>Height (H)</td>
<td>Always included</td>
</tr>
<tr>
<td>Depth (D)</td>
<td>12” (30 cm)</td>
</tr>
<tr>
<td>Corner</td>
<td>Depth = Width</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Full Height (W)(D)(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (W)</td>
<td>Always included</td>
</tr>
<tr>
<td>Depth (D)</td>
<td>Always included</td>
</tr>
<tr>
<td>Height (H)</td>
<td>Always included</td>
</tr>
<tr>
<td>Corner</td>
<td>Always included</td>
</tr>
</tbody>
</table>

You can marquee-select cabinets of multiple types when the Full Height Cabinet tool is active. See “Marquee Select” on page 169.

In the Specification Dialog

A selected cabinet can be customized in a variety of ways in its specification dialog. See “Cabinet Specification Dialog” on page 475.
Multiple Cabinets

When multiple cabinets are selected as a group, any specifications that they share in common can be modified in the **Cabinet Specification** dialog.

When you group select cabinets of different types, some options are not available in the **Cabinet Specification** dialog. For example, you cannot modify the crown molding on a full height cabinet if it is selected with a base cabinet that does not have crown molding.

Soffits, shelves, and partitions can be group selected and edited using their corresponding specification dialog. It is important that only soffits, or only shelves, or only partitions be a part of the selection set in order to access the needed specification dialog.

You can use the **Object Painter** tools to assign the properties of one cabinet to other cabinets. See “Matching Properties” on page 219.

You can also apply a variety of cabinet attributes to multiple cabinets and cabinet fillers at once using **Style Palettes**. See “Style Palettes” on page 217.

Using the Edit Tools

A cabinet or cabinets can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Add to Library

Cabinets can be saved in the Library Browser. Select a base, wall or full height cabinet or cabinet filler and click either the **Add to Library** or **Add to Library As** edit button. See “Add to Library” on page 700.

If you use **Add to Library As**, you can add the selected cabinet to the library in either of two ways:

- Select Cabinet Module to save the cabinet along with its doors, drawers and panels and any fixtures or appliances.
- Select Cabinet Doors and Drawers to save the cabinet door style only.

Using Dimensions

Like various other objects, cabinets can be moved and resized using dimensions. See “Moving Objects Using Dimensions” on page 365.

In order to be edited using dimensions, cabinets must be located by them. In the **Dimension Defaults** dialog, you specify what components of a cabinet are located by dimensions:

- Cabinet sides, corners, centers, backsplashes, and counter edges can be located in both plan and elevation views.
- Cabinet backsplashes, countertops, toe kicks, and moldings can be located in elevation views; they cannot, however, be edited using dimensions.

See “Locate Objects Panel” on page 346.

Dimensions locate the sides and/or corners of cabinet boxes. If you wish, you can move a dimension’s extension lines to locate the centers or countertop edges in plan view after the dimension line is drawn. In elevation views, the heights of the toe kick, backsplash, and/or moldings can also be located in this manner. See “Editing Extension Lines” on page 363.

Depending on whether a cabinet box or Custom Countertop is selected, Temporary Dimensions will locate objects near the Selected Edge somewhat differently: See “Temporary Dimensions” on page 358.

- If a cabinet box is selected, Temporary Dimensions will locate the nearest wall surface or another cabinet box, but not automatically generated or Custom Countertops.
- If a Custom Countertop is selected, Temporary Dimensions will locate the nearest wall surface, Custom Countertop, or automatically generated countertop edge.

Moving Walls with Cabinets Attached

When a cabinet is placed or moved against a wall, it will snap to the wall and become attached to it. When a wall is moved, all attached cabinets move with it.

Moving a wall to an unattached cabinet will not attach the cabinet to it: the cabinet must be moved to the wall. A cabinet can also be attached to a wall when **Plan Check** is used. See “Plan Check” on page 62.

When wall layers are resized or the wall layer definition redefined, the cabinets may become unattached. To reattach, select them, drag them away from the wall, and then drag them back again.
Editing Cabinet Styles

A variety of settings allow you customize the appearance of your cabinets to create styles ranging from traditional to contemporary.

If the desired style is known before cabinets are placed, you can save time by specifying that style in the Cabinet Defaults dialogs before you start drawing. See “Cabinet Defaults” on page 459.

A wide variety of cabinet style attributes can be included in and applied to multiple cabinets and cabinet fillers at once using Style Palettes. See “Style Palettes” on page 217.

Cabinet Face Items

A variety of different face items can be added to the front of any cabinet, including doors, drawers, cutting boards, and horizontal separations. Face items can be moved, resized, as well as removed and can also be split vertically or horizontally to produce a variety of custom configurations. See “Front/Sides/Back Panel” on page 478.

When adding, removing, or resizing face items, it is helpful to keep a few rules in mind:

- Door and drawer Item Height settings reflect the height of the opening rather than that of the front item. When Traditional Overlay is specified, an item’s front height will be equal to its Item Height plus its top and bottom Vertical Overlap.
- When the overall height of a cabinet or the height of a face item is changed, the height of the lowest face item that is not a Separation is adjusted to accommodate the change.
- If you increase the height of the lowest face item, the non-Separation item directly above is adjusted; if you decrease its height, a Blank Area and Separation are created below it.

Note: To ensure that Face Item heights always equal the total cabinet front height, the program automatically adjusts the bottom Face Item as changes are made elsewhere. This means you should start editing Face Items at the top and work down.

When editing a cabinet’s width, or when adding or removing features that affect the width of a cabinet’s front items, the program will try to maintain the relative sizes of face items in any vertically split layouts.

Doors, Drawers and Panels

Cabinet doors, drawers, and panels can be applied in either of two ways:

- In the Cabinet Specification dialog. See “Door/Drawer Panel” on page 481 and “Front/Sides/Back Panel” on page 478.
- Directly from the Library Browser.

Select a style in the Library, then click on a cabinet to apply the selected style to that cabinet. See “Replace From Library” on page 706.

A secondary door or drawer style can also be specified - for example, to create glass doors above solid doors in wall cabinets. See “Front/Sides/Back Panel” on page 478.

Cabinet Hardware

Cabinet handles, pulls, and hinges can be assigned in the Cabinet Specification dialog. See “Door/Drawer Panel” on page 481.

In 3D views, cabinet hardware can also be applied directly from the Library Browser. Select a cabinet hardware item in the Library, then click on a cabinet door or drawer to assign it to face items of that type. See “Inserted Objects” on page 705.

The hardware on individual doors and drawers can also be customized. See “Front/Sides/Back Panel” on page 478.

Framed and Frameless Cabinets

Both framed and European-style frameless cabinets can be specified in Chief Architect.

For both types of cabinet, you can define the door and drawer overlay or specify inset doors. On a traditional framed cabinet, you can also control the size of the rails and stiles. See “Front/Sides/Back Panel” on page 478.

Pilasters, Feet, and Moldings

Pilasters can be applied to any cabinet in its Cabinet Specification dialog. Cabinet feet can also be applied to base and full height cabinets. See “Millwork” on page 677 and “Accessories Panel” on page 482.
Multiple molding profiles can also be applied around the perimeter of a cabinet at any height. For example, you may want a wood edge around base cabinet countertops and a crown molding that ties together the tops of the wall cabinets and full height cabinets. Moldings can be built up or stacked, and can be recessed, as well - for example, to produce a light rail or light valance. See “Applying Moldings” on page 680.

Special Cabinets

There are a number of special cabinet shapes that can be specified. Certain requirements must be met before some special cabinet shapes can be specified. If the requirements are not met, a warning message will explain what is needed. See “Cabinet Specification Dialog” on page 475.

Note: Only Standard cabinets can be the default cabinet Type. See “Cabinet Defaults” on page 459.

Standard Cabinets

Select Build > Cabinet > Base Cabinet 💽 and click in plan view to place a standard, rectangular base cabinet.

Countertops and Backsplashes

The countertop thickness, overhang, corner shape, and material for a selected base cabinet can be specified in the Cabinet Specification dialog. See “General Panel” on page 475.

Backsplashes can be applied to base cabinets as well as down from wall cabinets on the General panel of their specification dialogs.

Custom Countertops, Counter Holes, and Backsplashes can also be created independent of base or wall cabinets. See “The Cabinet Tools” on page 461.

Cabinet Shelves

You can customize the shelves inside of base, wall, and full height cabinet boxes. See “Cabinet Shelf Specification Dialog” on page 485.

You can also specify the material assigned to a cabinet’s shelves on the Materials panel of the Cabinet Specification dialog. See “Cabinet Specification Dialog” on page 475.

Corner Cabinets

To create a corner cabinet, click as close to an inside wall corner as possible in using either the Base Cabinet 🛋️, Wall Cabinet 🛋️, or Full Height 🛋️ cabinet tool. A corner cabinet remains a corner cabinet when it is moved, edited or copied.
You can turn an existing cabinet into a corner cabinet by selecting “Corner” from the Special drop-down list in its specification dialog. See “General Panel” on page 475.

- Before a corner cabinet can be specified in the Cabinet Specification dialog, the cabinet’s Width must be greater than its Depth.
- The Left and the Right Side Widths can be set independently for corner cabinets.

You can specify a Diagonal Door on corner cabinets to create an angled corner cabinet. See “Front/Sides/Back Panel” on page 478.

- The diagonal door on corner cabinets can be curved by entering a negative value in the second Right Side Width field. See “General Panel” on page 475.

Exposed End Cabinets

A cabinet that is merged on one side but not the other is referred to as an Exposed End.

Pilasters, feet, countertop overhangs and closed toe kicks all behave differently when groups of cabinets are merged:

- If multiple cabinets are joined together, only Exposed End cabinets have corner pilasters, cabinet feet, side counter overhangs, and closed toe kicks.
- If multiple joined cabinets have both Front Pilasters and Corner Pilasters specified, the Exposed End cabinets include corner pilasters and inside cabinets have front pilasters.
- If multiple cabinets are joined, inside cabinets share Front Pilasters.
- Corner pilasters and cabinet legs are eliminated on the back if the cabinet is against a wall, and on either side if it’s joined with another cabinet.

End Cabinets

To turn a cabinet into an end cabinet, specify its Type as “Left End” or “Right End”.

- End Cabinets have an angled front and side.
- The cabinet width must be no greater than its depth for an end cabinet to be specified.

Radius End Cabinets

To turn a cabinet into a radius end cabinet, specify its Type as “Left Radius End” or “Right Radius End”.

As you face the cabinet, a right radius end curves to the right, and a left radius end curves to the left.

473
Peninsula Radius Cabinets

To turn a cabinet into an end cabinet, specify its Type as “Peninsula Radius”.

![Peninsula Radius Cabinet](image)

The radius can be adjusted by changing the Depth/Bow Depth value. See “General Panel” on page 475.

Angled Front Cabinets

To assign an angled front to a cabinet, specify its Type as “Angled Front”.

![Angled Front Cabinet](image)

- The length of the left and right side of an **Angled Front** cabinet can be defined by changing the Depth/Bow Depth value. See “General Panel” on page 475.

Bow Front Cabinets

To assign a bow front to a cabinet, specify its Type as “Bow Front”.

![Bow Front Cabinet](image)

- The bow depth of a **Bow Front** cabinet can be defined. See “General Panel” on page 475.
- The bow depth cannot exceed half the cabinet width.
- The doors and drawers on a **Bow Front** cabinet automatically match the curvature of the cabinet.

Kitchen Islands

To create a kitchen island, simply place several cabinets back-to-back and/or side-to-side. Match the widths so that each cabinet back or side meets the back or side of only one other cabinet. If this is not done, the lines separating the cabinets cannot be suppressed.

A given side of a single cabinet cannot merge with the edges of two different cabinets. The example below shows two instances of cabinets placed back-to-back. Cabinet fronts and joining surfaces are shown.

- **Correct** - Widths of front and back cabinets match
- **Incorrect** - Solid line here is not suppressed.

Blind Cabinets

Often, when two cabinets meet in a corner, one is partially hidden by the other. This partially hidden cabinet is called a “blind” cabinet. Chief Architect will resize and offset the front items of the partially hidden cabinet so that they are not located in the hidden portion of the cabinet face.

![Blind Cabinets](image)

You can turn off this automatic behavior in the **General Cabinet Defaults** dialog. See “General Cabinet Defaults” on page 460.

You can also create a blind cabinet manually by controlling the widths of a cabinet’s left or right stile in its **Cabinet Specification** dialog. See “Front/Sides/Back Panel” on page 478.
Cabinet Specification Dialog

Select one or more cabinet and click the Open Object edit button to open the Cabinet Specification dialog.

You can also open the specification dialog for the cabinet(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

If the selected cabinet is an imported symbol in a legacy plan, the Cabinet Symbol Specification dialog opens instead and has fewer options than the Cabinet Specification dialog.

The options in the Cabinet Specification dialogs are similar to the corresponding Cabinet Defaults dialog. See “Cabinet Defaults” on page 459.

General Panel

1. A number of Cabinet Types are available in the drop-down list. Certain requirements must be met before some types can be specified. Not available in the Cabinet Defaults dialogs. See “Special Cabinets” on page 472.
 - Check Filler to specify the selected cabinet as a filler of the same type instead of a true cabinet. See “Cabinet Fillers” on page 463. Not available in the Cabinet Defaults dialogs.

2. Size/Position - The selected cabinet’s dimensions and position relative to the floor can be specified here. Fractional values are supported to 1/16th of an inch (1 mm).
 - Specify the Width of the cabinet box, as measured across the front of the cabinet box from left to right. This does not include the countertop overhang.
• Specify the **Height (Including Counter)** of the cabinet box, as measured from bottom to top. For base cabinets, this value includes the countertop thickness, but not the height of the backsplash.

 Note: Height refers to the height of the entire cabinet, including countertop and toe kick. If you change the Countertop Thickness or Toe Kick Height, the cabinet's total height is not altered. Instead, the cabinet face height and the heights of face items change in response.

• Specify the **Depth** of the cabinet box, as measured from front to back. It does not include the thickness of overlay doors or the countertop overhang.

• For Corner cabinets, the **Width** and **Depth** fields are instead named **Right Side Width** and **Left Side Width**.

• For Corner and Bow Front cabinets, specify the **Bow Depth**. A positive number creates a bow and a negative number, an inside bow. Not available for Corner cabinets if Diagonal is unchecked on the Front panel. See “Front/Sides/Back Panel” on page 478.

• For Angled Front cabinets, specify the **Left Depth** and **Right Depth** rather than the Depth and Bow Depth.

• Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.

• Specify the **to Top** distance, measured from the Elevation Reference to the top of the cabinet’s countertop.

• Specify the **to Bottom** distance, measured from the Elevation Reference to the bottom of the cabinet, including the toe kick.

3 Specify the dimensions and style of the selected cabinet’s **Countertop**, or uncheck this box to prevent it from having a countertop. Only available for base cabinets and fillers.

• Specify the countertop **Thickness**. Changing this value does not alter the cabinet height, but it does affect the height of face items. See “Front/Sides/Back Panel” on page 478.

• Specify the countertop **Overhang**. Uncheck Uniform to specify separate values for each side in the fields below, or leave it checked to use the same value for all sides. Overhangs do not generate on sides that are against a wall or another cabinet. See “Cabinet Snapping and Aligning” on page 464.

• **Corner Treatment** - Specify **Clipped** or **Rounded** countertop corners. The options here are the same as those for the Cabinet Corner Treatment, but affect the countertop rather than the cabinet box. See “Front/Sides/Back Panel” on page 478.

• When Clipped or Rounded is selected, specify the **Corner Width**, which is measured from the original location of the corner to the point where the straight front edge ends.

4 Check the box beside **Backsplash**, then specify its dimensions and when it should generate, or leave this box unchecked to prevent the selected base or wall cabinet or filler from having a backsplash.

• Specify the backsplash **Height** and **Thickness**. Height is only available for base cabinets - not wall cabinets.

• Check **Side** to add the backsplash to the side of the cabinet if it is against a wall or a taller cabinet. Not available for Corner cabinets.

• Check **Always Present** to display the backsplash at all times. If unchecked, a backsplash is present only when the cabinet is against a wall.

• Check **Backsplash to Base Below** to extend a backsplash from the selected wall cabinet down to the backsplash or countertop of the base cabinet below. Only available for wall cabinets.

Note that while a base cabinet’s backsplash is measured from the countertop up, a wall cabinet’s backsplash extends downward.

5 Specify the dimensions and style of the selected cabinet’s **Toe Kick**, or uncheck this box to prevent it from having a toe kick. Only available for base and full height cabinets and fillers.

• Specify the toe kick’s **Height** and **Depth**. Changing the Height does not alter the cabinet height but does affect the heights of the cabinet face and face items.

• **Flat Sides** can be added to base and full height cabinets. Checking Flat Sides eliminates the toe kick area on the exposed end(s) of the cabinet.

• Check **Flat Back** to eliminate the toe kick on a cabinet with an exposed back. This does not eliminate the toe kick on the cabinet front.

• Check **Closed Toe** to extend the cabinet sides to cover the sides of the toe kick. If pilasters that do not extend to the floor are specified, checking
this places a support block under them at Exposed Ends.

- Check **Always Present** to preserve the Closed Toe at all times. When this is unchecked, the Closed Toe is removed where cabinets are side by side. Only available when Closed Toe is checked.

Options -

- **Uncheck Diagonal Door** to create double doors at right angles instead of a single diagonal door.

Box Construction Panel

1. Define the **Box Construction** of the selected cabinet. Select **Framed** to create a traditional framed cabinet and enable the settings below, or choose **Frameless** for a European style cabinet.
 - Specify the **Separation** value, which is the width of the horizontal face frame piece between doors, drawers, and other face items.

2. Define the **Door/Drawer Overlay** of the selected cabinet.
 - Select **Traditional Overlay**, then specify the **Side** and **Vertical Overlap** values.
 - The **Side Overlap** is the distance that doors and drawers overlap the cabinet’s vertical stiles and is applied to both sides of the doors and drawers.
 - The **Vertical Overlap** is the distance that doors and drawers overlap the horizontal separations between front items and is applied to both the top and bottom of the doors and drawers.
 - Select **Full Overlay**, then specify the **Reveal**, which is the distance between door and drawer front items.
 - Select **Inset** to produce doors and drawers that are flush with the rails and stiles rather than overlaying it.

3. **Cabinet Corner Treatment** - Specify clipped or rounded corners for the selected cabinet’s box. These settings are only available for Standard, Corner, and Bow Front cabinet types.
 - Select **Rounded** to create rounded cabinet corners, then specify the length of the chords of those rounded corners.
• Select **Clipped** to create 45° angled edges at the cabinet corners, then specify the length of those angled edges.

• Select **None** for cabinet corners that are neither clipped nor rounded.

• Specify the **Corner Width** value, as measured from the original corner to the point at which the clip or curve begins. Only available if Clipped or Rounded is selected.

A preview of the selected cabinet displays on the right side of the panel. See “Dialog Preview Panes” on page 32.

Front/Sides/Back Panel

If you click on a cabinet face item in the preview on the right side of the dialog, the **FRONT/SIDES/BACK** panel will become active and that face item will be selected and can be edited.

1. Select which **Cabinet Side** you would like to edit: the Front, Back, Left or Right side.

2. Assign a **Side Type** to the selected Side. Only “Use Default” and “Custom Face” are available for the Front. The options are:

 • Select “Use Default” to use the default configuration set in the **Cabinet Defaults** dialog. See “Cabinet Defaults” on page 459.

 • Select “Finished” to specify the selected side as finished or “Unfinished” to specify it as unfinished.”Finished” and “Unfinished” are only used in Cabinet Schedules. See “Columns to Include” on page 509.

 • Select “Auto Finished” to finish the side only when it is not adjacent to another cabinet or a wall.

 • Select “Paneled” to apply a panel to the selected side.
• Select “Auto Paneled” to apply a panel to the side only when it is not adjacent to another cabinet or a wall.

• Select “Match Front” to apply the same face items as the cabinet front to the selected side.

• Select “Custom Face” to enable the Face Items settings below.

Most of the Face Items settings are only active when a door, drawer, or other face item is selected. To select a face item, click on its name in the list or click on it in the preview on the right.

When a face item is selected, it is highlighted in the list as well as in the preview; its attributes can be edited and the list can be navigated using the arrow and number keys. The vertical frame pieces on the sides of the cabinet front are referred to as stiles and cannot be selected in the preview. See “Cabinet Face Items” on page 471.

• A numbered tree list of face items displays here. Item numbers start at the top of the cabinet and go down the face to the bottom of the cabinet. Item 1 is usually the top face frame Separation, or rail. The selected face item is highlighted; if no item is selected, the “Vertical Layout Parent” heading will be highlighted.

• Click Add New to add a new face item directly below the currently selected item. When a face item is added, the height of the lowest item on the cabinet front is reduced to make room for the new item. If you click Add New with no face item selected, the new item is added to the bottom of the cabinet face.

• In the New Cabinet Face Item dialog, define the Item Type, Item Height, and click OK. If the Item Type is “Separation”, you can check Default to use the default Separation Height.

• Click Delete to remove the selected face item. When an Auto Left, Auto Right, Left, Right, or Double Door is deleted, it is replaced by an Opening; when other face item types are deleted, the height of the lowest item is increased to make up the difference. You can also press the Delete key on the keyboard.

The program tries to maintain a single separation between all face items. When you add or delete a face item, separations are usually added or deleted with them.

• Click Move Up to move the currently selected item up one position, switching places with the item directly above.

• Click Move Down to move the currently selected item down one position, switching places with the item directly below.

• When the selected face item is part of a “Layout - Horizontal”, the Move Left and/or Move Right buttons will be available instead. Click either to have the selected item switch places with its neighbor.

• Click Split Vertical to divide the selected face item into two separate side-by-side items of the same Item Type and Height. A vertical separation is added between them and together the three new items have the same Width as the original item. Not available for Horizontal or Vertical Layouts, Appliances, Separations, or for items 1 1/2” (50 mm) wide or less.

• Click Split Horizontal to divide the selected face item into two separate items of the same Item Type and Width, stacked one above the other. A horizontal separation is added between them and together the three new items have the same Height as the original item. Not available for Horizontal or Vertical Layouts, Appliances, Separations, or for items 1 1/2” (51 mm) tall or less.

• Click Equalize to make the sizes of a face item’s sub-items equal in size. Only available if the selected item is a Vertical or Horizontal Layout with sub-items.

• Choose the selected face item’s Item Type from the drop-down list:

<table>
<thead>
<tr>
<th>Item Type</th>
<th>Special Behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Area</td>
<td>Creates a solid, flat surface.</td>
</tr>
<tr>
<td>Horizontal Layout</td>
<td>Creates a group of identical, side-by-side items separated by vertical separations.</td>
</tr>
<tr>
<td>Vertical Layout</td>
<td>Creates a group of identical, stacked items separated by horizontal separations.</td>
</tr>
<tr>
<td>False Drawer</td>
<td>Assumes the appearance of specified the drawer style, including hardware.</td>
</tr>
<tr>
<td>and False Double Drawer</td>
<td></td>
</tr>
</tbody>
</table>
Specify the selected face item’s **Item Height**. Fractional values are supported to 1/16th of an inch (1 mm). For doors and drawers, this is the height of the opening rather than the item front height. A door or drawer’s front height is equal to its Height plus its top and bottom Vertical Overlap. For best results, edit face item heights starting at the top of the cabinet and work down. See “Cabinet Face Items” on page 471.

Specify the selected face item’s **Item Width**. Fractional values are supported to 1/16th of an inch (1 mm). For doors and drawers, this is the width of the opening rather than the item front width. Only available for components of a Horizontal Layout.

Check **Lock from Auto Resize** to prevent the selected face item from resizing when the cabinet is resized, new face items are added, or when the **Equalize** button is clicked.

Shelves - Click the **Specify** button to open the **Cabinet Shelves Specification** dialog and specify the shelf configuration for a selected Door or Opening Face Item. See “Cabinet Shelf Specification Dialog” on page 485.

When an **Appliance/Door/Drawer** or panel is selected, click the **Specify** button to choose an appliance from the Library or to customize the selected door, drawer, or panel’s front style and hardware. The options available depend on the type of face item currently selected. See “Select Library Object Dialog” on page 705 and “Door/Drawer Panel” on page 481.

- Click the **Clear** button to remove the selected appliance from the cabinet or to reset the selected door or drawer so it uses hardware and front style assigned to the cabinet.

- Check **Reverse Appliance** to reverse the selected face item from left to right; for example, to move a dishwasher’s controls from the left side to the right. Only available when an “Appliance” item is selected. See “Inserted Objects” on page 705.

- Specify which types of front items you would like to **Show Open** in plan, 3D, and cross section/elevation views. See “Cabinet Doors and Drawers” on page 467.

Options -

- Specify the **Appliance Front Offset**, which is the distance from the front of a top-mounted appliance to the counter edge. Only available for base cabinets with a top-mounted fixture such as a sink or cooktop.

- **Select Cabinet Face Item** mode is active by default and allows you to click on a face item like a door, drawer, or separation in the preview to select it for editing. The selected face item is highlighted in grey.

- **Mouse-Orbit Camera** mode allows you to orbit around the preview of the cabinet. When this is active, you can right-click on a front item to select it.

- Face items identified as “Horizontal Layout” in the list on the left cannot be selected in the preview.

- The cabinet **Label** displays below the preview pane. See “Cabinet Labels” on page 468.
Door/Drawer Panel

The settings on the DOOR/DRAWER panel allow you to control the appearance of the selected cabinet’s doors, drawers and hardware.

Similar settings are also found in the Door, Drawer, and Side Panel Face Item Specification dialogs, which allow you to customize the door, drawer, or panel style and hardware for individual cabinet face items. See “Front/Sides/Back Panel” on page 478.

Specify the appearance of the Doors applied to selected cabinet.

Select a door Style from the drop-down list. See “Doors, Drawers and Panels” on page 471.
- Select “Use Default” to apply the door style specified in the defaults dialog for the selected cabinet’s type. See “Cabinet Defaults” on page 459.
- Select “Slab Doors” to apply a flat door front or “Framed Doors” to apply a door with a frame and flat panel front.
- Select “Library” or click the Library button to select a cabinet door from the library. If a library door has been previously selected, its name will display in the list. See “Select Library Object Dialog” on page 705.

Check Glass Doors to use a glass material for the panel of Framed doors or for the entire door for Slab doors. Not available when “Library” is the selected door Style.

Check Stile Between Doors to separate double doors and double drawers with a stile. Other face items types are not affected by this setting.

Specify the characteristics of the selected cabinet’s Door Handles.
- Select a door handle Style from the drop-down list or choose one from the Library.
- Specify the position of the handle In From Edge, as measured from the edge of the door opposite the hinges.
- Specify the height of the handle Down From Top, as measured from the top edge of the door.
For wall cabinets, this value is measured **Up From Bottom**.

3 Specify the characteristics of the cabinet **Door Hinges**.
- Select a door hinge **Style** from the drop-down list or choose one from the **Library**.
- Specify the location of the hinges **Up/Down From Edge**, as measured from the door edge. If the cabinet door is more than 35 1/4" (880 mm) high, three hinges will be created instead of two.

4 Select a **Drawer Style** from the drop-down list or choose one from the **Library**. For best results, “Framed” drawers should be at least 6” (150 mm) high.

5 Specify the characteristics of the selected cabinet’s **Drawer Handles**.
- Select a drawer **Handle Style** from the drop-down list or choose one from the **Library**.
- Specify the **Horizontal Position** of the drawer handle(s): Choose **Use Default** to use the default position; **One Handle Centered** for a single handle centered on the drawer face; or **Two Handles In From Edge** for two handles set in from the drawer sides by the value specified in the text field.
- Specify the **Vertical Position** of the drawer handle(s): Choose **Use Default** to use the default position, **Centered** for handle(s) centered on the drawer face, or specify the handle’s **Distance From Top**.

6 **Options** -
- Enter a **Slab Bevel** width to create beveled edges on Slab drawers and doors. The bevel width, as viewed from the front, has a maximum value of 3” (75 mm). Framed and Library doors are not affected by this setting.

7 A preview of the selected cabinet displays on the right side of the panel. See “Dialog Preview Panes” on page 32.
- The cabinet **Label** displays below the preview pane. See “Cabinet Labels” on page 468.

Door and Drawer Face Item Specification Dialogs

Additional settings are available in the **Door** and **Drawer Face Item Specification** dialogs. See “Storage and Organization Inserts” on page 463.

The **Door Back Inserts** settings allow you to choose one or more storage items for the back of a selected door.
- A drop-down list of the inserts assigned to the selected door displays here. Select the name of an object to edit it or remove it from the list.
- Click the **Add New** button to open the **Select Library Object** dialog and add a new symbol to the list. See “Select Library Object Dialog” on page 705.
- Click the **Replace** button to remove the selected symbol and replace it with a new one from the library. Only available when an object is already selected.
- Click the **Delete** button to remove the currently selected symbol from the list.
- Select **Top to Bottom** to place the first insert at the top of the selected door and place additional ones evenly spaced below it.
- Select **Bottom to Top** to place the first insert at the bottom of the selected door and place additional ones evenly spaced above it.

The **Drawer Box/Pullout** setting allows you to select an insert for a selected drawer from the library.

Accessories Panel

The settings on the **ACCESSORIES** panel let you apply millwork and panels to the selected cabinet(s), as well as specify a fixture set into the countertop, pilasters and feet to the selected cabinet(s).
Specify the desired Pilasters for the selected Standard or Corner cabinet(s). See “Editing Cabinet Styles” on page 471.

- **Front Pilaster** - Select the default front pilaster, a pilaster from the library, or None.
- **Corner Pilaster** - Select the default corner pilaster, a pilaster from the library, or None. Specifying a corner pilaster automatically creates a flat corner surface and overrides the Flat Corner setting on the General Panel. Does not apply to Corner cabinets with Diagonal Doors selected.
- Specify the Width of the selected cabinet’s pilasters. This value applies to both front and corner pilasters.
- Check **Extend to Bottom** to extend front and corner pilasters to the bottom of the toe kick. When this is unchecked, pilasters stop at the top of the toe kick.

Specify Feet for the selected Standard or Bow Front cabinet(s). Select the Default cabinet foot, a cabinet foot from the Library, or None. Not available for wall cabinets. See “Editing Cabinet Styles” on page 471.

- Specify the Width Offset, which is the offset of the cabinet feet relative to the sides of the cabinet box.
- Specify the Depth Offset, which is the offset of the cabinet feet relative to the front and back of the cabinet box.
- Check **Always Present** to place cabinet feet under the selected cabinet regardless of where it is located. When checked, any adjacent cabinet edges will display feet as well. When unchecked, the cabinet will only receive feet along its outside edge if it is an end cabinet.
- Check **Stretch to Fit** to resize the cabinet feet so that they extend from each corner to the midpoint of each edge. Only affects cabinet foot symbols with stretch planes defined. See “Stretch Planes and Zones” on page 723.
- Check **Retain Toe Kick** to place a toe kick under the cabinet. When unchecked, the toe kick is suppressed.

Specify the characteristics of the selected cabinet’s Panels. You can specify whether a
The Side Panel Options control how the side panels are applied to the cabinet.

- Check **Full Size Panel** to apply a single panel to the entire side. When unchecked, the panel uses the same Style and Overlap values as the front. If the cabinet has multiple levels of doors on its front, the side will have matching panels.
- Check **Full Overlay** to extend Left and Right Side Panels to the outer surfaces of the cabinet's front and back, including any doors, panels, or finishes that may be present.
- Check **Extend to Bottom** to extend panels on the Left, Right, or Back Sides to the bottom of the cabinet, including the toe kick.

The Top Appliance/Fixture settings apply to a fixture inserted into a base cabinet’s countertop. These settings are not available in the Base Cabinet Defaults dialog. See “Built-In Sinks and Appliances” on page 462.

- Select a fixture **Symbol** from the drop-down list, or choose “None”. If a fixture is inserted into the countertop, its name will be listed. If no top fixture is present, you can select “Library” to select a fixture symbol from the Library.
- Specify the **Front Offset**, which is the distance from the front of the fixture to the front of the cabinet box. A positive value offsets the fixture towards the back of the cabinet while a negative value moves it forward.
- Specify the **Center Side Offset**, which is the distance between the fixture’s center and that of the cabinet. A positive value offsets the fixture to the right while a negative value offsets it to the left.
- Check **Reverse** to reverse the selected fixture from left to right: for example, to move a cooktop’s controls from the left side to the right. See “Inserted Objects” on page 705.

A preview of the selected cabinet displays on the right side of the panel. To see the cabinet’s pilasters and feet, you may want to zoom in. See “Dialog Preview Panes” on page 32.

Moldings Panel

The settings on the MOLDINGS panel allow you to assign one or more horizontal moldings around the selected cabinet. See “Editing Cabinet Styles” on page 471.

For information about the settings here, see “Moldings Panel” on page 680.

Layer Panel

The LAYER panel is found in the specification dialogs for many different objects. For more information, see “Layer Panel” on page 149.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected cabinet in 3D views. For more information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the MATERIALS panel affect the appearance of the selected cabinet in 3D views. For information about these settings, see “Materials Panel” on page 761.

Some material options may be disabled if the selected cabinet is a manufacturer symbol.

Label Panel

Cabinet labels display in plan and cross section/elevation views when the “Cabinets, Labels” layer is turned on and use the Text Style assigned to that layer. See “Cabinet Labels” on page 468.

For more information about the settings on this panel, see “Label Panel” on page 516.

Note: If you choose Use Callout for Label in the Cabinet Schedule Specification dialog, the settings here are overridden and the schedule label is used instead.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected cabinet is included in. See “Schedule Panel” on page 519.

Cabinet Shelf Specification Dialog

In the **Base Cabinet**, **Wall Cabinet**, or **Full Height Cabinet Specification** dialog, select a door or opening face item and click the **Specify Shelves** button to open the **Cabinet Shelf Specification** dialog. See “Front/Sides/Back Panel” on page 478.

1. **Shelf Management** - Specify how shelves in the selected face item are created.
 - By default, cabinet doors and openings receive **Automatic** cabinet shelves. The number of shelves, shelf type, thickness, spacing, and depth display below.
 - Select the **Manual** radio button to specify the shelving for the selected door or opening. If the cabinet is resized after shelving has been manually edited, the specifications are maintained, but all shelves may not display in all situations.
2. **Automatic Settings** display here for reference only.
3. **Manual Shelf Specification** settings are available when **Manual** is selected, above.
 - Specify the total **Number of Shelves** in the selected door or opening front item.
 - Select a **Shelf** from the drop-down list to customize its settings. To edit all shelves at once, choose “All Shelves”.

 Note: If “All Shelves” is selected after changes are made to an individual shelf, “No Change” may display in the settings that follow.

 - Click the **Library** button to select a shelf, storage, or organization object from the Library Browser. See “Inserted Objects” on page 705.
 - Click the **Clear** button to restore the default shelf style.
 - Check **Rollout**, then specify the amount that the shelf rolls out when set to Show Open. Only available for Standard cabinets. See “Rollout Shelves and Storage” on page 467.
• Specify the **Thickness/Height** of the shelves or storage item.

• Specify the **Spacing From Previous**, which is the distance from the bottom of the selected shelf to the top of the shelf below it.

• If the **Spacing From Previous** value is changed, **Equal Spacing** will become unchecked. Check this box to produce evenly spaced shelves within the selected cabinet front item.

• Specify the selected shelf’s **Depth**: choose **Full**, **Half**, or **Specify** a custom value in inches (mm).

The preview shows shelf numbers and spacing. Shelf thickness and depth are also represented. Press the Tab key to update the preview as changes are made.

Shelf/Partition Specification Dialog

Select a shelf or partition and click the **Open Object** edit button to open the **Shelf Specification** or **Partition Specification** dialog.

The options in these specification dialogs are similar to the corresponding defaults dialogs. See “Cabinet Defaults” on page 459.

General Panel

1. **Size/Position** - Specify the **Height**, **Width**, and **Depth** of the shelf or partition.

 • Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.

 • Specify the **to Top** distance, measured from the Elevation Reference to the top of the shelf or partition.

 • Specify the **to Bottom** distance, measured from the Elevation Reference to the bottom of the shelf or partition.

2. A preview of the selected object displays on the right side of the panel. See “Dialog Preview Panes” on page 32.

Moldings Panel

The settings on the **MOLDINGS** panel allow you to apply molding to the selected object. For information about these settings, see “Moldings Panel” on page 484.

Layer Panel

For information about the settings on this panel, see “Layer Panel” on page 149.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected object in 3D views. For information about these settings, see “Materials Panel” on page 761.

Label Panel

Shelf and Partition labels display in plan and cross section/elevation views when the “Cabinets, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Labels for Shelves and
Partitions are blank, but you can specify custom labels. See “Cabinet Labels” on page 468.

For more information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected cabinet is included in. See “Schedule Panel” on page 519.

Custom Countertop Specification Dialog

Select a custom countertop and click the Open Object edit button to open the Custom Countertop Specification dialog.

General Panel

- **Options**
 - Check **Hole in Countertop** to convert the selected countertop, which must be contained within another single Custom Countertop, into a countertop hole.
 - Check **No Molding On Selected Edge** to turn off the display of molding on the selected edge. Only has an effect when a molding is specified for the countertop on the MOLDINGS panel of this dialog.
 - Check **Display Molding Edges** to display two edge lines instead of one, indicating the width of any molding applied to the countertop. Only has an effect when a molding is specified for the countertop.

- **Countertop Thickness**
 - **Set Thickness From Cabinet**
 - **Thickness**
 - **Thickness:** 1 1/2"

- **Countertop Height**
 - **Set Height From Cabinet**
 - **Elevation Reference:** From Finished Floor
 - **Finished Floor to Top:** 29 1/2"
 - **Finished Floor to Bottom:** 24 1/2"

- **Waterfall Edge**
 - **Add Waterfall to Selected Edge**
 - **More All Waterfall Edges**
 - **Automatic Height**
 - **Height From Counter Bottom:** 14 1/2"
from the **Base Cabinet Defaults** dialog if no cabinet is present below.

3 Countertop Height -

- Uncheck **Set Height from Cabinet**, then specify the height of the selected Custom Countertop using the settings below. When this is checked, Countertop height is determined by the cabinet below or by the default base cabinet counter thickness if no cabinet is present below.
- Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.
- Specify the height to **Top**, which is measured from the selected Elevation Reference to the top of the countertop.
- Specify the height to **Bottom**, which is measured from the selected Elevation Reference to the bottom of the countertop.

The **Waterfall Edge** settings control whether the selected countertop edge has a waterfall, as well as its attributes. See “Waterfall Countertops” on page 466.

- Check **Add Waterfall to Selected Edge** to add a vertical extension to the selected edge of the countertop.
- Uncheck **Mitre All Waterfall Edges** to create butt joints with seams that may be visible in some views where the waterfall meets the horizontal countertop and any adjacent waterfall edges. When checked, these joints are mitered so the only visible seams are located at the corners.
- When **Automatic Height** is checked, the waterfall builds down to the floor height countertop’s room, or the default floor height for the current floor if it is not in a room. Uncheck this to specify the waterfall’s vertical height, below.
- Specify the **Height from Counter Bottom**, measured from the bottom of the horizontal countertop to the bottom of the waterfall.

A preview of the selected cabinet displays on the right side of the panel. See “Dialog Preview Panes” on page 32.

Polyline Panel

The **POLYLINE** panel states the length of the countertop’s **Perimeter**, its **Area**, and its **Volume**. See “Polyline Panel” on page 245.

If the selected countertop has any Holes, they will be subtracted from the **Area** and **Volume** values. See “Custom Counter Holes” on page 462.

Selected Line/Arc Panel

The **SELECTED LINE** panel is available when the selected edge is a line as opposed to an arc. For more information, see “Line Panel” on page 234.

The **SELECTED ARC** panel is available when the selected edge has been converted to an arc. For more information, see “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Moldings Panel

The settings on the **MOLDINGS** panel allow you to apply an edge profile to the selected countertop. For information about these settings, see “Moldings Panel” on page 484.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel affect the appearance of the selected countertop in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected countertop in 3D views. For information about these settings, see “Materials Panel” on page 761.

Label Panel

Custom Countertop labels display in plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for countertops is blank, but you can specify a custom label. See “Label Panel” on page 516.
Cabinet Schedules

The Cabinet Schedule tool allows you to produce customizable cabinet schedules as well as cabinet labels that display schedule numbers. See “Schedules and Object Labels” on page 505.

In addition to cabinets, Soffits, Shelves, Partitions, and manually-placed Fillers can also be listed in schedules. Automatically-generated fillers, however, are not. See “Columns to Include” on page 509.

Architectural Blocks can also be included in cabinet schedules when “Other” Objects to Include is specified. In the Architectural Block Specification dialog, check Treat as One Object and choose to Include in Cabinet Schedules. See “General Panel” on page 727.

By default, some cabinets with built-in appliances will not be included in a schedule. Examples include base cabinets with dishwashers or built-in ranges. You can, however, specify that the cabinet be included in one or more schedule categories if you wish.

Built-in appliances can also be listed in customizable fixture schedules. Note that free-standing appliances can display schedule callout labels, but built-in appliances cannot because they share their label with the cabinet.
Chapter 18: Electrical

The electrical plan shows the location of all electrical objects such as lights, switches, outlets, smoke detectors and vent fans. Basic wiring diagrams show which objects share circuits and the locations of the controlling switches.

Electrical objects can be displayed in 2D and 3D views. Some electrical light fixtures also add light sources to 3D and ray trace views. See “Lighting” on page 817.

Usually, the electrical plan is one of the last additions to a plan since the position of most electrical objects is determined by the location of walls, cabinets and other objects.

⚠️ Building requirements vary throughout the country and around the world. It is your responsibility to comply with local codes.

Electrical Defaults

Default Settings for electrical objects control which symbols are placed in the current plan when the Electrical Tools are used. It can be accessed by selecting Edit > Default Settings or by double-clicking the Electrical Tools, 110V, 220V, Light, or Switch toolbar button. See “Default Settings” on page 65.

Default heights and other attributes of individual objects can be overridden in the Electrical Service Specification dialog. See “Electrical Service Specification Dialog” on page 498.

Chapter Contents

• Electrical Defaults
• The Electrical Tools
• Placing Electrical Objects
• Auto Place Outlets
• Creating Wiring Schematics
• Electrical Library Content
• Displaying Electrical Objects
• Editing Electrical Objects
• Electrical Service Specification Dialog
• Rope Light Specification Dialog
• Electrical Schedules
The Default Library Objects are the objects created using the Electrical Tools. Select an item in the scrollable list to see and edit its settings.

- The name of the object shown in the preview image displays here.
- Select an item in the Default Library Objects list and click the Library button to select a new default object from the library. See “Select Library Object Dialog” on page 705.
- Click the Edit button to open the specification dialog for the selected object. Any changes you make in the specification dialog are saved with the plan as long as the selected object is not replaced. See “Electrical Service Specification Dialog” on page 498.

Default Heights - Specify the heights at which electrical outlets and switches are initially placed when the 110V, 220V, or Switch tools are used.

- Check Use Default Heights to apply the default heights specified here to electrical objects placed in plan view using the Electrical Tools. When this is unchecked, electrical objects use the height saved with their symbol. See “Placing Library Objects” on page 704.
- Outlet - Specify the default height for outlets, and phone, cable and tv jacks.

- Switch - Specify the default height for switches, doorbells and thermostats.
- Above Base Cabinet - Specify the default height for switches and outlets placed above base cabinets in plan view, as measured from the countertop. See “Adjusting Electrical Object Heights” on page 497.
- On Cabinet Side - Specify the default height for switches and outlets placed on the sides of cabinet boxes, measured relative to the side of the cabinet in question. See “Placing Electrical Objects” on page 494.

A preview of the selected object displays here. See “Dialog Preview Panes” on page 32.

Rope Light Defaults

Select Edit > Default Settings, then click the arrow beside “Electrical”. Select “Rope Light” and click the Edit button to open the Rope Light Defaults dialog. The settings in this dialog are also found in the Rope Light Specification dialog. See “Rope Light Specification Dialog” on page 502.

Set as Default

The Set as Default edit tool can be used to modify the current plan’s Electrical Defaults. Select an electrical symbol and click the Set as Default edit button. See “Set as Default” on page 67.
The default electrical object that is updated depends on the type of electrical object selected as well as its placement. An Outlet, for example, might be 110V or 220V, interior or exterior; wall or floor mounted, and/or GFCI.

The Electrical Tools

Select Build> Electrical to access the Electrical Tools.

Most electrical objects are easily created with a single click in plan and camera views. See “Click-to-Create” on page 134.

Some electrical objects are designed to be inserted into walls, floors, ceilings or cabinets, although some can also be free-standing. See “Placing Electrical Objects” on page 494.

The Electrical Tools place objects according to the settings in the Electrical Defaults dialog.

Different outlet, switch, and light fixture symbols can be placed in different room types. To take advantage of the program’s capabilities, define room types properly before placing electrical objects. See “Room Types and Functions” on page 315.

Once created, outlets, switches, and lights can be selected and edited. See “Editing Electrical Objects” on page 497.

Outlets

Select Build> Electrical> 110V Outlet to place 110 volt duplex outlets on walls, the on floor, and on the sides of cabinets and soffits. Select Build> Electrical> 220V Outlet to place 220 volt outlets.

The type and height of an outlet will vary depending on where it is placed. For example:

- In rooms defined as Bath or Master Bath, Ground Fault Circuit Interrupt (GFCI) outlets are placed.
- An outlet placed at the back of a base cabinet in plan view is positioned above the counter.
- An outlet placed at the back of a base cabinet containing a kitchen sink is placed at the standard 11 1/2" (300 mm) above the floor.
- An outlet placed on the side of a cabinet or soffit will be positioned 32" (800 mm) up from that object’s bottom.
- An outlet placed outside the building or in an exterior area such as a deck or porch will be weatherproof.

Light Fixtures

Select Build> Electrical> Light to place light fixtures on walls, the ceiling, or on soffits. All light fixtures placed in a plan can also serve as light sources in most 3D and ray trace views. To place a light fixture using the Light tool:

- Click near a wall or the side of a soffit to place a wall-mounted fixture at that location.
- Click away from a wall to place a ceiling mounted light.
- Click on the center of a soffit to place a ceiling mounted light on the soffit’s bottom surface.
- Click outside of a room and away from a wall to place a path light.
- Some light symbols from the library can be mounted under wall cabinets, as well.

The rendering characteristics of individual lights that control how they appear in Render and ray trace views can be specified on the LIGHT DATA panel of the Electrical Service Specification dialog. See “Light Data Panel” on page 499.

Rope Lights

Select Build> Electrical> Rope Light, then click and drag to draw a rope light path with regularly-spaced light sources along its length. Rope Lights are a type of Molding Polyline so their rope profile can be customized. See “Rope Light Specification Dialog” on page 502.

Switches

Select Build> Electrical> Switch to place electrical switches on walls or on the sides of cabinets or soffits. Like outlets, the height of switches is measured from the floor to the center of the object.

- A switch placed on the side of a cabinet or soffit will be positioned 32" (800 mm) up from that object’s bottom.
• Switches placed outside the building or in an exterior area such as a deck or porch will be weatherproof.

If you connect two or more switches in a circuit, they update to 3-way or 4-way switches automatically.

Switches placed from the Electrical Library do not automatically update by default, but can be specified to do so. See “Electrical Service Specification Dialog” on page 498.

Auto Place Outlets

Select Build> Electrical> Auto Place Outlets and click in a room tool to place outlets at regular intervals around the entire room. See “Auto Place Outlets” on page 495.

Placing Electrical Objects

Electrical switches, outlets, lights, and other symbols can be created with a single click in any view. They can also be placed from the Library. See “Click-to-Create” on page 134.

When the Outlet, Switch, and Light tools are used, the type and height of the object that is created will vary depending on where it is placed. As you move your mouse pointer around the view, an object preview will display near the pointer whenever it is over a location where an object can be placed.

Specific details for each tool are noted in “The Electrical Tools” on page 493.

The electrical objects in the Library are typically designed for a specific use and can only be placed on a wall, on the floor, or on the ceiling. Some are instead free-standing and are designed to be placed on a table or the floor. See “Placing Library Objects” on page 704.

Wall mounted outlets, switches, and Library symbols can also be placed on the sides of cabinets and soffits. They will snap to the outside of the cabinet box or to the outside of Side or Back Panels, but will ignore doors and drawers.

When a light fixture is created using any method, including copying and pasting, it will always be turned On. This is the case even if the default symbol is turned Off. See “Light Data Panel” on page 499.

Connect Electrical

Select Build> Electrical> Connect Electrical, then click and drag to draw splines that snap to electrical switches, outlets, and lights to illustrate wiring circuits. See “Creating Wiring Schematics” on page 495.

Lighting and Electrical Library Catalogs

A selection of free-standing and ceiling-, wall- and cabinet-mounted light fixtures is available in the Library Browser at Chief Architect Core Catalogs> Architectural> Lighting.

Special use outlets, switches, jacks and numerous other electrical items can be found at Chief Architect Core Catalogs> Mechanical, Electrical, Plumbing> Electrical. See “The Library” on page 691.

Electrical Object Heights

When a wall-mounted electrical object is placed in plan view using one of the Electrical Tools, its initial height off the floor is based on settings in the Electrical Defaults dialog. See “Electrical Defaults” on page 491.

Wall mounted electrical symbols placed directly from the Library derive their initial heights from specification settings saved with each object. See “Electrical Service Specification Dialog” on page 498.

Similarly, cabinet-mounted electrical objects are placed using height information set in either the Electrical Defaults dialog or the symbol’s specification dialog. If the default height is higher or lower than the cabinet it’s being placed on, the electrical object will be placed along the top or bottom edge of the cabinet box.

In 3D views, an electrical object placed on a wall in a 3D view will snap to its default height provided that the mouse pointer is near that height when you click. If you move the mouse pointer away from the default height, the object will be positioned wherever you click on the wall, regardless of the height at that point.
Auto Place Outlets

Select **Build > Electrical > Auto Place Outlets** and click in a room to place 110 volt outlets on the walls around the entire room, spaced so that no wall position is farther than six feet (1800mm) from the nearest outlet. 110 or 220 volt outlets are also placed behind large appliances. In addition, a light is placed above each sink.

Outlets and sink lights are placed based on settings in the **Electrical Defaults** dialog. See “Electrical Defaults” on page 491.

It is important that a room’s Type be defined before **Auto Place Outlets** is used so that outlets are placed appropriately. For example, GFCI (Ground Fault Circuit Interrupter) outlets are placed over cabinets in Kitchen, Bath and Master Bath rooms. See “Room Types and Functions” on page 315.

Auto Place Outlets does not work in rooms assigned an exterior room type such as Deck. To place outlets in an exterior room, place them from the Electrical Library or use the **110V Outlet** tool.

Railings and invisible walls are ignored by **Auto Place Outlets**. If it is used in a room defined by railings or invisible walls, outlets are automatically placed in any adjacent rooms on the other side of these wall types. See “Room Definition” on page 313.

Once placed, any outlet can be moved, edited, or deleted. See “Editing Electrical Objects” on page 497.

Creating Wiring Schematics

Electrical schematics can be created in two ways.

Using the **Connect Electrical** tool is quick and easy, but if you need detailed schematics, you can create your own wiring diagrams using the CAD tools. See “CAD Objects” on page 225.

Connect Electrical

Select **Build > Electrical > Connect Electrical**, then click and drag to draw splines that snap to electrical switches, outlets, and lights to illustrate wiring circuits. See “Splines” on page 249.

To create a new circuit or add to an existing circuit, click on a switch, outlet, or light while the **Connect Electrical** tool is active, drag to the next object and release. You can also draw electrical circuits using the **Alternate** continuous drawing mode. See “Alternate” on page 164.

When a Connect Electrical spline is first drawn, it looks like an arc but actually consists of two segments that are defined by vertex points. When selected, its edit handles display at each of these vertices. If you click and drag one of these edit handles, the length, angle, and curvature of the spline will change but the other vertices will not move.

Three- and Four-Way Switches

Connect Electrical splines cannot be snapped to one another: they can only snap to electrical objects. Once drawn, though, additional vertices can be added and used to form complex curves. See “Editing Spline-Based Objects” on page 186.

To remove a connection from a circuit, simply select and **Delete** it. If you remove an electrical object from a circuit, any Connect Electrical splines snapped to it will also be deleted. See “Deleting Objects” on page 220.

Multiple switches can control an object or group of objects.
• Two switches controlling the same objects are referred to as three-way switches.
• Three switches controlling the same objects are called four-way switches.

Electrical Library Content

Select View> Library Browser to access a variety of electrical symbols. See “The Library” on page 691.

Browse for electrical objects such as bath vent fans, an electrical panel, fluorescent lights, chandeliers, a smoke detector, thermostat, and more. Select a symbol, then click in your plan to place it on a wall, floor, or ceiling.

You can specify which electrical object in the library is used by each of the Electrical Tools. See “Electrical Defaults” on page 491.

Displaying Electrical Objects

The display of electrical objects and connections is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

When displayed in 3D views, light fixtures act as sources of light that help illuminate the 3D model. See “Lighting” on page 817.

In Plan View

In plan view, electrical objects are represented by commonly used CAD symbols that represent the type of object rather than its appearance in 3D. You can specify a different symbol for a selected electrical object in its Symbol Specification dialog if you wish. See “2D Block Panel” on page 716.

Like other objects, electrical objects are placed in Drawing Groups that affect whether they display in front of or behind other objects in plan view. You can modify a selected object’s place in the drawing order by clicking the View Drawing Group Edit Tools edit button. See “Drawing Group Edit Tools” on page 153.

By default, electrical symbols are placed on the “Electrical” layer. You can, however:

• Specify a different default layer for each type of object placed using the Electrical Tools by clicking the Edit button in the Electrical Defaults dialog. See “Electrical Defaults” on page 491.

In plan view, a three- or four-way switch’s “way” number will automatically display in its 2D symbol.

You can also assign electrical objects from the library to toolbar buttons for easy access and placement to frequently-used library objects. See “Place Library Object Button” on page 706.

Adding Electrical Content

Any electrical symbol placed into a plan can be customized and added to the User Catalog in the Library Browser. See “Add to Library” on page 700.

You can also create electrical symbols and save them in the User Catalog. See “Custom Symbols” on page 713.

• Specify a different layer for an individual object after it has been placed. See “Layer Panel” on page 149.

Connect Electrical splines are drawn on the “Electrical, Connections” layer by default. While the default layer for these objects cannot be changed, you can specify a different layer for a Connect Electrical spline after it has been drawn. See “Line Style Panel” on page 235.

Electrical Labels

Electrical labels display in plan and cross section/elevation views when the “Electrical, Labels” layer is turned on and use the Text Style assigned to their layer. See “Object Labels” on page 515.

Customized labels using text and Text Macros as well as label position and orientation can be specified in the Electrical Service Specification dialog. See “Text Macros” on page 400.

Electrical objects can display callout labels as specified in the Electrical Schedule Specification dialog. See “Label Panel” on page 516.

Electrical labels have their own edit handles and can be moved and rotated when the electrical object is selected.
In the Materials List

Electrical objects, including outlets, switches, lights, and symbols from the library such as jacks and fans, are listed under the Electrical Category in the Materials List. Connect Electrical splines are 2D objects only, however, and are not calculated. See “Materials Lists” on page 943.

As with other objects, there are a number of ways to control how, or whether, electrical objects are included in the Materials List. See “Organizing Materials Lists” on page 947.

You can add and edit information about an electrical object’s accessories and sub-accessories in specification dialog. See “Components Panel” on page 959.

Editing Electrical Objects

Electrical objects can be selected as a group and individually in 2D and 3D and edited using the edit handles, the edit toolbar and their specification dialog. See “Electrical Service Specification Dialog” on page 498.

Light fixtures and Added Lights can be group-selected, but their light data cannot be edited unless each has the same number of light sources. See “Lighting” on page 817.

Lights can also be edited using the Adjust Lights dialog. See “Adjust Lights Dialog” on page 820.

Moving Electrical Objects Using Dimensions

Electrical objects can be moved precisely using dimensions. See “Moving Objects Using Dimensions” on page 365.

By default, electrical objects are not located by dimension lines as the lines are drawn. Once created, though, you can edit a dimension line’s extensions to locate the center of any electrical object. See “Editing Extension Lines” on page 363.

In order to locate electrical objects by a dimension line as it is being drawn, first check the box beside Dimensions on the LOCATE OBJECTS panel of the Dimension Defaults dialog. See “Locate Objects Panel” on page 346.

Using the Edit Handles

The edit handles for electrical objects vary depending on the location of the object.

- Wall mounted electrical objects cannot be rotated, so only the Move edit handle displays.
- Electrical objects placed on floors and ceilings can be rotated.
- In 3D views, some ceiling mounted and free-standing light fixtures can be resized.
- Rope Lights are edited like open polylines. See “Editing Open Polyline-Based Objects” on page 177.
- Electrical connections are edited like splines. See “Editing Spline-Based Objects” on page 186.

Using the Edit Tools

A selected electrical symbol can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Using the Edit Handles

The edit handles for electrical objects vary depending on the location of the object.

- Wall mounted electrical objects cannot be rotated, so only the Move edit handle displays.
- Electrical objects placed on floors and ceilings can be rotated.
- In 3D views, some ceiling mounted and free-standing light fixtures can be resized.
- Rope Lights are edited like open polylines. See “Editing Open Polyline-Based Objects” on page 177.
- Electrical connections are edited like splines. See “Editing Spline-Based Objects” on page 186.

In the Specification Dialog

Electrical objects can be edited in the Electrical Service Specification dialog. See “Electrical Service Specification Dialog” on page 498.

Rope Lights are a type of Molding Polyline with options for controlling the rope profile, light spacing, and more. See “Rope Light Specification Dialog” on page 502.

Adjusting Electrical Object Heights

When a wall- or cabinet-mounted electrical object is placed, its initial height is based on settings in the Electrical Defaults dialog. See “Placing Electrical Objects” on page 494.

Once placed, a wall-mounted electrical object’s height can be edited in three ways:
• Specify the height in the **Electrical Service Specification** dialog. See “General Panel” on page 498.

• In 3D views, the position of an electrical object can be adjusted using its edit handles.

• In any view, use the **Transform/Replicate Object** tool. See “Transform/Replicate Object Dialog” on page 208.

Deleting Electrical Objects

An electrical object can be deleted by selecting it and clicking the **Delete** edit button or by pressing the Delete key.

All electrical objects in a room, on a floor, or in the entire plan can also be deleted as a group using the **Delete Objects** dialog. See “Deleting Objects” on page 220.

Electrical Service Specification Dialog

Select one or more electrical objects and click the **Open Object** edit button to open the **Electrical Service Specification** dialog. The settings in this dialog vary, depending on the type of object(s) you select. This dialog can also be accessed by clicking the **Edit** button in the **Electrical Defaults** dialog. See “Electrical Defaults” on page 491.

You can also open the specification dialog for the electrical object(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

The **Electrical Service Specification** dialog has eight panels:

- General Panel
- Light Data Panel
- Layer Panel
- Materials Panel
- Label Panel
- Components Panel
- Object Information Panel
- Schedule Panel

General Panel

The items on this panel vary, depending on the type of electrical object selected.
Specify the **Position** of the selected electrical object. The options available depend on the type of object selected.

- Specify the **Offset From Ceiling** of a ceiling outlet or ceiling mounted light. If the light is mounted to a cabinet, this value is the offset from the cabinet.
- Specify the **Height to Center** of a switch, wall outlet or wall light.
- Specify the **Offset From Floor** of a floor outlet or floor lamp.
- Specify the **Distance From Wall** of a wall mounted symbol. A negative value will recess the symbol into the wall and may prevent it from being seen in 3D.

Specify the **Size** of the selected electrical symbol.

- Specify the **Height**, **Width** and **Depth** of the selected symbol.
- Uncheck **Retain Aspect Ratio** if you would like to modify one of the above values without affecting the others. Doing so may cause the symbol’s shape to become distorted. This check box does not affect editing performed outside of this dialog and is an action rather than a state: the next time you open this dialog, it will be checked.

Click the **Reset** button to restore the electrical symbol’s original size.

Options -

- Check **Reverse Symbol** to reverse the object’s appearance so that features on its left are located on its right and vice versa. Does not affect symmetrical symbols.
- Check **Automatically Change Switch Type When Wiring** for a selected switch to become a three- or four-way switch if your wiring plan uses it as such. This setting is not available when the dialog is accessed via the Electrical Defaults dialog. See “Connect Electrical” on page 495.

Switches placed from the toolbar use this option by default; switches placed from the library do not.

- Check **Include in Schedule** to include the selected light fixture in electrical schedules. See “Schedules and Object Labels” on page 505.

Any **Copyright** information associated with the selected symbol will be stated here.

A preview of the selected object displays here. See “Dialog Preview Panes” on page 32.

Light Data Panel

The **Light Data** panel is available when the selected electrical object is a light fixture. The available options vary depending on the type of light selected. If multiple light fixtures with different numbers of light sources are selected, the settings on this panel are not available.

The settings on this panel are similar to those on the same panel of the **Light Specification** dialog. See “Light Specification Dialog” on page 822.
Each fixture can have multiple Light Sources, listed here. Not available for Added Lights. See “Lighting” on page 817.

- Select a Light Source assigned to the selected light fixture from the drop-down list. The selected light source can be edited using the settings on this panel.
- Click Add Light or Delete Light to add or delete light sources from the list. If the selected fixture has only one light source, Delete Light will not be available.

Specify the Light Characteristics of the currently selected Light Source.

- Select either Point Light or Spot Light as the light Source Type. The Type determines which options are enabled below. See “Light Types” on page 819.
- Select an Intensity from the drop-down list. The available options are described using lumens and correspond to commonly used light bulb wattages. You can also use the text box or spin controls to make fine adjustments to the Intensity value. When a non-standard value is specified, the Intensity is described as “Custom Lumens”.
- Click the Color bar to define the color of the selected light source. Colored lights alter the appearance of textures and can be used to achieve special effects. See “Color Chooser/Select Color Dialog” on page 160.

The Angle and Drop Off Rate settings below are only available for Spot Lights.

- The Tilt Angle controls the angle of the illumination with respect to the horizon. A value of -90° points the light straight down and a value of 90° points it straight up. 0° is parallel to the horizon.
- The Direction Angle defines the direction of the illumination relative to the ground. 0° is measured horizontally pointing to the right. Positive values rotate in a counter-clockwise direction from there. Enter a value up to 360°. If you enter a negative value, the program adds 360° to it when you click OK or press the Tab key.

The default color of light is pure white, which has the least affect on the appearance of material colors and textures.
• The **Cut Off Angle** controls the angle of the cone of illumination for Spot Lights only. A cone angle of 180° creates a spot light that shines in a half sphere on one side of the light source. A small cone angle, for example 10°, creates a very narrow cone of light.

• The **Drop Off Rate** affects how fast a Spot Light’s intensity drops off from the center of the cone to the outside edge.

A value of 0 produces a cone of light with the same intensity from the center to the outside edge and a sharp distinction between lit areas within the cone and unlit areas outside of it. As this value is increased, the light intensity decreases closer to the edge of the cone and the distinction between lit and unlit areas becomes softer. Only available for Spot Lights.

3 Check **Soft Shadows (Ray Tracing)** to have the selected Point Light source cast soft shadows in Ray Trace views. Not active for Spot Light sources.

• Specify the **Light Diameter**, which is how big the source of illumination appears in Ray Trace views.

4 The **Offset** settings control the location of the selected Light Source relative to the fixture.

• **From Base** controls how far the light source is from the fixture base. The fixture base is determined by the surface that it is attached to (i.e. wall, floor, or ceiling).

• **X Position** and **Y Position** allow you to position the light source relative to the center of the fixture, along the floor/ceiling.

5 Additional **Options** that affect how the selected light source behaves are available.

• Select **Use in Camera View** to turn the selected light source on in regular 3D views only.

• Select **Use in Ray Tracing** to turn the selected light source on in ray trace views only.

• Select **Use in Both** to turn the selected light source on in both camera and ray trace views.

6 When multiple lights are selected, and they are set to be used in different types of views, **No Change** will be available. Leave this option selected unless you want the lights to all be used in the same types of views.

• The **On** check box’s label is followed by the name of a Light Set because each light source’s On status is saved on a per Light Set basis rather than with the light. When this dialog is opened in plan view, the light’s status in the Default Light Set will be used. If it is opened in a camera view, its status in the Light Set that is active that view will be used. See “Light Sets” on page 820.

• **Casts Shadows** controls whether or not the light source casts shadows in camera and ray trace views. See “Shadows” on page 815.

Shadow calculations can slow rendering speed significantly; however, when ray tracing, it is recommended that this box be checked.

• Check **Show Position in Camera View** to indicate the position of a selected Point or Spot Light source in the preview pane and in all 3D views aside from Line Drawing renderings when it is turned On. This tool can be used to determine if your light source is positioned correctly. See “In 3D Views” on page 819.

A preview of the selected object displays here. The selected light source’s Position in Camera View will display in all views except Plan View if the light source is On. See “Dialog Preview Panes” on page 32.

Layer Panel

The Layer panel is found in the specification dialogs for a variety of objects, including electrical objects. For more information, see “Layer Panel” on page 149.

Materials Panel

The Materials panel is found in the specification dialogs for a variety of objects. For more information, see “Materials Panel” on page 761.

Label Panel

Labels for electrical fixtures display in plan view and cross section/elevation views when the “Electrical, Labels” layer is turned on and use the Text Style assigned to that layer. See “Electrical Labels” on page 496.
Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Rope Light Specification Dialog

Select a Rope Light and click the Open Object edit button to open the Rope Light Specification dialog.

The settings in this dialog are also found in the Rope Light Defaults dialog. See “Electrical Defaults” on page 491.

General Panel

1. **Elevation** -
 - Select the **Elevation Reference** from the dropdown list. This determines where the next setting is measured from, and also affects its setting label.
 - Specify the **Height** of the rope light, measured from the Elevation Reference to the top of the rope profile.

2. Specify the **Distance Between Lights**, measured from the centers of the light sources.

3. **Plan View Display** -
 - Check **Show Lights** to represent the light sources as circles inside of the rope path. When unchecked, only the path is shown.
 - Specify the **Light Display Size**, which is the diameter of the circles representing the light sources in plan view.

4. A preview of the selected rope light displays here. The selected light source’s Position in Camera View will display in all views but Plan View if the light source is On. See “Dialog Preview Panes” on page 32.

Light Data Panel

The settings on the LIGHT DATA panel are also found on the same panel of the Electrical Service Specification dialog. See “Light Data Panel” on page 499.
Polyline Panel
The POLYLINE panel states the **Length** of an open polyline, and the **Perimeter** and **Area** of a closed polyline. See “Polyline Panel” on page 245.

Selected Line/Arc Panel
The SELECTED LINE panel is available when the selected segment of the Rope Molding polyline is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected segment of the polyline has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Moldings Panel
The MOLDINGS panel is found in dialogs throughout the program. Here, its settings allow you to specify a rope profile. See “Moldings Panel” on page 680.

Layer Panel
The LAYER panel is found in the specification dialogs for a variety of objects, including electrical objects. For more information, see “Layer Panel” on page 149.

Materials Panel
The MATERIALS panel is found in the specification dialogs for a variety of objects. For more information, see “Materials Panel” on page 761.

Label Panel
Labels for electrical fixtures display in plan view and cross section/elevation views when the “Electrical, Labels” layer is turned on and use the Text Style assigned to that layer. See “Electrical Labels” on page 496.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel
The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel
The information entered on the OBJECT INFORMATION panel can be used in Electrical Schedules and the materials list. See “Object Information Panel” on page 519.

Schedule Panel
The settings on the SCHEDULE panel determine which schedule categories the selected rope light is included in. See “Schedule Panel” on page 519.

Electrical Schedules
The Electrical Schedule tool allows you to produce customizable electrical schedules as well as electrical labels that display schedule numbers. See “The Schedule Tools” on page 506.

To create an electrical legend, you can create an Electrical Schedule, customize it to include the 2D Symbol exclude most other columns. See “General Panel” on page 512.
Chapter 19: Schedules and Object Labels

A schedule is similar to a simple Text object with grid lines separating rows and columns, but are dynamically linked to objects in your plan and automatically update whenever an object is created, deleted, moved, or altered.

Schedules are available for doors, windows, cabinets, fixtures, framing objects, furniture, electrical items, plants, and the contents of rooms. You can also create custom schedules with a combination of these categories as well as create custom categories. Each schedule can contain information for one or all floors of your plan.

Schedules are highly customizable, so you should check each schedule that you create to be sure it presents the information that you want it to.

A variety of objects in Chief Architect have labels that display information about them in plan and cross section/elevation views. Some of those objects also have schedules associated with them and may display schedule callout labels.

Schedule Defaults

The initial settings for each type of schedule can be set in its Schedule Defaults dialog. Default Settings are accessed by selecting Edit> Default Settings. Click the “+” next to Schedules to display the schedule sub-headings. Select a subheading and click the Edit button to open the Schedule Defaults dialog associated with your selection. See “Default Settings” on page 65.

Schedule defaults can also be accessed by double-clicking the Schedule Tools parent button or any of the child tools.

When a schedule is created, its initial characteristics are determined by the settings in the Schedule Defaults dialog for its schedule type. Default settings for callout schedule labels are also set here.
Each **Schedule Defaults** dialog looks the same as its corresponding **Schedule Specification** dialog. See “Schedule Specification Dialog” on page 512.

The Schedule Tools

In plan view, a cross section/elevation view, or a CAD Detail window, select **Tools > Schedules** to access the Schedule Tools. Select a Schedule Tool, then click in the view to place a schedule of the selected type at that location. You can continue clicking to place additional copies of the schedule. See “Click-to-Create” on page 134.

While you can place schedules in plan view, you may find it helpful to place them in one or more CAD Detail windows instead. This allows you to send schedules to layout without including extra data or needing to resize the layout view box. See “CAD Details” on page 255.

All schedules present in a file are listed in the Project Browser. See “Project Browser” on page 56.

Plan Schedules

- Select **Tools > Schedules > Cabinet**, then click to create a Cabinet Schedule. See “Cabinet Schedules” on page 489.
- Select **Tools > Schedules > Door**, then click to create a Door Schedule. See “Door Schedules” on page 424.
- Select **Tools > Schedules > Electrical**, then click to create an Electrical Schedule. See “Electrical Schedules” on page 503.
- Select **Tools > Schedules > Fixture**, then click to create a Fixture Schedule. See “Fixture and Furnishing Schedules” on page 711.
- Select **Tools > Schedules > Framing**, then click to create a Framing Schedule. See “Framing Schedules” on page 653.
- Select **Tools > Schedules > Furniture**, then click to create a Furniture Schedule. See “Fixture and Furnishing Schedules” on page 711.
- Select **Tools > Schedules > Note**, then click to create a Note Schedule. See “Notes, Note Types, and Note Schedules” on page 395.

- Select **Tools > Schedules > Plant**, then click to create a Plant Schedule. See “Plant Schedules” on page 941.
- Select **Tools > Schedules > Room Finish**, then click to create Room Finish Schedule. See “Room Finish Schedules” on page 340.
- Select **Tools > Schedules > Wall**, then click to create Wall Schedule. See “Wall Schedules” on page 312.
- Select **Tools > Schedules > Window**, then click to create a Window Schedule. See “Window Schedules” on page 457.
- Select **Tools > Schedules > Custom**, then click to create a custom schedule that you can set up to meet your needs. See “Custom Schedule Categories” on page 507.

Room Schedules

Select a room and click the **Create Schedule from Room** edit button to create a schedule of that type showing only contents of the room. See “Create Schedule from Room” on page 506.

Custom Schedule Categories

Select **Tools > Schedules > Manage Custom Categories** to create, rename, and delete custom schedule categories in the current plan file. See “Schedule Categories” on page 507.

Layout Schedules

In addition to the Schedule Tools available in plan files, there are two that can be used in layout. See “Layout Page and Revision Tables” on page 981.

- Select **Tools > Layout > Layout Page Table**, then click to create a Layout Page Table.
- Select **Tools > Layout > Layout Revision Schedule**, then click to create a Layout Revision Schedule.

Create Schedule from Room

Select a room and click the **Create Schedule from Room** edit button to create a schedule showing only objects of a particular type in the room. You can also turn any schedule into a Room...
Schedule using the **Include Objects from Room** setting in the **Schedule Specification** dialog. See “General Panel” on page 512.

An object will be listed in a schedule if its center point is located inside of the room. All objects associated with a Distribution Path or Region will be listed in a schedule if the center point of the path or region is located inside of the room. If the center point of the path or region is not located in the room, none of its objects will be listed. See “Distributed Objects” on page 752.

Select a **Schedule Type**, then click OK and click in the drawing area to create a schedule of the selected type that lists objects located in the room that you selected.

Schedule Categories

Chief Architect has a set of system schedule categories that correspond to the types of objects that can be included in a schedule. Examples of these object types include:

- The object types created by the program’s Cabinet and Electrical Tools.
- The various Door and Window Types.
- Fixture and Furniture symbol Types.
- The various types of framing members.
- Wall Types
- Room Types
- Note Types
- Plants share a single system category.
- Architectural Blocks in legacy plans may be included in an “Other” category.

You can specify which of these categories is included in a given schedule in its specification dialog. See “General Panel” on page 512.

You can also assign any object that can be listed in a schedule to one or more of these categories. See “Schedule Panel” on page 519.

Custom Schedule Categories

When the system categories do not meet your needs, you can use Custom Schedule Categories to include an object or group of specific objects in the schedule(s) of your choice regardless of their actual object type. For example:

- To include a glass door along with windows in a glazing schedule.
- To include a dishwasher in a cabinet schedule.

To use a Custom Schedule Category, first create it; then assign one or more objects in your plan to that category; and finally, set one or more schedules to include that category.

To create and use a custom category

1. Select **Tools> Schedules> Manage Custom Schedule Categories**.

2. In the **Manage Custom Schedule Categories** dialog, click the **New** button and type a short, descriptive name for your new category.

3. Select an object that you would like to assign to your new custom category and click the **Open Object** edit button.

4. On the **SCHEDULE** panel of the object’s specification dialog, under the **Categories to Include** heading, check the box to the left of the new category’s name. See “Schedule Panel” on page 519.

5. Create a schedule and open its specification dialog. On the **GENERAL** panel, check the box to the left of the new category’s name. See “General Panel” on page 512.
6. When the custom category is for objects that insert into other objects, you may wish to specify a custom label in the containing object’s specification dialog.

Manage Custom Schedule Categories Dialog

To open the Manage Custom Schedule Categories dialog, select Tools > Schedules > Manage Custom Categories. You can also access this dialog via Default Settings: click the “+” next to “Schedules” to display the schedule sub-

Editing Schedules

Schedules can be edited using the edit handles, the edit toolbar buttons, or the Schedule Specification dialog.

Using the Edit Handles

A selected schedule has edit handles similar to those of a CAD box. See “Editing Box-Based Objects” on page 184.

In addition, schedules have edit handles that let you control the order of the rows and columns, as well as column width:

- **Resize Column** edit handles are located in the Title row, centered on the grid lines that divide the columns, and can be dragged left or right. If a column is resized sufficiently small, the text within will wrap to multiple rows.
- **Move Column** edit handles are located in the Heading row, centered in each cell, and can be dragged left or right.
- **Move Row** edit handles are located in the first column, centered in each cell, and can be dragged up or down. See “Editing Schedule Order” on page 509.

In the Specification Dialog

The appearance and other attributes of schedules can be modified in the Schedule Specification dialog. See “Schedule Specification Dialog” on page 512.

You can control how objects are listed by specifying which Columns to Include. For example, if you were to uncheck “Common Names” and “Scientific Names” in the Plant Schedule Specification dialog, and then check “Flower Color”, the resulting schedule would list all red flowers in one line item, regardless of their species. See “Columns to Include” on page 509.

Using the Edit Tools

A selected schedule or schedules can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Open Row Object(s)

Click the Open Row Object(s) edit button to open the specification dialog of the object or objects associated with the currently selected schedule row. See “Specification Dialogs” on page 32.

Depending on the objects associated with the row, some settings may be reported as “No Change”, and some may not be available to edit.

In some instances, this edit button may not be available: for example, if identical rooms on separate floors are associated with the same row of a Room Finish Schedule.
The Open Row Object(s) edit button is also available in the Materials List. See “Materials Lists” on page 943.

Converting Schedules to Text

Click the Schedule to Text edit button to convert the selected schedule to a tabbed text object. You can then edit the schedule as text.

When a schedule is converted to text, it no longer updates automatically. In addition, shaped labels displaying as specified in the schedule’s specification dialog will no longer be present.

Schedule Numbering

By default, schedule numbering is dependent on the order in which objects are placed in the plan, as well as the floor they are on.

- Any objects present in your plan before a schedule is created will be listed first in ascending alphanumeric order, according to their Label information.
- A new, unique objects placed in the plan after the schedule is created will be added to the bottom of the schedule in the order that they are placed, regardless of its Label information.

When an object is edited, its schedule number may or may not change:

- If an object with a Quantity of 1 in the schedule is edited, its position in the schedule will not change.
- If a group of objects listed on the same row in a schedule are edited simultaneously, their position will not change.
- If an object listed on the same row in a schedule with other similar objects is edited so that it is no longer similar enough to share the same row, it will move to the bottom of the schedule. See “Columns and Quantity” on page 510.

Editing Schedule Order

If a schedule’s order does not meet your needs, you can change it in either of two ways:

- Using the schedule’s Move Row edit handles. See “Using the Edit Handles” on page 508.
- Using an object’s Move Up in Schedule and Move Down in Schedule edit tools.

When an item in a schedule is moved to a different row, its schedule Number will change, as will that of any other item whose position is affected by that move.

When a given object is included in only one schedule, its position in that schedule can be modified using the Move Up in Schedule and Move Down in Schedule edit tools.

Renumber Schedule

To remove any gaps in numbering that might have been created when objects were edited or deleted, select the schedule and click the Renumber Schedule edit button.

Schedule Number Format

Schedule Number formatting includes a leading zero along with an optional prefix specified in the Schedule Specification dialog. See “Labels Panel” on page 515.

You can specify that an object’s Schedule Number be included as part of its Automatic Label in its specification dialog. See “Label Panel” on page 516.

The Schedule Number can also be inserted into an object’s Label or Object Information fields using the %schedule_number% text macro. Alternatively, you can use the %simple_schedule_number% macro, which excludes the leading zero and prefix and simply reports the number. See “Text Macros” on page 400.

Columns to Include

Every schedule has a selection of Columns to Include in its specification dialog. The columns that are available depend on the type of schedule selected. See “General Panel” on page 512.

Information in the Code, Comment, Description, Manufacturer, and Supplier columns is drawn from an object’s specification dialog. See “Object Information Panel” on page 519.
Schedules also have a selection of Categories to Include, as well. For example, you can specify whether to include Plumbing, Appliances, and HVAC in a Fixture Schedule. Categories can be used to create a variety of special purpose schedules. See “Working with Multiple Schedules” on page 511.

Columns and Quantity

It is important to remember that by default, the number of columns you choose to include in a schedule influences the number of separate line items that will be listed in the schedule.

For example, if you have three 30” wide doors and do not include the Size and Description columns, the three doors will be listed in the same line item - even if one is a hinged door, one a slider and one a pocket door.

If you prefer, you can uncheck Group Similar Objects in the Schedule Specification dialog to place every object in its own row, regardless of any shared attributes. See “General Panel” on page 512.

Note: Cabinet, Electrical, Fixture, and Furniture Schedules have an “Other” Objects to Include option that refers to architectural blocks set to be included in that schedule type. See “Architectural Block Specification Dialog” on page 727.

Column Totals

If a Door, Window, or Room Finish Schedule includes an Area column, an additional “Totals” row will display at the bottom of the schedule for total area calculations. Room Finish Schedules will also include a “Totals” row if multiple rooms included in the schedule have identical objects in them.

Object Previews

Aside from those for Framing, Rooms, and Layouts, schedules have a selection of Columns that display object preview images.

With the exception of plant images, 3D object previews are drawn using plot lines. Each object preview inherits its line color, weight, and style from the object’s layer settings in the “Camera View Set” layer set. See “Layer Sets” on page 147.

The 2D Symbol preview uses the settings for the layer set that is currently active in plan view. The 2D Symbol column is not available for Doors, Windows, or Cabinets.

Custom Columns

In all schedules aside from Framing and Room Finish Schedules, there are two ways to create custom columns: by creating custom Sub Categories in the Preferences dialog and by creating Custom Fields.

Custom Sub Categories are assigned to an object on the COMPONENTS panel of its specification dialog. To make an object in a custom Sub Category available for use in other plans, add it to the library. See “Adding Library Content” on page 700.

Objects with Custom Fields can also be added to the library. In addition, Custom Fields are plan-specific and can be specified in many objects’ specification and defaults dialogs.

Both Sub Categories and Custom Fields are listed as columns in the Schedule Specification dialog. See “General Panel” on page 512.

Custom Object Fields

Custom Object Fields allow you to create custom columns in schedules as well as specify the data that goes into those columns for each object.

Custom Fields can be assigned to a wide variety of objects in their specification dialogs. A value for each Custom Field can also be specified for individual objects, as well. See “Object Information Panel” on page 519.

Manage Custom Fields Dialog

To open the Manage Custom Fields dialog, select Edit> Default Settings and click the arrow next to “Schedules” to expand the category. Select “Custom Object Fields” and click the Edit button.
Find Object in Plan

To find out where a line item in a schedule or the Materials List is located in the model, select its row or any cell in its row and click the Find Object in Plan edit button. This tool opens a view window and selects the object or objects associated with that line item.

If a plan view showing the floor that the object is on is open, that view will become active and the object will be selected. If no such view is open, a new unsaved view showing the object’s floor will be created. See “View Windows” on page 119.

When a wall framing object is selected in a Framing Schedule, the Wall Detail of its parent wall will open instead. See “In Wall Detail Views” on page 647.

If the selected item is a component of a complex object like an Auto Dormer, Mulled Unit, Bay Window, or Architectural Block, the parent object will be selected in the plan instead of the individual component.

If the selected row or rows in a Materials List refer to objects on different floors, the Details dialog will open when you click the Find Object in Plan edit button. See “Details Dialog” on page 949.

Select Location Dialog

The Select Location dialog will open if you click the Find Object in Plan edit button when the selected row in a schedule lists objects from more than one floor.

Select a floor in the list and click the Find button or double-click on a floor in the list to open a plan view window showing the objects on the selected floor.

Working with Multiple Schedules

You can create multiple versions of any type of schedule for a variety of purposes. For example:

- Multiple Fixture Schedules can be set up for use as Plumbing, Appliance or HVAC schedules.
- Separate Electrical Schedules can be created for light fixtures and other electrical items.
- Separate Cabinet Schedules can be set up for each floor of a plan, or even for individual rooms.

- Special Door or Window Schedules can be prepared for Energy Ratings, Fire Doors or other information.

You can also specify that any object be listed in multiple schedule categories, as well as create custom schedules that list multiple types of objects. See “Custom Schedule Categories” on page 507.

If you intend to use schedule callout labels, it is best to avoid including a given object in more than one schedule. If you choose to do so, the object will

• A list of Custom Fields present in the current plan displays on the left. Click on the name of a field in the list to select it.
• Click the New button to open the Add New Field dialog, type a short descriptive name, and create a new Custom Field.
• Click the Rename button to rename the selected Custom Field.
• Click the Delete button to delete the selected Custom Field from the current plan. A Custom Field can be deleted from a plan even if it is assigned to an object and included as a schedule column.
display a separate callout label for each schedule it is included in.

If you create multiple schedules of the same type, bear in mind that it is possible for different objects in those schedules to be assigned the same callout number. To avoid this, consider specifying different callout prefixes and/or callout shapes.

Schedule Specification Dialog

Schedules and the object labels associated with them can be edited in the **Schedule Specification** dialog. To open this dialog, either select a schedule and click the **Open Object** edit button or double-click the schedule using the **Select Objects** tool.

The **Schedule Specification** dialog is similar to the specification dialogs for layout tables. See “Layout Page and Revision Tables” on page 981.

The options in these dialogs are also similar to those found in their corresponding **Schedule Defaults** dialogs.

General Panel

<table>
<thead>
<tr>
<th>1</th>
<th>Specify a Main Title for the selected schedule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Include Options -</td>
</tr>
<tr>
<td>3</td>
<td>Categories to Include:</td>
</tr>
<tr>
<td>4</td>
<td>Columns:</td>
</tr>
<tr>
<td>5</td>
<td>Display Options:</td>
</tr>
<tr>
<td>6</td>
<td>Object Preview Options:</td>
</tr>
</tbody>
</table>

- To create a schedule of objects on a single floor, uncheck **Include Objects from All Floors** and then specify the floor. When this box is checked, objects from all floors are included. Not available in the **Layout Table Specification** dialog.
• If Include Objects on All Floors is unchecked in the Schedule Defaults dialog, each schedule will include objects on the floor that it is created on by default.

• When Include Objects from All Floors is unchecked, you can further limit the schedule to an individual room on the specified floor. Select that room from the Include Objects from Room drop-down list. See “Create Schedule from Room” on page 506.

• When a Framing Schedule is placed in a Wall Detail or Truss Detail, the Only Include Objects from this Detail check box is available. Uncheck this to include objects from throughout the plan. When checked, only objects present in the current view are listed.

• Uncheck Group Similar Objects to list all objects in their own row, even when they share all attributes. When this is unchecked, objects that share the same attributes are counted in a single row. See “Columns and Quantity” on page 510.

• If the selected schedule is a layout table, specify the Minimum Rows that it displays, regardless of its actual content.

3 Categories to Include - Check the box beside each type of object you want to include in the selected schedule. See “Schedule Categories” on page 507.

• Custom Note Types, Room Types, and Wall Types will be listed here, under their respective headings. By default, Room and Wall Schedules include newly created Room and Wall Types automatically, while Note Schedules do not.

• Click the New Custom Category button to new custom schedule category. See “Custom Schedule Categories” on page 507.

4 Specify which Columns are included in the selected schedule. See “Columns to Include” on page 509.

• An alphabetical list of Available Columns displays on the left.

• When Limit to Included Categories is checked, the Available Columns will only list the columns that are available for the Categories selected above. Uncheck this box to list the columns available for all Categories. See “Columns to Include” on page 509.

• Select one or more names in the list of Available Columns, then click the Add button to add them to the Columns to Include list on the right. See “Shift and Ctrl Select” on page 170.

• You can also double-click on an item in the list to add it to the Columns to Include list on the right.

• A list of the Columns to Include in the selected schedule displays on the right. The top-to-bottom order in this list corresponds to the columns’ left-to-right order in the schedule. At least one column must be included to create a schedule.

• Select or double-click on an item in the list and click the Rename button to specify a new name.

• Click the Reset button to restore the default names for all Columns to Include in the current schedule.

• Select one or more items in the list, then click the Remove button to remove those items from the list.

• Select one item in the list and click the Move Up button to adjust its position upward in the list.

• Select one item in the list and click the Move Down button to adjust its position downward in the list.

5 Display Options -

• Uncheck Display Column Headings to hide the selected schedule’s Heading row. When this is checked, each column has a heading at the top.

• Uncheck Display Totals Row to suppress the bottom row stating the total area for all objects in the selected schedule. Only available in schedules set to include Door, Window, or Room categories, and only when one or more “Area” columns are included.

6 The Object Preview Options affect the appearance of previews in the 2D Symbol, 3D Elevation, and 3D Perspective Columns, when included in the schedule. See “Object Previews” on page 510.

• Check Show Color to draw 3D Elevation and 3D Perspective object previews using colored lines. When this is unchecked, lines are black and 3D plant previews are shown in grayscale.
• Check **Scale Images** to display object previews at the same relative scale. When unchecked, each preview fills its cell to the extent possible.

• In Electrical, Fixture, Furniture, Note, Plant, and Wall Schedules, check **Use Plan View Scale** to apply the same scale used in plan view to the 2D Symbol column.

• Check **Show Opening Indicators** to show opening indicator symbols in 3D Elevation previews for doors, windows, and cabinets. Only available in schedules set to include Door, Window, and/or Cabinet categories.

• Check **Show Casing, Lintel, Sill** to include these items in 3D Elevations and 3D Perspectives for doors and windows. Only available in schedules set to include Door and/or Window categories.

• Check **Show Treatments, Shutters** to include these items in 3D Elevations and 3D Perspectives for doors and windows. Only available in schedules set to include Door and/or Window categories.

Attributes Panel

1. Specify the appearance of the selected schedule’s **Box/Grid**.

2. Check **Display Border** to display lines around the outside of the schedule.

3. Check **Display Grid Lines** to display lines around the rows and columns of schedule, forming boxes around each item, or cell.

4. Specify the **Alignment** of the selected schedule’s text within its columns by choosing an option from the drop-down list.

5. Define the **Position** of the selected schedule. Not available in the **Schedule Defaults** dialogs.

6. Specify the **X and Y Positions** of the schedule’s center point.

7. Specify the schedule’s **Angle**.

8. Specify the **Left and Right Margins**, which are the distance between the text and border of each schedule cell.

Line Style Panel

The **Line Style panel** is found in the specification dialogs for many different objects. For more information, see “Line Style Panel” on page 235.

Fill Style Panel

For information about the settings on this panel, see “Line Style Specification Dialog” on page 159.

Text Style Panel

The settings on this panel control the appearance of the selected schedule’s text. For more information, see “Text Style Panel” on page 399.
Labels Panel

The LABELS panel of the **Schedule Specification** dialog controls the type, size and appearance of the labels that display in plan view.

Additional **Label Text** options are available here.

- **Schedule Number Prefix** - Specify the leading characters used in callout labels or when Include Schedule Number is checked in the object’s specification dialog. See “Label Panel” on page 516.
- **Include Leading Zeros** - When checked, single-digit callout labels include a zero in front of the callout number. Uncheck this box to remove these leading zeroes from the labels.

When **Use Callout For Label** is checked, the callout shape and size can be specified below. When this option is unchecked, Automatic or user specified labels are used. See “Label Panel” on page 516.

- **Select a Callout Shape**. There are ten shapes to choose from.

When callout labels are used, the schedule numbers are included in the labels. Like other object labels, callout labels use the Text Style assigned to the layer they are on. See “Text Styles” on page 398.

Specify the label **Callout Size**:

- **Select Calculate from Text** for callout labels that are sized to accommodate the text within them.
- **Select Size** and then type the radius in inches (mm). This radius will be used regardless of the size of the label text.

Object Labels

Object labels can display in plan and cross section/elevation views for a variety of different object types using one of several formats:

- **Automatic Labels** provide basic information about the object, such as its type, size, or name.
- You can create a custom label for an object in its specification dialog using text and/or a Text Macro. See “Label Panel” on page 516.
- **Objects associated with a schedule** can display a shaped callout label with each object’s schedule number. See “Schedule Specification Dialog” on page 512.

The Automatic and custom labels for a variety of objects have their own edit handles that display when their object is selected, and can be both moved and rotated. Schedule callout labels can be moved but not rotated. See “Edit Handles” on page 27.

Automatic Labels

Most objects that can display labels have an Automatic Label created by the program that states basic information about it.

- **Native objects** such as doors, windows, and cabinets dynamically derive their automatic label from their size and type. See “Native Objects vs
Symbol objects such as fixtures and furnishings derive their automatic label from the Symbol Name specified in the Symbol Specification dialog. See “3D Panel” on page 713.

When Automatic Labels is selected in the object’s specification dialog, this is usually the label that will be used; however:

- If a user-defined label is specified in the object’s defaults dialog, that label will be used instead of the Automatic Label.
- If the object is included in a schedule and callout labels are specified in that schedule, a callout label will be used.
- Fixtures and appliances inserted into cabinets do not have labels of their own unless they are associated with a schedule set to use shaped callout labels.

Default Label Formatting

Custom labels can include a variety of macros that report size information about the object. This information can be reported in either of two ways:

- Default Formatting includes the unit of measurement after each macro reporting size information. In files using US Units, sizes are described using fractional inches with up to 1/16” accuracy.
- When Default Formatting is not used, units of measurement are not shown and decimal inches are used.

Displaying Labels

The display of object labels in plan and cross section/elevation views can be controlled by layer in the Layer Display Options dialog. Label layer names begin with the object type, followed by the word Label: for example, cabinet labels are located on the “Cabinets, Labels” layer. See “Layer Display Options Dialog” on page 144.

You can choose to suppress the label for an individual object on the LABEL panel of its specification dialog. See “Label Panel” on page 516.

You can also turn the display of labels for a particular object type on or off in the Schedule Specification dialog for that object type. See “Labels Panel” on page 515.

Object labels use the Text Style assigned to each label’s layer. For example, cabinet labels use the “Cabinets, Labels” layer’s Text Style. See “Text Styles” on page 398.

The minimum on screen display size of labels can be specified in the Preferences dialog. See “Appearance Panel” on page 80.

With the exception of those for rooms, roofs, and cameras, labels can also be included in the Materials List and Master List. Items in the Labels column of the Materials List are editable; however, any changes will not be applied to the actual objects’ labels. See “Materials Lists” on page 943.

Label Panel

The LABEL panel is found in the specification and defaults dialogs for a variety of different objects.

You can specify whether to Use Default Formatting in the object’s specification dialog. See “Label Panel” on page 516.
Most objects have a **Suppress Label** option. Check this box to prevent the selected object’s label from displaying in plan and cross section-elevation views.

Bay, Box and Bow Windows and Mulled Window units have several settings for controlling **Multiple Component** labels. See “Window Labels” on page 435.

- Select **Suppress All Labels** to display no label in plan view. Individual components are counted in schedules and in the Materials List.
- Select **Show Component Labels** to produce labels for each component in plan view. Individual components are counted in schedules and in the Materials List.
- Select **Show Single Label for Entire Unit** to produce one label for the unit and suppress component labels. When this option is selected, the settings that follow on the LABEL panel become enabled.

These settings also affect how Bay, Box and Bow Windows and Mulled Window units are counted in schedules and the Materials List. See “Window Labels” on page 435 and “Displaying Mulled Units” on page 432.

The **Label Options** control what information is contained in the label. Not available for cameras. See “Displaying 3D Views” on page 790.

- Select **Automatic Labels** to use the default label for the selected object. See “Automatic Labels” on page 515.

The **Height/Width Display** settings are only available for doors and windows.

- Select **Width/Height** to use a numeric format in which the width in inches (mm) is followed by the height.
- Select **Height/Width** to use a numeric format in which the height in inches (mm) is followed by the width.
- Select **Width Only** to use a numeric format in which only the width in inches (mm) is indicated.

The **Additional Text** options add extra information to the Automatic Label as well as any schedules that the selected object is listed in. See “Columns to Include” on page 509.
• Check **Include Schedule Number** to include the object’s Schedule Number at the beginning of its Automatic Label text, as well as in the Label and Size columns of any schedule that it is listed in. See “Schedule Number Format” on page 509.

• For a selected window, check **Include Type** to include the abbreviation for each window’s type in its Automatic Label. For example, 3050DH describes a 3050 double hung window. This also affects the Label column of any schedule the window is listed in.

• For a selected door, check **Include Type** to include the hinge side and whether each door is interior or exterior in the Size column of any schedule that the door is listed in. This also affects the Label column of the schedule, but does not affect the door’s Automatic Label itself.

• Select **Specify Label** to replace the selected object’s Automatic Label with whatever you type in the text field below. Press the Enter key while the cursor is in the text field to begin a new line. When Specify Label is chosen, the text of the selected object’s Automatic Label initially populates the text field.

• Click the **Insert Macro** button to insert a Global, User Defined or Object Specific Text Macro into the custom label. See “Text Macros” on page 400.

• Specify whether to **Use Default Formatting** for any inserted macros that report size information. See “Default Label Formatting” on page 516.

• Select **Plan View Position and Orientation**, relative to the object it describes, in plan view or in the currently active cross section/elevation view. The defaults for these settings only affect plan view - in cross section/elevation views, labels are always initially placed at 0, 0, 0°. See “Default Settings” on page 65.

Note: When accessed from a Wall Elevation view, Wall Detail Position and Orientation settings will be available here instead.

• Specify the **X Offset** value, moves the label side to side relative to the midpoint of the object’s front face.

• Specify the **Y Offset** value, which moves the label forward or backward relative to the object’s front face.

• Specify the **Angle**, which rotates the label either relative to the angle of its object’s front face or to an absolute angle.

• Select **Relative Angle** to measure the label’s Angle relative to its object’s front face.

• Select **Absolute Angle** to measure the label’s Angle relative to an imaginary horizontal line drawn in the positive X direction from the origin. See “3D Drafting” on page 25.

Regardless of which way the selected object is facing, in plan view the X Offset will move the label parallel with the object’s front face. The Y Offset value will move the label perpendicular to the object’s front.

In cross section/elevation views, the Offset X will move the label side to side and the Offset Y will move it up or down.

The Camera View Display settings are only active if you open an object’s specification dialog in a cross section/elevation view, and only affect the display of the selected object’s label in the current view. Not available for selected cameras.

• Select **Automatic** to display the object’s label when the surface at its center point is visible in the view.

• Select **Show in this View** to display the object’s label regardless of whether its center point is visible.

• Select **Hide in this View** to suppress the object’s label regardless of whether its center point is visible.

In most specification dialogs, a preview of the selected object displays here. In the preview
Object Information Panel

The **Object Information** panel is found in the specification and defaults dialogs for a variety of different objects. The settings on this panel let you specify information that can then be included in the Materials List and schedules. See “Columns to Include” on page 509.

1. Specify a **Code**, such as an SKU, for the selected object.
2. Specify a **Comment** for the selected object.
3. Specify a **Description** for the selected object.
4. Specify the selected object’s **Manufacturer**.
5. Specify the selected object’s **Supplier**.
6. The **Custom Object Fields** settings allow you to specify custom field values for use in schedules. See “Custom Object Fields” on page 510.
 - A list of **Custom Fields** available in the current plan displays on the left. Click on a name to select it.
 - A **Field Value** for the selected Custom Field can be created or edited in the text field on the right. Individual objects can have different Field Values for the same Custom Field.

Click the **Insert Macro** button to the right of any of these text fields to insert a macro. See “Text Macros” on page 400.

Schedule Panel

The **Schedule** panel is found in the specification and defaults dialogs for a variety...
of different objects. The settings on this panel let you assign the selected object to one or more schedule categories. See “Schedule Categories” on page 507.

The settings on this panel are not active in for architectural blocks unless **Treat as One Object** is checked in the **Architectural Block Specification** dialog. See “General Panel” on page 727.

- Check **Include in Schedule** to list the selected object in any schedule that includes its Schedule Category.
- Select **Auto Schedule Category** to assign the selected object to a schedule category based on its type.
- Select **Include in Schedule As** to enable the settings that follow and assign the selected object to one or more categories in the list.

In the list of schedule categories:

- Click the arrow to the left of a heading to expand it and see the categories listed under it, or to collapse it again.
- Check the box beside a category to list the selected object in any schedule set to include that category.
- Heading level items often have a check box with a solid fill, indicating that some items listed under it are checked while others are not. If you click to check the box, all items under the heading will become selected; if you click again to clear the box, no items under it will be selected.
- The “Custom” heading will not be available to select if no Custom Schedule Categories have been created.
- Click the **New Custom Category** button to open the **New Custom Category** dialog. Type a short, descriptive name and click OK to have the new category display in the list under the “Custom” heading. See “Custom Schedule Categories” on page 506.
Chapter 20:

Foundations

There are three foundation types in Chief Architect: stem walls with footings, grade beams on piers, and monolithic slab. All three can be generated automatically or manually. The foundation type can be specified in the Foundation Defaults dialog when the foundation is built on Floor 0.

There can be only one foundation level in a plan, Floor 0; however, foundation structures can be drawn on any floor using the Foundation and Slab Tools.

Chapter Contents

• Foundation Defaults
• Building a Foundation
• Displaying Foundations
• Editing Foundations
• Aligning Foundation Walls
• Deleting Foundations
• Foundations and Rooms
• Foundations and the Terrain
• The Slab Tools
• Editing Slabs
• Slab Specification Dialog
• Editing Piers and Pads
• Pier/Pad Specification Dialog
• Library Fireplaces.
• Chimneys

Foundation Defaults

There are several defaults dialogs that affect the foundation. They can be accessed by selecting Edit> Default Settings.

Select “Foundation” and click the Edit button to open the Foundation Defaults dialog.

If a foundation has been built and you are on Floor 0, select “Floor” and click the Edit button to open the Floor 0 Defaults dialog. The settings here are initially drawn from those in the Foundation Defaults dialog. See “Floor Defaults Dialog” on page 537.

Click the + beside “Walls” to display the subheadings, then select “Foundation Wall” or “Slab Footing” and click the Edit button to open the defaults dialog for that wall tool. See “Wall, Railing, and Fencing Defaults” on page 262.

Foundation Defaults Dialog

The Foundation Defaults dialog allows you to specify stem wall height, slab thickness, sill plates, and other characteristics of a foundation. These values determine how a new foundation is generated as well as the sizes for manually drawn foundation walls added to an existing foundation.

The settings in the Foundation Defaults dialog are similar to those in the Build Foundation dialog.
which opens when **Build > Floor > Build Foundation** is selected. The primary difference is that when you click **OK** in the **Foundation Defaults** dialog, no changes are made to the model. See “Building a Foundation” on page 524.

Foundation Panel

1. Check **Auto Rebuild Foundation** to automatically rebuild the foundation whenever changes are made to Floor 1 that affect the structure of the foundation. See “Rebuilding Foundations” on page 526.

2. Three different **Foundation Types** can be created in Chief Architect. Each type of foundation has different default settings, options, and behaviors. Select the radio button next to the desired type.
 - Select **Walls with Footings** to produce a foundation composed of stem walls with footings that run continuously under the base of the walls.
 - Select **Grade Beams on Piers** to generate a pier and grade beam foundation. The floor framing rests directly on top of the grade beams.
 - Select **Monolithic Slab** to build a slab foundation defined by Slab Footings. The foundation forms the floor platform for Floor 1. It is visible on Floor 0 and can be selected and edited. See “Slab Footing” on page 269.
 - Check **Hang 1st Floor Platform Inside Foundation Walls** to produce stem walls that build up to the top of the floor platform of Floor 1. When unchecked, the stem walls build to the bottom of the floor platform, which bears on top of them. Only available when Walls with Footings is selected, above.
 - Check **Show “S” Markers on Step Foundation** to include an “S” symbol in plan view anywhere there is a step in foundation wall height. Not available when Grade Beams on Piers is selected, above. See “Displaying Foundations” on page 525.

3. **Slab** -
 - The name of the **Default Slab Footing Wall Type** displays here for reference. Click the **Edit** button.
Default Slab Footing button to open the Wall Type Definitions dialog and change the definition of the default wall type. Only available when Monolithic Slab is the selected Foundation Type.

- Specify the Slab Thickness, which is the thickness of the slab produced above the footing or at the top of the stem wall.

- Check Slab at top of Stem Wall to raise the slab so its top is flush with the top of the stem walls. Only available when Walls with Footings is the selected Foundation Type.

If Slab at top of Stem Wall is selected, all rooms on the first floor are automatically set to Floor Supplied by the Foundation Room Below in the Room Specification dialog. See “Structure Panel” on page 334.

Stem Walls -

- The name of the Default Foundation Wall Type displays here for reference.

- Click the Edit Default Foundation Wall button to open the Foundation Wall Defaults dialog and change the default settings for foundation walls. See “Foundation Walls” on page 268.

- If Monolithic Slab is the selected Foundation Type, the Edit Garage Curb button will be available. Click it to open the Foundation Wall Defaults dialog and define the walls that form curbs around Garage and Slab rooms.

- Specify the Minimum Height, which is the minimum height for foundation stem walls and grade beams and includes the sill plates.

- The Basement Ceiling Height displays here as a reference. This is the distance from the top of the slab floor to the basement ceiling and is equal to the Minimum Wall Height minus the Slab Thickness.

If the Minimum Wall Height is at least 76” (1900 mm), a Ceiling Finish is added to the foundation room automatically. A slab floor is also generated above the footing. The ceiling height and finish can be changed later. See “Room Specification Dialog” on page 332. To remove this slab, specify the room areas in the basement as “Open Below”. See “Room Types and Functions” on page 315.

- Check Slab at top of Stem Wall to raise the slab so its top is flush with the top of the stem walls. Only available when Walls with Footings is the selected Foundation Type.

- Specify the Width, Depth, and Maximum Separation of the piers.

- Choose either Round or Square piers.

Garage Options -

- Specify the Garage Floor to Stem Wall Top, which is the distance between the slab and the tops of the stem walls in both Garage and Slab rooms. Available for Walls with Footings and Grade Beams on Piers foundation types. See “Foundation Defaults” on page 521.

- Specify the Lower Garage Floor height, which is the distance that Garage and Slab room floors are lowered when a Monolithic Slab foundation is built. This value is also the height of the curbs around these rooms. See “Garages” on page 529.

- Specify the Minimum Garage Stem Wall Height, which is the minimum height that stem walls defining a Garage foundation will be, regardless of the Minimum Stem Wall Height for the rest of the foundation.

Options Panel

The OPTIONS panel allows you to include rebar and other materials related to the foundation in the Materials List. See “Materials Lists” on page 943.

Some options on this panel may be unavailable depending on the foundation type selected on the FOUNDATION panel.
Specify the Rebar used in the major foundation components: Footing, Wall Horizontal courses, Wall Vertical courses, Pier, and Slab. Rebar and mesh are calculated in the Materials List provided that the wall or footing they are associated with is the “Concrete” Structure Type; but, they do not display in any 2D or 3D views of the model. See “The Materials List Tools” on page 943.

- **Bars per Course** - Specify the number of bars of rebar to be used per course for each foundation component.
- **Course Spacing** - Define the spacing for Vertical and Horizontal Wall courses, and for Slabs. If slabs are to have rebar instead of mesh, this spacing value applies to both directions.
- **Rebar size** - Define the rebar size in 1/8th inches. 4 represents 4/8, or ½ inch.
- **Specify the Overlap** where sticks of rebar meet, in terms of the rebar’s Diameter. A value of 40.0, for example, equals 40 times the Rebar Size.
- **Check Use Mesh** to reinforce the slab floor with mesh instead of rebar, or uncheck it to use rebar.

Foundation Options - Select either Foam Seal, Termite Flashing, or both. These options are added to the Materials List, but do not display in the model.

Building a Foundation

Foundations can be generated automatically or drawn manually. A combination of the two methods can also be used.

Three foundation types are available: stem walls with footings, grade beams on piers, and monolithic slabs. The first two options are created using walls; the last creates concrete slabs with footings.

Automatically built foundations are placed on Floor 0 and are based on wall positions and floor heights on Floor 1. Foundation walls or slab footings are generated under:

- All exterior walls on Floor 1 that define a room other than a Deck type room. See “Room Definition” on page 313.
- Any Railings, Invisible Walls, and interior walls on Floor 1 that have Create Wall/Footing Below checked in the Wall Specification dialog. See “Foundation Panel” on page 303.

- Any interior walls on Floor 1 defining rooms with different floor heights. See “Floor and Ceiling Heights” on page 324.

At least one room must be defined on Floor 1 for a foundation to be automatically generated. If no rooms are defined on Floor 1, a blank Floor 0 is created.

There can be only one Floor 0 per plan. If your plan requires a foundation on more than one floor, you will need to draw the required foundation walls or slabs yourself.

To build an automatic foundation

1. Select **Build > Floor > Build Foundation**.
2. Specify the desired foundation type and other information in the **Build Foundation** dialog. The settings in this dialog are similar to those in
the Foundation Defaults dialog. See “Foundation Defaults” on page 521.

3. In the New Floor dialog, select Derive new Foundation plan from the 1st floor plan and click OK to build a foundation based on Floor 1.

If you prefer, you can instead select Make new (blank) plan for the Foundation to create an empty foundation level where you can manually draw foundation walls or slabs.

In most cases, it is preferable to base Floor 0 off the first floor plan and then manually edit the foundation as needed. See “Editing Foundations” on page 526.

Mixing Foundation Types
You can also create a foundation that combines stem walls, grade beams and piers, and/or monolithic slabs.

To create a foundation of multiple types
1. Begin by specifying any rooms on Floor 1 that require a slab floor as either a Garage or Slab Room Type. See “Foundations and Rooms” on page 529.

2. Alternatively, or in addition, you can specify any rooms on Floor 1 as having a Monolithic Slab Foundation. See “Structure Panel” on page 334.

3. Build Foundation as described above.
 - If the foundation will include any grade beams and piers, specify Grade Beams on Piers as the Foundation Type and build the foundation.
 - If the foundation will include a combination of stem walls and slabs, specify Walls with Footings as the Foundation Type.

4. Once the foundation walls have been generated, they can be moved or deleted, and new Foundation Walls, Slab Footings, and/or Slabs can be drawn. See “Foundation Walls” on page 268 and “The Slab Tools” on page 531.

Openings in Foundation Walls
Any doors placed in walls around a Garage will receive cutouts in the garage stem wall or curb. The width of that cutout can be specified in the Door Specification dialog. See “General Panel” on page 413.

Displaying Foundations
The display of foundation walls, slabs, curbs, piers and footings is controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

- Foundation Walls, including grade beams, Slab Footings and Garage curbs, are placed on the “Walls, Foundation” layer by default.
- Footings under Slab Footings and Foundation Walls are placed on the “Footings” layer by default, as are foundation piers.
- Post footings and deck post footings are placed on the “Footings, Post” and “Footings, Deck Post” layers by default.
- Slabs created using the Slab Tools are placed on the “Slabs, Custom” layer by default.
- Wall labels and slab labels are placed on the “Walls, Labels” and “Polylines 3D, Labels” layers, respectively.
- In stem wall and grade beam foundations, brick ledge lines in plan view are on the “Slabs” layer; in monolithic slab foundations, they are on the “Walls, Foundation” layer. See “Brick Ledges” on page 269.
- The “Foundations” layer controls the display of all objects on Floor 0 in 3D views but does not affect plan view.

Wall and Slab Labels
Foundation walls and Slabs can both display labels when the “Walls, Labels” and “Polylines 3D, Labels” layers are on. Unlike some objects, walls and slabs have blank Automatic Labels; however, you can specify a custom label in their specification dialogs. See “Wall Specification Dialog” on page 297 and “Slab Specification Dialog” on page 531.

Wall and Slab labels display in floor plan and cross section/elevation views when their respective layer is turned on and use the Text Style assigned to that layer. See “Object Labels” on page 515.

In Plan View
The appearance of foundation wall types, including line weights, colors and fill styles, is specified in the
Wall Type Definitions dialog. See “Wall Type Definitions Dialog” on page 294.

Changes in stem wall and monolithic slab foundation heights are represented in plan view with S markers. These markers are located on the “Footings, Step Markers” layer and use the Text Style assigned to that layer. See “Stepped Foundations” on page 530.

If a door on Floor 1 extends into a stem wall or curb defining a Garage room, its location will be indicated on Floor 0. See “Displaying Doors” on page 406.

In 3D Views

In 3D views, all objects on Floor 0 will only display when the “Foundation” layer is turned on.

While the display of foundation walls and their footings can be controlled independent of one another in plan view, in 3D views this is not the case.

If a foundation wall is set to display, its footing will as well - even if the “Footings” layer is turned off. The reverse is also true - if a foundation wall’s display is turned off, so will its footing’s.

The display of monolithic slab foundations in 3D views is controlled by the “Foundation” layer. Slab Footings are located on the “Walls, Foundation” layer; but if this layer is turned off, any Slab Footings that define a foundation room will continue to display as long as the “Foundation” layer is on.

In Cross Sections

When the Auto Detail tool is used in a cross section view, the fill style of each wall layer as set in its Wall Type Definition is used. See “Auto Detail” on page 789.

Editing Foundations

Stem wall with footings, wall with piers and monolithic slab foundations are all created using walls which enclose room areas.

- Foundation walls can be selected and edited much like other walls. See “Editing Walls” on page 280.
- Footing size can be changed on a wall by wall basis. See “Footing Width and Height” on page 527.
- Foundation rooms can also be selected and edited like other rooms. See Foundations and Rooms.

Foundation wall footings and Slabs use a concrete fill that cannot be specified beforehand but can be edited once Auto Detail has been generated.

Monolithic slabs and their footings use the fill style specified for the slab room’s Floor Structure definition. See “Floor and Ceiling Platform Definitions” on page 325.

In the Materials List

The materials that make up foundation walls, footings, and slab floors are listed under the Foundation category in the Materials List, including:
- Concrete for walls, slabs, and footings
- Rebar for walls and footings
- Rebar or mesh for slabs

Slab Footings and the room areas that they define can be assigned Pour Numbers in their specification dialogs. Typically, a Slab Footing will have the same Pour Number as the room it defines, although it is possible for it to define multiple rooms with differing Pour Numbers. Pour Numbers are listed separately under the Foundation category of the Materials List. See “Foundation Panel” on page 303 and “Structure Panel” on page 334.

Other objects relevant to foundations can be found in these categories:
- Exterior Trim - Lists slabs drawn with the Slab tools that are located outside of a structure.
- Interior Trim - Lists slabs drawn with the Slab tools that are located inside of a structure.

See “Materials Lists” on page 943.

Rebuilding Foundations

By default, foundations do not update automatically when changes are made to the structure on Floor 1. For example, if exterior walls are moved or floor platforms are raised or lowered, the foundation must be rebuilt.

You can direct the program to rebuild an automatically generated foundation whenever changes are made on Floor 1 that affect the foundation by checking Auto Rebuild Foundation
in the **Foundation Defaults** dialog. See “Foundation Panel” on page 522.

You can also rebuild an automatically generated foundation by selecting **Build> Floor> Build Foundation** from the menu.

When **Auto Rebuild Foundation** is enabled, walls cannot be edited, manually drawn or deleted on Floor 0. When the foundation is rebuilt, any manually drawn or edited walls are deleted. Similarly, rooms on Floor 0 cannot be edited while this option is enabled. If you try to draw a wall or edit a room or a wall while **Auto Rebuild Foundation** is turned on, a warning message will display.

Changing Foundation Types

When a foundation is generated, the program creates **Floor Defaults** settings for Floor 0 based on the information in the **Build Foundation** dialog. If you specify a Monolithic Slab foundation, the default Floor Structure on Floor 1 will also be changed to a slab rather than a framed platform. See “Floor Defaults Dialog” on page 537.

If you rebuild the foundation using a different Foundation Type, it is advisable to check the floor heights of all rooms on Floor 1 - particularly Garage and Slab rooms, as well as any rooms that do not use the default floor height of 0”.

To avoid unexpected results, it is recommended that you not change the Foundation Type once the foundation is built.

Stem Wall Height

When a foundation is created, all of Floor 0 uses the stem wall height specified in the **Foundation Defaults** dialog.

This height is measured from the bottom of floor platform of Floor 1 to top of the stem walls’ footings. If Floor 1 has multiple floor platform heights, the foundation stem walls will be stepped.

Once a foundation is created, stem wall heights can be adjusted either on a room-by-room basis or for individual walls.

To change a room’s stem wall height

1. Select a room on Floor 0 and click the **Open Object** edit button.

2. Specify the desired **Stem Wall Height** in the **Room Specification** dialog. See “General Panel” on page 333.

3. If you wish to reduce the **Stem Wall Height**, you will first need to reduce the **Ceiling Height** value by the same amount.

If adjacent rooms have stem wall heights that differ by at least 1/16 of an inch, the stem wall separating them uses the larger of these two values.

In 3D views, individual stem walls can be selected and edited. In most cases, this method should only be used for stepping the bottom of the foundation wall. See “Stepped Walls and Footings” on page 290.

Footing Width and Height

Foundation Wall footings derive their Width, Height and Offset from in the **Foundation Wall Defaults** dialog. Similarly, Slab Footings use the width and height specified in the **Slab Footing Defaults** dialog. Once a Foundation Wall or Slab Footing is created, its footing can be adjusted in its specification dialog. See “Foundation Panel” on page 303.

Footage Width can be adjusted using the edit handles in both floor plan and 3D views. Each side of the footing can be edited independently, which means that the Offset can also be modified using the footing resize edit handles.

If the selected wall is a Slab Footing, the footing width can also be resized using dimensions and will resize the Wall Thickness, creating a new wall type if necessary. See “Editing Walls” on page 280.
Stem wall footing heights can also be edited in 3D views just as the rest of the stem wall can. Slab Footing heights, on the other hand, cannot be adjusted in 3D.

You can specify whether stepped stem walls have vertical footings on the FOUNDATION panel of the Foundation Wall Defaults and Specification dialogs. You can also specify the chamfer width and height of monolithic slab foundation footings.

Interior Footings

Slab foundations often have interior footings: to support posts, for example. You can specify that an interior footing be created under an interior wall on Floor 1 when the foundation is built by checking Create Wall/Footing Below. See “Foundation Panel” on page 303.

You can also draw them using the Slab Footing tool. See “Foundation Walls” on page 268.

If an interior footing is inside of a room with a slab foundation and a curb, as in a garage, specify the Slab Footing as Invisible to prevent a curb from generating inside of the room. See “Room Dividers and Invisible Walls” on page 271.

Thickened Slabs

A thickened slab can be created by selecting a Slab Footing and specifying its Chamfer Height to equal the Footing Height. The Chamfer Width can be increased, as well.

- When the Slab Footing is drawn on the interior of a slab room, a thickened slab is created.

- When the Slab Footing defines the edge of a slab, a thickened slab edge results.

Aligning Foundation Walls

By default, foundation walls and slab footings will align with walls on the floor above along the outside surface of the Main Layer of both wall types. If you prefer, you can specify that foundation walls align to a different part of the walls above. See “Wall Type Definitions” on page 292.

If there is only one layer for both the stem wall and the first floor wall above it, the exterior surfaces of the walls align. The footing is centered on the stem wall unless this option is unchecked in the Wall Specification dialog. See “Foundation Panel” on page 303.

Brick Ledges

Brick ledges can be produced in stem wall, pier and monolithic slab foundations. See “Brick Ledges” on page 269.

Deleting Foundations

Select Build> Floor> Delete Foundation to delete the entire foundation floor.

You can also select and delete individual foundation walls and slabs by clicking the Delete edit button or pressing the Delete key. See “Deleting Objects” on page 220.

Deleting and rebuilding the foundation is often the quickest way to update the model when substantial changes are made to Floor 1 after the foundation is built.
Foundations and Rooms

When a foundation plan is created, rooms included in the Living Area calculation generate a stem wall, grade beam, or slab foundation below them. Garage rooms generate slab foundations, but exterior rooms such as Decks, Courts and Balconies do not generate any foundation. See “Room Types and Functions” on page 315.

Interior foundation walls are not generated unless:
• They separate the area under a Slab or Garage room from the rest of the plan;
• They separate the area under a room specified as having a slab foundation from the rest of the plan;
• They define areas under rooms with different floor heights.
• A wall on Floor 1 is specified as a Bearing Wall in the Wall Specification dialog. See “Foundation Panel” on page 303.

Note: To remove all or part of the concrete slab in the basement area, select a basement room and define it as Open Below in the Room Specification dialog.

Garages

When a foundation is generated based on the floor plan of Floor 1, a room on the first floor specified as either a Garage or Slab type will receive a stem wall or pier foundation with a slab floor and stem walls. If a monolithic slab foundation is generated, the room will receive a slab floor with curbs.

An opening placed in a wall defining a Garage will receive a cutout in the stem wall or curb that displays in plan view on the floor below provided that the stem wall or curb’s Main Layer has a Concrete or Brick material type.

The width of the concrete cutout can be defined and you can specify whether the cutout displays in the Door or Window Specification dialog. See “Framing Panel” on page 422.

By default, a room on Floor 1 specified as a Garage or a Slab will be assigned a lower floor height when the foundation is built. The amount that it is lowered depends on the foundation type:
• The floor height will drop 3 1/2” (88 mm) in a Monolithic Slab foundation.

These values are set in the Foundation Defaults dialog. See “Foundation Panel” on page 522.

To build a Garage slab with stem walls

1. Before the foundation is generated, specify the room as a Garage or Slab.
2. Build an automatic Wall with Footings or Grade Beam on Piers foundation.

In the Floor 1 Garage’s Room Specification dialog, Floor Supplied by the Foundation Room Below will now be checked. See “Structure Panel” on page 334.

By default, the program produces a 4” (100 mm) slab and 24” (600 mm) high stem walls around the garage. These stem walls are drawn on Floor 0 and will indicate the locations of any doors that extend into them.

To build a Garage slab with curbs

1. Before the foundation is generated, specify the room as a Garage or Slab.
2. Build an automatic Monolithic Slab foundation, specifying the required Lower Garage Floor value.

By default, the program produces a 4” (100 mm) slab and 3 1/2” (88 mm) high curb around the garage. The curbs are drawn using Slab Footings on Floor 0, use the Default Foundation Wall type, and will indicate the locations of any doors that extend into them.

The floor height of the garage and the stem wall or curb height can then be adjusted, if necessary, in the Garage room’s Room Specification dialog. See “Structure Panel” on page 334.

Basement Rooms

When a foundation’s type is Walls with Footings or Grade Beams on Piers, and it is assigned a Minimum Wall Height of 76” (1900 mm) or greater, the resulting basement is automatically created with a 4” (100 mm) concrete slab floor and a default Floor Finish like that on Floor 1.

Similarly, if a foundation is set up to have a Basement Ceiling Height of 72” (1800 mm) or
greater when built, it is automatically given a painted drywall Ceiling Finish. See “Foundation Panel” on page 522.

Regardless of its ceiling height, however, you can specify a floor or ceiling finish for any room in the Room Specification dialog. See “Structure Panel” on page 334.

Foundations and the Terrain

Chief Architect automatically raises the structure in a plan a set distance above the terrain. See “Terrain Height vs Floor Height” on page 900.

In a plan with a foundation present, the terrain will be:

- 6” (187 mm) below the top of the stem walls or grade beams in a Walls with Footings or Grade Beams on Piers foundation.
- 8” (200 mm) below the top of the slab in a Monolithic Slab foundation.

By default, the program will also create a flattened pad under the building footprint.

Not all foundations have these requirements, of course, so you can customize your foundation and terrain to suit your needs.

Daylight Basements

Daylight basements, also referred to as look-out basements, have walls that are tall enough for basement windows to be positioned above the terrain. They are often found in split level or split entry structures.

To create a daylight basement condition, build a stem wall foundation and modify these settings in the Terrain Specification dialog:

- Uncheck Auto Calculate Elevation.

The resulting basement can be divided into separate rooms using Interior Walls or any wall type you wish. If the rooms in a basement have different floor heights, it is best to separate them using walls specified as Foundation Walls.

- Increase the Building Pad Elevation, which is the distance between the default floor height of Floor 1 and the terrain.

Walkout Basements

Walkout basements are a type of daylight basement typically located on sloped terrain. They feature walls that are above ground at the lower end of the slope so that a door can be positioned above the terrain at that end.

To create a walkout basement, build a stem wall foundation and modify these settings in the Terrain Specification dialog:

- Uncheck Flatten Pad.
- Uncheck Auto Calculate Elevation.

You will also need to create sloped terrain and adjust the Building Pad Elevation and/or terrain data so that the terrain is at the appropriate height relative to the structure at both the high and low ends of the slope.

Stepped Foundations

Stepped foundations are usually built on sloping terrain. A stepped foundation will be produced automatically if more than one floor height is present on Floor 1 when the foundation is built.

In plan view, steps in stem wall and monolithic slab foundations are represented using S markers. See “Displaying Foundations” on page 525.

As with a walkout basement, you will need to build a stem wall foundation and modify these settings in the Terrain Specification dialog:

- Uncheck Flatten Pad.
- Uncheck Auto Calculate Elevation.

You will also need to create sloped terrain and adjust the Building Pad Elevation and/or terrain data so that the terrain is at the appropriate height relative to
the structure at both the high and low ends of the slope.

The Slab Tools

Select **Build > Slab** to access the Slab Tools. The Slab Tools are designed for more generic purposes than foundations and should not be substituted for a foundation plan. The settings in the **Foundation Defaults** dialog do not affect slabs created with the Slab Tools.

Slabs

Select **Build > Slab** or **Slab With Footing**, then either click or click and drag a rectangle to draw a slab. See “Rectangular Polyline” on page 246.

Once created, slabs can be edited like other closed polylines. See “Editing Closed Polyline-Based Objects” on page 180. A Slab is also created when the **Post with Footing** tool is used. See “Post with Footing” on page 630.

Slab Holes

A hole can be placed in a slab or in the floor of a foundation slab with footings.

Editing Slabs

Slabs and Slab Holes can be selected in 2D and 3D views both individually and as a group and can be edited using the edit handles, the edit toolbar, and the **Slab Specification** dialog. See “Slab Specification Dialog” on page 531.

Using the Mouse

Slabs and Slab Holes can be edited like other closed-polyline base objects in both 2D and 3D views. See “Editing Closed Polyline-Based Objects” on page 180.

Using the Edit Tools

One or more selected Slabs or Slab Holes can be edited in a variety of ways using the buttons on the edit toolbar. As with most objects, Slabs can be copied, replicated, moved, deleted, etc. See “The Edit Toolbar” on page 29.

You can also create a stepped foundation by editing foundation rooms and walls. See “Stem Wall Height” on page 527.

Select **Build > Slab > Slab Hole** or **Build > Slab Hole With Footing**, then either click or click and drag within an existing slab to create a hole.

You can also create a Slab Hole in a Slab, or a Slab Hole with Footing in a Slab with Footing, using the **Create Hole** edit tool. See “Polyline Holes” on page 184.

Piers and Pads

Piers and pads can be manually placed under walls, railings, or beams on any floor. Select **Build > Slab > Round Pier** or **Build > Slab > Square Pad** and click in plan view to place a pier or pad.

For information about editing Piers and Pads, see “Editing Piers and Pads” on page 533.

Slabs and the Materials List

If the slab material type is specified as Concrete or Volume, the materials list calculates the total volume of the slab and all footings. See “Define Material Dialog” on page 769.

Slab Specification Dialog

Select a Slab and click the **Open Object** edit button to open the **Slab Specification** dialog.
Specify the characteristics of the selected Slab.
- Check Hole in Slab to convert the selected slab into a slab hole. A slab hole must be contained within a larger slab. See “Slab Holes” on page 531.
- Specify the Thickness, which is the measurement from the slab’s top to bottom surfaces.
- Select the Elevation Reference, from the dropdown list. This determines where the next two settings are measured from and also affects their setting labels.
- Specify the slab’s height to Top, which is of its top surface measured from the selected Elevation Reference.
- Specify the slab’s height to Bottom, which is the height of its bottom surface, measured from the Elevation Reference.
- When the selected slab is a Post Footing or Deck Post Footing, specify whether it is Square or Round. Not available for manually drawn slabs or if the slab’s shape has been modified using the Change Line/Arc edit tool. See “Post with Footing” on page 630.

Specify the characteristics of the selected slab’s Footing.
- Check Has Footing if you would like the slab to have a footing around the inside of its perimeter.
- Specify the Height and Width for the footing.
- Specify the Footing Offset, which is the distance that the footing extends out past the edges of the slab. A value of 0 aligns the outside of the footing with the outside of the slab.

A preview of the selected slab displays on the right side of the panel. See “Dialog Preview Panes” on page 32.

Polyline Panel
The POLYLINE panel states the length of the selected slab’s Perimeter, its enclosed Area, and its Volume. See “Polyline Panel” on page 245.
If the selected Slab has any Holes in it, they will be subtracted from the Area and Volume values. See “Slab Holes” on page 531.

Selected Line Panel
The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. For information about the settings on this panel, see “Polyline Specification Dialog” on page 244.

Selected Arc Panel
The SELECTED ARC panel is available when the selected edge is an arc as opposed to a line. See “Change Line/Arc” on page 201.

Line Style Panel
For information about the settings on this panel, see “Line Specification Dialog” on page 234.
Fill Style Panel

The settings on the FILL STYLE panel affect the selected slab’s appearance in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Label Panel

Slab labels display in floor plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for slabs is blank, but you can specify a custom label.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Editing Piers and Pads

Round Piers and Square Pads can be selected individually and in groups in 2D and 3D views and edited using their edit handles and edit toolbars.

There are several ways to move piers and pads; however, they must always be positioned under a wall. A pier or pad can only be moved away from the wall it is placed beneath if it is moved to another wall.

Using the Mouse

In plan view, piers and pads can be edited like CAD lines. Three edit handles allow the pier or pad to be resized and moved along the wall it is placed beneath. See “Editing Line-Based Objects” on page 171.

In 3D views, piers and pads can be edited like CAD boxes. See “Editing Box-Based Objects” on page 184.

Using Dimensions

In plan view, piers and pads can also be moved using dimensions. See “Moving Objects Using Dimensions” on page 365.

If you move a foundation wall or beam, any piers or pads it contains will move with it.

Using the Edit Tools

A selected pier or pad can be edited in a variety of ways using the buttons on the edit toolbar. As with most objects, piers and pads can be replicated, moved, deleted, etc. See “The Edit Toolbar” on page 29.

Pier/Pad Specification Dialog

Select a Round Pier or Square Pad and click the Open Object edit button to open the Pier/Pad Specification dialog.
General Panel

1. **Type** - Specify whether the selected object is a Round Pier or Square Pad.
2. Specify the **Size and Position** of the selected pier or pad.
 - Specify the **Top Height** and **Bottom Height**, as measured from zero.
 - Specify the selected pier or pad’s **Width**.

Layer Panel

For information about the settings on this panel, see “Layer Panel” on page 149.

Fill Style Panel

The settings on the Fill Style panel affect the selected pier or pad’s appearance in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Components Panel

The information on the Components panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Library Fireplaces

A variety of fireplace symbols are available in the library. Flush fireplaces are designed to snap to wall surfaces. Some fireplace symbols can be enclosed by walls or positioned to project through a wall. See “Placing Library Objects” on page 704.

Chimneys

Chimneys can be created using a variety of methods.
Masonry Fireplace Chimneys

To create a chimney on a masonry fireplace

1. Select the fireplace in a 3D view.
2. Ctrl + drag the top edge of the chimney upward through all the floors and the roof until it is to the desired height. See “Unrestricted Movement” on page 193.
3. When the chimney is approximately the correct height, select the fireplace, click the Open Object edit button, and type in the exact height.

Chimney Chases and Caps

There are two ways to draw a chimney chase:

- Place a 3D Box, closed box Geometric Shape, or Soffit over the chimney chase, resize it to match, then increase its height either in its specification dialog or in a 3D view using the same method as extending a masonry fireplace.
- Use walls to define the chimney chase as a room area, making sure these walls are aligned between floors. The chimney chase “room” on the uppermost floor should have a much higher ceiling than the other rooms on that floor and should also have no ceiling or roof. See “Room Specification Dialog” on page 332.

A selection of chimney tops is available in the library. In addition, custom chimney caps can be made using polyline solids or other primitive objects, Geometric Shapes, and/or Soffits. See “Other Objects” on page 731.
When a new plan file is opened in Chief Architect, two floor levels are present: Floor 1 and the Attic Floor. You can add more floors whenever you like: up to 30 total. Once created, floors can also be copied, swapped, and deleted.

Chief Architect also supports special floors for foundations and attics. Only one foundation level and one attic can exist in a plan. Foundations are discussed in their own chapter. See “Foundations” on page 521.

Chapter Contents

- Floor Defaults Dialog
- Floor Tools
- Adding Floors
- Displaying Floors
- Exchanging Floors
- Copying Floors
- Deleting Floors
- Rebuilding Walls, Floors and Ceilings
- Split Levels
- The Current Floor
- The Attic Floor
- The Reference Floor

Floor Defaults Dialog

There is a Floor Defaults dialog for each floor in a plan file aside from the Attic floor, which can be accessed by selecting Edit > Default Settings. Click the arrow to the left of “Floors and Rooms” to expand the category, then expand the “Floor Levels” subcategory. Select one or more floor levels and click the Edit button to open the Floor Defaults dialog for that floor. See “Default Settings vs Preferences” on page 65.

- Floor Defaults can also be accessed by double-clicking the Floor Tools parent button.

- In addition, the Floor Defaults button can be added to toolbars. See “Toolbar Customization Dialog” on page 111.

The Floor Defaults dialog also opens whenever you add a new floor to the plan. See “Adding Floors” on page 538.

The Floor Defaults dialog does not open when you build a foundation; however, the Floor 0 Default settings are created based on the current Foundation Defaults. See “Foundation Defaults” on page 521.

The Floor Defaults dialog is similar to the Room Specification dialog, but controls the default settings for all rooms on the floor in question. The settings here also control the height of individual walls as they are drawn on that floor. See “Room Specification Dialog” on page 332.

Note: The default floor height for Floor 1 is 0. It can be modified in the Room Specification dialog, but not in the Floor 1 Defaults dialog. See “Floor and Room Defaults” on page 314.
Structure Panel

The settings on the Structure panel are similar to those in the Room Specification dialog. See “Structure Panel” on page 334.

Moldings Panel

The settings on the Moldings panel are similar to those in the Room Specification dialog. See “Moldings Panel” on page 680.

Floor Tools

Select Build> Floor to access the floor tools.

Select Build> Floor> Build New Floor to build a new floor. A new floor can be generated based upon the perimeter of the floor below or a blank floor can be created and drawn from scratch. See “Adding Floors” on page 538.

Select Build> Floor> Insert New Floor to insert a new floor below the Current Floor. See “Adding Floors” on page 538.

Choose Build> Floor> Delete Current Floor to remove the Current Floor from the plan. See “Deleting Floors” on page 541.

Select Build> Floor> Exchange With Floor Above to move the Current Floor up one floor and the floor above it down. See “Exchanging Floors” on page 540.

Choose Build> Floor> Exchange With Floor Below to move the Current Floor down one floor and the floor below it up. See “Exchanging Floors” on page 540.

Choose Build> Floor> Build Foundation to open the Foundation Defaults dialog and build a foundation floor. See “Building a Foundation” on page 524.

Select Build> Floor> Delete Foundation to remove the foundation from the plan. See “Deleting Foundations” on page 528.

Select Build> Floor> Hole in Floor Platform to draw a hole in a floor platform on the Current Floor. See “Floor and Ceiling Platforms” on page 325.

Select Build> Floor> Hole in Ceiling Platform to draw a hole in a ceiling platform on the Current Floor. See “Floor and Ceiling Platforms” on page 325.

Select Build> Floor> Floor Material Region to create an area within a floor platform that uses different materials than the floor. See “Floor and Wall Material Regions” on page 748.

Choose Build> Floor> Rebuild Walls/Floors/Ceilings to force Chief Architect to recalculate the relationship between the walls, floors, and ceilings in your model. See “Rebuilding Walls, Floors and Ceilings” on page 541.

Adding Floors

When a new plan file is opened in Chief Architect, two floor levels are present: Floor 1 and the Attic Floor. You can add up to 30 total living floors, as well as create a foundation below Floor 1.

Floors can be added whenever you like; and once created, they can also be copied, swapped, and deleted.

Fill Style Panel

The settings on the Fill Style panel are similar to those in the specification dialogs for many objects throughout the program. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the Materials panel are similar to those in the specification dialogs for many objects throughout the program. See “Materials Panel” on page 761.

Note: Chief Architect allows only one floor, the foundation/basement, below Floor 1. See “Foundations” on page 521.

Build New Floor

New floors can be created in plan view as well as in 3D views, and are always added above
Adding Floors

To create a new floor, select Build > Floor > Build New Floor.

- **Derive new 2nd floor plan from the 1st floor plan** creates a new top floor with exterior walls generated directly over the exterior walls of the floor below. Wall types and roof directives associated with the walls on the floor below are duplicated; however, interior walls are not. See “Roof Panel” on page 301.

- Check **Move Highest Floor’s Roof Up** to move any roof planes displaying on the highest floor in the plan up one floor when the new floor is created. Roof planes displaying on floors other than the top floor are unaffected. This option is only available if there are roof planes built on the top floor and is not available when **Auto Rebuild Roofs** is enabled. See “Build Roof Dialog” on page 586.

- Check **Step floor/ceiling elevations to match existing floor** to maintain all ceiling heights on the existing floor by stepping floor heights on the new floor to match. Ceiling heights on the new floor also become stepped accordingly. See “Stepped Floor and Ceiling Platforms” on page 326.

- **Make new (blank) plan for the # floor** creates a new top floor that is blank. This option is typically useful only if none of the exterior walls on the new floor will be directly above the exterior walls on the floor below. If you choose this method, it may be helpful to turn on the Reference Floor when drawing walls on the new floor. See “The Reference Floor” on page 543.

When you click OK, the Floor Defaults dialog for the newly created floor opens. Make any necessary changes to the floor structure, moldings, or materials and click OK. See “Floor Defaults Dialog” on page 537.

The new floor becomes the Current Floor in plan view. If, however, the new floor is created in a 3D view, the camera remains on its original floor and does not move.

Insert New Floor

A floor level can also be inserted beneath the Current Floor in both plan and 3D views. Begin by going to the floor level you would like to insert a floor under to make it the Current Floor, then select **Build > Floor > Insert New Floor**. See “The Current Floor” on page 542.

- **Derive new # Floor plan from the # Floor plan** to insert a new floor below the Current Floor, with exterior walls based on those of the Current Floor.

- Check **Move Highest Floor’s Roof Up** to move any roof planes displaying on the highest floor in the plan up one floor when the new floor is created. Roof planes displaying on floors other than the top floor are unaffected. This option is only available if there are roof planes built on the top floor and is not available when **Auto Rebuild Roofs** is enabled. See “Build Roof Dialog” on page 586.

- **Step floor/ceiling elevations to match existing floor** to maintain the floor and ceiling heights on the existing floors by stepping floor and ceiling heights on the new floor to match. See “Stepped Floor and Ceiling Platforms” on page 326.

- **Make new (blank) plan** to insert a blank floor below the Current Floor.

When Move highest floor roof up is checked, roof planes on the top floor will move even if the “Roof Planes” layer is locked and manually edited roof planes are set to be retained. See “Roof Panel” on page 587.
Adding a Foundation

To add a foundation, select **Build > Floor > Build Foundation**. See “Building a Foundation” on page 524.

Displaying Floors

Chief Architect allows you to view the floors in your plan in a variety of ways.

In Plan View

In plan view, only one floor can be active for editing at a time. This is referred to as the Current Floor. See “The Current Floor” on page 542.

In addition to the Current Floor, one or more other floors can be displayed for reference purposes: the Reference Floor. Objects on the Current Floor can snap to those on the Reference Floor, helping you align objects. See “The Reference Floor” on page 543.

Floor and ceiling platforms do not display in plan view. When floor and/or ceiling framing is present, its display can be turned on; however, other components of floor and ceiling platforms like sheathing, drywall, and finish materials, cannot.

In 3D Views

In most 3D views, all floors in a plan are visible, from the foundation up to the attic. There are three exceptions:

- **Orthographic** and **Perspective Floor Overviews**, which show the Current Floor, not including its ceiling, plus any floors beneath it.
- **Wall Elevation** views, which show a wall on a single floor, in a single room.

See “3D View Tools” on page 784.

Exchanging Floors

Select **Build > Floor > Exchange With Floor Above** or **Exchange With Floor Below** to swap the Current Floor with the floor above or below.

The floor that was moved becomes the Current Floor at its new location. You can easily move a floor up or down several floors by using either one of these buttons repeatedly.

Copying Floors

The **Edit Area** tools can be used to make copies of entire floors in a plan. See “Edit Area Tools” on page 209. You can use these tools to:

In the Materials List

The materials that make up floor and ceiling platform assemblies are listed under different Categories in the Materials List:

- **Subfloor** - Lists floor framing and structural subflooring materials specified in all Floor Structure Definitions in the current plan. See “Floor and Ceiling Platform Definitions” on page 325.
- **Flooring** - Lists flooring and subflooring materials specified in all Floor Finish Definitions in the current plan.
- **Framing** - Lists ceiling framing and any other materials specified in all Ceiling Structure Definitions in the current plan.
- **Wall Board** - Lists ceiling finish materials specified in all Ceiling Finish Definitions in the current plan.
- **Insulation** - Floor insulation is calculated for all rooms that have a floor, and ceiling insulation is calculated for all rooms that have a ceiling - regardless of the Floor or Ceiling Structure Definition. When a ceiling is not present, insulation is calculated for the roof. See “Structure Panel” on page 334.
- **Foundation** - Lists the concrete and mesh for all Floor Structure Definitions in the current plan with a layer of concrete material. See “Materials and the Materials List” on page 766.

See “Materials Lists” on page 943.
• Make a copy of an existing floor to be pasted onto a new floor.
• Make a copy of all existing floors in a plan to be pasted into a different plan.

You can also copy the information on a floor by pressing Ctrl + A (Select All), then using **Copy** and **Paste Hold Position**. See “Paste Hold Position” on page 138.

Deleting Floors

Select **Build> Floor> Delete Current Floor** to remove the Current Floor from the plan. If there is a floor above, it becomes the Current Floor; if there is no floor below, the floor beneath becomes the Current Floor.

To delete Floor 0, select **Build> Floor> Delete Foundation**. You can delete the foundation without actually being on Floor 0. Floor 0 cannot be deleted while **Auto Rebuild Foundation** is turned on. See “Deleting Foundations” on page 528.

When a floor is deleted, all objects on that floor are deleted with it, including locked roof planes and any other objects on locked layers. See “Locking Layers” on page 143.

Rebuilding Walls, Floors and Ceilings

When you make a change to the walls or to the floor or ceiling platforms in your plan, they may not immediately resize or move in the 3D model. The program does detect such changes, though, and the next time you generate a 3D or section/elevation view, walls, floors and ceilings are rebuilt.

By default, walls, floors and ceilings are also rebuilt when an automatic roof is generated. See “Build Roof Dialog” on page 586.

You can direct the program to rebuild walls, floors, and ceilings at any time by selecting **Build> Floor> Rebuild Walls/Floors/Ceilings**.

If you do not want the program to rebuild walls, floors and ceilings when a 3D view is created, uncheck **Auto Rebuild Floors and Ceilings** in the **3D View Defaults** dialog. This may speed up plan view editing for very large plans. When this is unchecked and the structure is not up-to-date, the Rebuild Walls, Floors, Ceilings icon displays near your mouse pointer. See “3D View Defaults Dialog” on page 782.

Split Levels

Both split level floor plans and split level entries can be created by controlling the floor and ceiling heights of individual rooms in a multiple story structure.

For more detailed information about both types of structure, visit chiefarchitect.com.

Split Level Floor Plans

A split level, or tri-level, structure is a building where the floor level in one part of the plan is located approximately half way between the floor and ceiling levels of another part of the plan.
To create a simple split level plan

1. Draw a simple rectangular structure divided into two separate halves by an interior wall.
2. Select one of the rooms and click the Open Object edit button. See “Room Specification Dialog” on page 332.
3. Raise the Floor Height then press the Tab key.
4. Restore the Relative Rough Ceiling to the default value, then click OK.
 • The foundation under the room with the lower floor height will have the specified Min Stem Wall Height.
 • The foundation under the room with the raised floor will have taller stem walls.
 • Both can be edited in the Room Specification dialog.
6. If you add a Floor 2, note that the Ceiling Height in the room on Floor 1 will be reset to the default value.
 • To maintain a stepped condition on multiple floors, return to this room and set the Relative Rough Ceiling back to using the default.

Split Level Entries

A split level entry, or divided entry, is characterized by an entry door that opens onto a landing positioned half way between the basement floor and first floor levels.

The Current Floor

In a given plan view window, only one floor level can be active at any given time. The active floor is referred to as the Current Floor, and it is the only floor on which objects can be edited.

If you would like to view two different floor levels side by side, open a second plan view, navigate to the desired floor, and then tile the two views. Although both are visible, only one of these view windows is active. See “Working in Multiple Views” on page 124.

Floor Up / Floor Down

If you are working with more than one floor, you can select Tools> Floor/Reference Display> Up One Floor or Down One Floor to switch from one floor to another.

You can change the Current Floor in floor plan, cross section/elevation and 3D views. The Current Floor displays on the Change Floor/Reference button, which can be found between the Down One Floor and the Up One Floor buttons.

Floors become available once they have been built. The Attic and foundation levels are also accessible using these tools.

Change Floor / Reference

If there are multiple floors, select Tools> Floor/Reference Display> Change Floor/Reference to open the Change Floor/Reference
dialog, where you can select both the Current Floor and which floor is used in the Reference Floor, as well as control the appearance of the Reference Floor.

The Attic Floor

Chief Architect automatically creates a floor above the top numbered floor level of each plan. This floor is called the Attic floor and has only one purpose: to provide a space for automatically generated Attic walls. See “Attic Walls” on page 289.

In some situations, you may find it necessary to draw one or more walls on the Attic floor; however, even if you enclose an area with walls, rooms cannot be created on this floor level. If you wish to create an attic loft or bonus room in your plan, you must do so on a numbered floor level.

Because the Attic floor is not meant to be a living area, a warning message will display if you try to draw walls or other objects on this floor level.

The Reference Floor

When a model has more than one floor level, it is often helpful to see how they relate to each other in plan view. Select Tools> Floor/Reference Display> Reference Display to turn on the display of an additional reference floor or floors along with the Current Floor.

Objects on the Current Floor can snap to objects on the Reference Floor; however, objects on the Reference Floor cannot be selected or edited.

If the Reference Floor Display is turned on when a view is printed, it will be included in the printed output. See “Displaying Objects” on page 985.

When the Reference Floor Display is turned on, the floor level below the Current Floor is used as the Reference Floor. If there is no floor level below, the floor above is used. By default, the Reference Floor displays in red using the Reference Floor Layer Set.

Referencing Other Plan Files

In addition to displaying other floors in the current plan file for reference, you can display information from other plan files in both 2D and 3D views. See “The Reference Display” on page 61.
Chapter 22:

Stairs, Ramps, and Landings

Staircases can be composed of one or more straight or curved stair sections, ramps, and landings. Stairs and ramps can be drawn, selected and edited in 2D and 3D views.

Starter treads can be defined, stair sections can be flared, treads can be wrapped, and curved sections can be turned into winders.

Landings can be created automatically or manually and their shape customized. You can edit an existing landing, or create a landing from a closed CAD polyline. Landing heights can be defined or you can let them automatically adjust as needed.

Stairwells can be created automatically or manually and can be seen in 3D views.

Stair and Ramp Defaults

Default settings for stairs and ramps determine the initial attributes of these objects when they are first created. Access the defaults by selecting Edit> Default Settings, then clicking the + beside Stairs and Ramps. Select an item and click the Edit button to open the defaults dialog associated with your selection. See “Default Settings vs Preferences” on page 65.

Local building and fire authorities must be consulted for specific stair construction codes and access requirements.

Chapter Contents

• Stair and Ramp Defaults
• The Stair Tools
• Anatomy of a Staircase
• Drawing Stairs and Ramps
• L- and U-Shaped Stairs
• Displaying Stairs, Ramps, and Landings
• Editing Stairs and Ramps
• Stair and Ramp Sections and Subsections
• Landings
• Maintaining Tread Depth
• Flared Stairs and Curved Treads
• Starter Treads
• Winders
• Wrapped Stairs
• Other Special Railings and Stairs
• Creating a Stairwell
• Rooms Below Staircases
• Staircase Specification Dialog
• Ramp Specification Dialog
• Stair Landing Specification Dialog

The Stair and Ramp Defaults dialogs can also be accessed by double-clicking the Stair Tools parent button or any child tool aside from the Landing tool.
Both interior and exterior stairs have default definitions for size, style, materials and much more. In fact, the default dialogs for stairs and ramps are similar to the Staircase and Ramp Specification dialogs. See “Staircase Specification Dialog” on page 565 and “Ramp Specification Dialog” on page 575.

Interior and Exterior stairs are drawn using the same tools: stairs created inside of a room are considered Interior while those drawn outside of a structure are considered Exterior.

Landings do not have a defaults dialog. Instead, they get their initial attributes from the stairs or ramps that they are connected to.

The Stair Tools

Select Build> Stairs to access the Stair Tools.

Draw Stairs

To draw a straight staircase select Build> Stairs> Draw Stairs, then click and drag in floor plan or a 3D view. You can also click once to place a staircase that extends from the current floor up to the next floor. See “Drawing Stairs and Ramps” on page 548.

Straight Stairs

Select Build> Stairs> Straight Stairs, then click to create stairs between the current floor and the floor above. To create stairs between two floor platforms on the current floor, click on the low side, within a few feet of where the floor changes height.

- If you click on the low side of a floor platform defined by a railing, a doorway will be created in the railing, adjacent to the stairs.
- If you click on the low side of a floor platform defined by a wall, stairs will be created but a doorway will not.

Structural Defaults

The purpose of interior stairs is to provide passage from one floor platform to another, so the attributes that influence floor heights - including ceiling heights, floor platform thicknesses, and floor finish materials - also influence the structure of stairs. When considering a staircase’s structure, bear in mind that riser height is directly dependent on the distance from one floor platform to another.

When Automatic Heights are used, stairs are built so that they rest on the top of the floor structure of the floor where they are drawn, and build up to the top of the floor structure on the floor above. Risers are measured to the floor finish surfaces on both floors. See “Floor and Ceiling Platform Definitions” on page 325.

Ramps are built in a similar manner: interior ramps bear on the floor structure, and when Automatic Heights are used, the top surface of both interior and exterior ramps locates floor finish surfaces.

Curved Stairs

Select Build> Stairs> Curve to Left or Curve to Right and click once in plan view to place a curved staircase. See “Curved Stairs and Ramps” on page 548.

L-Shaped Stairs

Select Build> Stairs> L-Shaped Stairs, then click to create two equal stair sections that form a 90° corner and are connected by a landing. See “L- and U-Shaped Stairs” on page 549.

U-Shaped Stairs

Select Build> Stairs> U-Shaped Stairs, then click to create two stair sections that form a 180° turn and are connected by a landing.

Landing

Select Build> Stairs> Landing to draw a landing, which is a platform connecting two or more stair sections. See “Landings” on page 554.
There are two ways to create a landing using this tool:

- Click once to place a landing measuring 39” (975 mm) on each side.
- Click and drag to draw a rectangular landing sized as needed. See “Polylines” on page 243.

You can also create a landing by converting a CAD polyline. See “Convert Polyline” on page 205.

Ramp

Select **Build > Stairs > Ramp** to draw a sloped ramp. By default, ramps are drawn at a 1:12 slope to a maximum height of 30” (760 mm). See “Drawing Stairs and Ramps” on page 548.

Anatomy of a Staircase

Stairs as well as ramps are often described in terms of **rise** and **run**. Rise is typically between 6” and 8”, and the run between 10” and 12”. In metric plans, rise is 177 to 190 mm, and the run is about 250 mm. Whenever possible, Chief Architect will automatically apply reasonable rise and run values that meet most building codes to stairs and ramps as they are drawn.

In Chief Architect, staircases automatically have a consistent rise and run along their length because this is also a typical requirement of most building codes. When this is not desired, however, stairs and ramps can be divided into multiple sections subsections. See “Stair and Ramp Sections and Subsections” on page 552.

Staircase Terminology

- **Balusters** - The vertical members that run between the handrail and the treads or bottom rail.
- **Bracket** - Decorative L-shaped supports on the exposed side of stairs below each tread.
- **Landing** - A platform connecting two or more stair sections.
- **Newels** - The end post of a stair railing located at landings and the beginnings and endings of new stair sections.
- **Rise** - The height of a riser, measured from tread surface to tread surface, Also referred to as Unit Rise.
- **Riser Angle** - The angle of the stair or stair section, defined by a line drawn through the back surfaces of its treads.
- **Riser** - The vertical stair member located between the treads. Risers may be solid or open. When open, the front surfaces of the stringers are considered the risers.
- **Run** - The depth of a tread, measured from riser surface to riser surface. Run does not include the Tread Overhang. Also referred to as Unit Run.
- **Runner** - The carpet that runs down the center of the staircase.
- **Shoe** - The bottom railing, placed on the landing floor, that anchors the balusters at landings.
- **Stringer** - The inclined support member of a staircase that supports the treads and risers.
- **Tread** - The horizontal member of a stair that the foot is placed on.
- **Tread Overhang** - The portion of a tread extending past the front surface of the riser and over the tread below. Also referred to as Nosing or Nosing Extension, it is not included in the Run or Tread Depth measurements.
- **Tread Thickness** - The vertical depth of the tread material.
- **Winder** - A wedge-shaped stair tread used where curved or angled stairways change direction.

Spiral Stairs

In the Library Browser, browse to Chief Architect Core Catalogs> Architectural> Spiral Stairs to access a selection of spiral staircase fixtures. Select the object that you want, then click in any view to place it in the plan. See “The Library” on page 691.

Because spiral staircase symbols are fixture symbols, they do not have an Auto Stairwell edit tool. An opening in the floor above a spiral staircase must be created manually. See “Creating a Stairwell” on page 563.
Stair Structure and the Model

By default, stairs locate the height of the floor platform that they are drawn on and seek the next level, which may be the floor platform of the floor above or a landing. The stringers locate the subfloor of the floor platforms and maintain consistent riser height. If the stairs are long enough to reach the next level at a reasonable rise angle, their tread depth and number of treads are automatically calculated to create a staircase with consistent tread and riser dimensions along its entire length.

You can modify this behavior or turn it off altogether in the Staircase Specification dialog and specify your own rise and run values. Bear in mind, though, that if you turn it off, you will need to specify the correct Top and Bottom Heights to make sure that the stairs actually meet both floor platforms correctly. See “General Panel” on page 566.

Drawing Stairs and Ramps

Stairs and ramps can be drawn in floor plan and 3D views but not in cross section/elevation views. There are a few things to keep in mind when drawing stairs:

- Before stairs are created, make sure that the heights for both the lower and upper floors are correctly defined.
- Stairs are drawn going UP, so they should be drawn from the lower of the two floors they connect.
- By default, stairs adjust their riser and tread dimensions to connect two floor heights if possible. The rise and run are calculated so that the steps are consistent in size.
- Stairs drawn within 1” (25 mm) of a wall will snap to the outer surface of the wall.
- Stairs will snap to the Reference Display, if you have it turned on. See “The Reference Floor” on page 543.
- Hold down the Ctrl key to suppress these snapping behaviors.
- If a stairwell room has been defined on the floor above, the top of the stairs can be dragged until it stops at the railing or wall defining the stairwell.
- When drawing stairs or a ramp up from the terrain, it is a good idea to make sure the terrain is up to date. See “Building the Terrain” on page 910.

Straight Stairs and Ramps

The Draw Stairs tool can be used in two different ways:

- Click and drag in a straight line to draw stairs that are the length that you drag.
- Click once to place stairs that go from the current floor up to the height of the next floor level.

You can also click once using the Straight Stairs tool to create stairs between rooms on the same floor with different floor heights or between exterior rooms and the terrain. When the Straight Stairs tool is active, a preview outline of the stairs will follow the mouse pointer. Hold down the Alt key to reverse the direction of the Up arrow in the preview.

Similarly, ramps can be created by either clicking and dragging or by clicking. A ramp created with a single click will be 30” (760 mm) high, have a slope of 1:12, and be 360” (9120 mm) long.

An individual stair or ramp section must be between 6” (150 mm) and 100’ (30 m) in length. If a greater length is needed, connect two sections using a landing.

Curved Stairs and Ramps

You can make a straight stair or ramp section curved, or vice versa:

- Select the stairs or ramp and click the Change Line/Arc edit button. See “Change Line/Arc” on page 201.
- Select the stairs or ramp, hold down the Alt key (or right-click), and drag an end edit handle. See “Alternate” on page 164.
You can also curve straight stairs and ramps by drawing them against a curved wall.

Curved Stairs can also be created in plan view by selecting Build > Stairs > Curve to Left or Curve to Right. Click to place a 90° curved stair section that can then be edited. You can continue clicking to place additional curved staircases until another tool is selected.

Drawing Stairs and Ramps Downward

Stairs and ramps can be drawn from the current floor level downward; however, drawing stairs or ramps between floors in this manner is not recommended. Drawing downward should only be used to create a staircase or ramp between a porch or deck and the terrain when you require the direction arrow to say “DN” instead of “UP”.

To draw stairs going downward

1. Select Build > Stairs > Draw Stairs 🍀.
2. Hold down the Alt key or the right mouse button.
3. Click and drag to create straight stairs.

When drawing stairs or ramps from a floor platform to the terrain, or vice versa, they will locate the height of the terrain as long as it is lower than the floor height. You can also create a landing or “room” outside the structure and use it to establish the bottom height of the stairs or ramp. Then, draw in an upward direction from the lower platform to the upper platform.

L- and U-Shaped Stairs

The L-Shaped Stairs and U-Shaped Stairs tools allow you to place staircases composed of two stair sections connected by one or more landings with a single click.

The staircases created with these tools build from the current floor to the floor above. If you need a staircase that builds between platforms on the same floor level, or in a downward direction, you will need to draw it manually. See “Landings” on page 554.

When you select either tool, the New Shaped Staircase dialog opens.

New Shaped Staircase Dialog

The settings in this dialog retained between sessions in the software and are global, affecting all plans.

1. Check Only Show This Dialog on Double Click to suppress this dialog unless the L-Shaped Stairs or U-Shaped Stairs is double-clicked.
 - Specify the Default Direction of the stairs as they build upward: Clockwise, or Counterclockwise.
 - Check Make Winders to create multiple landings with angled edges between the two stair sections. When unchecked, a single rectangular landing is produced.

2. U Shaped Stairs -
 - Specify the width of the Gap between the two stair sections.
 - Check Split Landing to create two rectangular landings instead of one. When Make Winders is also checked, each of these two landings is further divided into triangular shaped winders.

When you click OK, a preview outline will follow the mouse pointer.

You can control the staircase’s orientation and direction by moving the mouse pointer towards a wall.
• In the case of a U-Shaped staircase, the landing will snap to the wall first.
• As you move the mouse pointer closer to the wall, the preview will rotate so that the upper stair section snaps to the wall.
• If you continue to move the mouse closer, the lower stair section will snap to the wall instead.
• If you move the mouse pointer into a wall corner, the preview will rotate so that the bottom stair section snaps to the wall that is nearest to the mouse pointer.

Displaying Stairs, Ramps, and Landings

The display of stairs, ramps, and landings in all views is controlled in the Layer Display Options dialog. Stairs, ramps, and landings are placed on the “Stairs & Ramps” layer by default but, once created, can be placed on any layer. See “Layer Attributes” on page 142.

In Plan View

In plan view, stairs, ramps, and landings display on the floor they were drawn on and are only visible from the floor above if there is a stairwell. See “Creating a Stairwell” on page 563.

Stairs and ramps have an arrow indicating the direction they run. Interior stairs and ramps have an UP arrow on the floor they were created on and a DN arrow when viewed from the floor above. See “Drawing Stairs and Ramps” on page 548.

The style and size of the direction arrow can be specified in the Staircase or Ramp Specification dialog. The Text Style, color, and display are controlled by the “Stairs & Ramps, Up/Down Arrows” layer. See “Arrow Panel” on page 236.

Stair landings can also display labels in plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on. Landings do not have an automatic label; however, you can specify a custom label in the Landing Specification dialog. See “Object Labels” on page 515.

You can specify whether newels, balusters, and/or rails display in plan view in the Staircase Specification dialog. See “Newels/Balusters Panel” on page 573.

The display of stair and ramp overhangs and tread nosing in plan view can be controlled using the “Stairs & Ramps, Details” layer. The display of stair stringers in plan view is controlled using the “Stairs & Ramps, Stringers” layer.

You can create custom labels for stairs, ramps, and landings using the Text Tools and custom text macros. See “Creating User Defined Macros” on page 1001.

When a staircase is selected in plan view, the numbers associated with each of its sections and subsections display. Stair sections are assigned a single number, while subsection numbers have two parts: a section number and subsection number separated by a hyphen.

To see the center of a stair section curve in plan view, click Show Arc Centers and Ends. See “Arc Centers and Ends” on page 176.

Stair Breaklines

In plan view, staircases can display a breakline symbol. The portion of the staircase located above the breakline can display as either a dashed outline with transparency or it can be suppressed altogether. See “Breakline Panel” on page 571.

A breakline can be added to a selected staircase in either of two ways:
• Click the Add Breakline edit button.
• Check Has Breakline in the Staircase Specification dialog.

A breakline’s position along the staircase can be adjusted using the small, circular Move Breakline edit handle that displays along the breakline, as well as in the Staircase Specification dialog.

To remove a breakline from a staircase, click the Remove Breakline edit button or uncheck Has Breakline.

Editing Stairs and Ramps

Staircases and ramps can be selected and edited in plan view and 3D views. See “Selecting Objects” on page 167.

To select a single section of a staircase, hold down the Shift key before clicking on it. When selected in this manner, a stair section can be edited independent of any other connected stair sections.

Using the Mouse

When a staircase or ramp is selected, its edit handles display. These edit handles can be used to customize the object in many ways. See “Editing Objects” on page 163.

• Straight stair sections and ramps are edited like lines. They have additional edit handles for resizing the width of the section. See “Editing Line-Based Objects” on page 171.
• Curved stair sections and ramps are edited like arcs and also include edit handles for resizing the stair’s width. See “Editing Arc-Based Objects” on page 173.
• Ramps can be resized to a maximum top height of 30” (760 mm). If you extend a ramp’s length to greater than 360” (9120 mm), its slope will decrease. For a taller ramp and control over the slope, uncheck Automatic Heights in the Ramp Specification dialog and specify the values you need. See “General Panel” on page 576.

• When stair sections are merged, the edit handles display differently depending on what subsection is currently selected. See “Merging Stair and Ramp Sections” on page 552.
• When moving merged stair or ramp sections, all merged sections and landings move as one unless Stair Sections Move Independently is checked in the Preferences dialog. To temporarily enable this behavior, hold down the Alt key on the keyboard. See “Architectural Panel” on page 93 and “Alternate” on page 164.

In 3D Views

Although stairs span between two floors, they can only belong to one floor. As a result, only multi-floor views show the upper floor with the platform opening and the lower floor with the staircase simultaneously. In Floor Overviews, stairwells may appear as an empty spaces. See “3D View Tools” on page 784.

• Additional edit handles display on the first two treads of a staircase if the Starter Tread edit button is clicked. See “Starter Treads” on page 558.

• Several additional edit handles display on a staircase if the Flare/Curve Stairs edit button has been clicked. See “Flared Stairs and Curved Treads” on page 556.

In the Specification Dialog

Stair, ramp, and landing railings can also be customized. See “Railing Panel” on page 572, “Newels/Balusters Panel” on page 573, and “Rails Panel” on page 575.

Using the Edit Tools

A selected staircase or ramp can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Adjusting the Radius of Curved Stairs

The easiest way to match the radius of a stair section to the radius of a curved wall is to draw a staircase near one side of the curved wall using the Draw Stairs tool. The stairs snap to the wall, and the radius of the new staircase is defined. See “Curved Stairs and Ramps” on page 548.
Existing curved stairs can be aligned with an existing curved wall by aligning their centers, much the same way that curved stairs on different floors can be aligned. See “Aligning Objects” on page 194.

If there is no curved wall, the radius of a stair section can be aligned to a CAD arc or circle.

To align curved stairs to an object
1. Align the centers of the CAD object and the staircase.
2. Select the curved stairs and move the side nearest to the arc or circle edge using the Resize edit handle.
3. Finally, restore the stair width by dragging from the other side handle or using the Stair Specification dialog.

Stair and Ramp Sections and Subsections

In Chief Architect, staircases and ramps can be composed of multiple sections. In addition, each section can be broken into multiple subsections.

• Both sections and subsections can be curved while their neighbors are straight and can have different tread depths.

• Stair sections can also have different tread widths, can be disconnected from adjacent sections using the edit handles, and are usually separated from other sections by landings.

• Subsections both move and rotate as a single object, while sections move with other sections but rotate separately.

You can identify sections and subsections by clicking on a stair or ramp to select it: sections are identified with labels using whole numbers (1, 2, etc), while subsections are identified using hyphens (1-1, 1-2, etc). In addition, when a a stair or ramp is selected, only the selected section will have edit handles.

Drawing shapes

1-2 is the selected subsection.

The selected section or subsection can be identified by the Move edit handle, which is red by default. See “Selected Edge” on page 168.

Creating Stair and Ramp Subsections

There are several ways to create a stair section with multiple subsections:

• Draw one section, then draw a second section that begins at the first one’s endpoint.

• Draw two separate segments, then snap the start point of one segment to the endpoint of the other using the edit handles.

• Draw one segment and use the Break edit tool to divide it into two subsections. See “Break” on page 200.

Creating Stair and Ramp Sections

There are also three ways to create multiple stair sections:

• Draw two separate stair sections and join them using a landing.

• Use the Complete Break edit tool to divide a section into two sections. See “To create a complete break” on page 200.

• Use the Disconnected Selected Section edit tool to change a subsection into a section.

Merging Stair and Ramp Sections

Any combination of straight and curved stair sections or straight and curved ramps using Automatic Heights can be merged. The resulting staircase or ramp section is made up of subsections and, if there are no landings, functions as a single unit.

Stair and ramp subsections must be drawn in the same direction if they are to be merged:

• The top edge of a stair section or ramp cannot merge with the bottom edge of another section or ramp.

• Combinations of stairs drawn in the UP and DOWN directions cannot be merged.
Stair subsections merge at the center points of their upper and lower edges.

Stair sections and ramps cannot be merged directly. If a combination of stairs and a ramp is required, connect them with a landing. See “Landings” on page 554.

To merge stair or ramp sections

1. Confirm that the stairs or ramps that you wish to merge are using Automatic Heights. See “General Panel” on page 566.

2. Position the sections so they are in the desired relationship to each other.
 • In order to merge stair sections correctly, they must be parallel to one another.
 • To create merged subsections that change direction, make one of the merged sections curved and then specify Winders. See “Winders” on page 559.

3. Select either stair or ramp section so that its edit handles display.

4. Click the Extend handle on the end to be merged and drag it to the point where the two stairs or ramps are to meet.

A staircase consisting of merged subsections resembles a single stair section in plan view. The UP (or DN) arrows join, becoming a single direction arrow.

When a subsection is selected, the entire staircase is selected. Additional edit handles, indicating the presence of multiple subsections and allowing you to reposition the line along which they join. See “Using the Mouse” on page 551.

Lock Tread Depth

If a staircase with Lock Tread Depth selected in the Staircase Specification dialog is resized, its length increases or decreases one full tread at a time. See “General Panel” on page 566.

When Lock Tread Depth is checked, it can be difficult to merge the section with another section or landing. If this is a problem, you can temporarily uncheck Lock Tread Depth. After the stairs are merged, the tread depth can be locked again.

Curved Subsections

Stair subsections attached at both ends by other sections do not have a free end that can be dragged into a curve. In this situation, change the middle subsection to a curve using the Change Line/Arc edit button. See “Change Line/Arc” on page 201.

To curve an enclosed stair subsection

1. Draw three straight stair sections and connect them end to end.

2. Select the middle subsection.

3. Click the Change Line/Arc edit button. The center section turns into a curved stair section.
4. Use the triangular Change Curve edit handle to adjust the curvature of the middle section as needed.

Stairs joined in this manner can be turned into winders. See “Winders” on page 559.

Landings

Stair landings are platforms between stair sections and/or ramps, and can be created in either of five ways:

- Click and drag using the Landing tool.
- Single-click using the Landing tool to create a 3’-3” (975 mm) square landing.
- Click between two stair sections using the Draw Stairs tool.
- Convert a closed CAD polyline into a landing. See “Convert Polyline” on page 205.
- One or more landings are also created when the L-Shaped Stairs or U-Shaped Stairs tool is used.

To create a landing between stair sections

1. Draw two stair sections going UP. They can be at any angle.
2. Click between the two sections using the Draw Stairs tool to create a landing. Notice that only one direction arrow displays after the sections are joined by a landing.

Similarly, a landing can be created between two ramps by clicking between them with the Ramp tool active.

Multiple stair sections and/or ramps can be connected to one landing. For example, two or three stair sections might meet at a landing with a single stair section continuing to the next level.

To be linked by a landing, all sections must be drawn in the same UP direction and the top of one section should be near the bottom of the next.

Stair sections connected with a landing will move together as a single unit unless Stair Sections Move Independently is checked in the Preferences dialog. See “Architectural Panel” on page 93.

A landing formed between two stair sections having less than a 90º angle between them are created with a short edge not less than 6” (150 mm). This is because most building codes require the shortest tread to be at least 6” wide. This edge can be manually edited to less than 6” if needed.

Adjacent Landings

Some staircases have more than one landing adjacent to one another. When Auto Adjust Height is used, landings in Chief Architect recognize other nearby landings and will automatically adjust their heights and railings when their edges are sufficiently close to one another.

To create adjacent landings, draw two landings and then position them so that their edges are within 1” (25 mm) of one another. The landing that was drawn first will maintain its position while the height of the one drawn later will be the equivalent of one riser.
higher than the first. The railings on adjacent edges are suppressed, as well.

Adjacent landings can be used to represent winders. See “Winders” on page 559.

Editing Landings

Once created, landings can be selected in 2D and 3D views and edited like other closed-polyline based objects. See “Editing Closed Polyline-Based Objects” on page 180.

Landings derive their initial materials, height, thickness, and railings from the stairs and/or ramps attached to them. You can assign a unique railing or material to a landing in the **Stair Landing Specification** dialog. See “Stair Landing Specification Dialog” on page 577.

When moving a landing, all stair or ramp sections connected to it move as one unless **Stair Sections Move Independently** is checked in the **Preferences** dialog. To temporarily enable this behavior, hold down the Alt key on the keyboard. See “Architectural Panel” on page 93 and “Alternate” on page 164.

Landing Height and Thickness

A landing’s height and thickness can either be dynamically controlled by the program or user-defined and static.

By default, landing top height and thickness are both set to **Auto Adjust**. This means that if the structure of the attached stairs is edited so that their length or riser height is affected, the landing’s height and thickness will adjust automatically to maintain consistent riser height in all connected stair sections.

If you uncheck either **Auto Adjust** box in the **Stair Landing Specification** dialog, the landing will maintain the specified height and/ or thickness no matter how the attached stairs or ramps are modified. This can result in stairs that have inconsistent risers. See “General Panel” on page 578.

Landing Railings

By default, landings have railings on all edges, but will automatically suppress the railing along any portion of an edge that connects to a stair or ramp section or has an adjacent landing. You can specify whether this automatic behavior is used, the railing is suppressed, or the railing is always applied in the **Stair Landing Specification** dialog. See “General Panel” on page 578.

You can also suppress the railing on a selected edge by clicking the **Remove Railing from Selected Edge** edit button. To always generate the railing on a selected edge, click the **Add Railing to Selected Edge** edit button. See “Selected Edge” on page 168.

Landings can be edited into a wide variety of shapes. So that the railings of stair sections connect properly to the landing railings, you may find it helpful to use the **Break** edit tool to create a break in a landing edge if it is longer than the connecting stairs are wide. See “Break” on page 200.

Maintaining Tread Depth

Most building codes require staircases to maintain a consistent tread depth.

Walk Line

By default, Chief Architect measures a stair section’s length and tread depth along a Walk Line located 12” (30 cm) from the right edge of the stair section. On curved stairs, it is located 12” (30 cm) from the inside edge of the curve.

The distance of the Walk Line from the staircase edge can be specified in the **Staircase Specification** dialog. See “Style Panel” on page 568.

Alternatively, you can turn the Walk Line feature off and tread depth will be measured at the tread center.

When a curved stair section has **Automatic Treads** specified in the **Staircase Specification** dialog and the Walk Line is used, the number and/or width of treads in a section or subsection changes when the inner edge is moved. For this reason, it is best to finalize stair section width as early as possible.
There are two ways to keep tread depth even throughout a stair section made of multiple subsections.

Lock Tread Depth

The first way to maintain tread depth is to **Lock Tread Depth** to a specified value in the Staircase Specification dialog. See “General Panel” on page 566.

Once locked, any changes to the length of the stair section are achieved by keeping the specified tread depth and changing the number of treads.

Ignore Subsection Boundaries

Curved stair sections typically have treads that are wider on one side than on the other. When they are connected to other stair sections, as with winders, it is possible to have treads that are too narrow at the Walk Line. See “Winders” on page 559.

Uniform tread depth in a stair section with subsections can be maintained by checking **Ignore Subsection Boundaries** in the Staircase Specification dialog. See “General Panel” on page 566.

When **Ignore Subsection Boundaries** is checked, the Tread Depth value may change when the stair section is edited, but will remain consistent throughout all subsections.

Because the boundaries between stair sections are being ignored, the treads where a straight section joins a curved section may shift position or change angle to accommodate the adjustment.

Flared Stairs and Curved Treads

Any stair section can be flared and/or its treads curved using the Flare/Curve Stairs edit button.

Only exposed sides of a stair section can be flared. If one side of a stair section is against a wall or wrapped (see “Wrapped Stairs” on page 560), only the exposed end can be flared.

Flaring, curved treads, and special treads should be the last changes that you make to any stairs.

Creating a Flared Stair

Flared stairs grow wider near one end, typically sweeping outward at the bottom. Stairs can also be flared at the top or on both ends.

To create flared stairs

1. Create the stairs and connect them to a landing, floor platform edge, or another stair section.
2. Specify the section width, tread depth, and any other needed information.
3. Select the stairs and click the **Flare/Curve** Stairs edit button. New Flare edit handles display on all four corners of the stairs.

4. Drag one of the corner handles to flare that corner. As you drag the flare, the Status Bar shows the distance the side handle moves. This allows you to move the opposite handle the same amount.

5. When you are finished editing the flare, click the **Main Edit Mode** to restore the stairs’ regular edit handles and toolbar buttons.

Symmetrically Flared Stairs

Use the dimension information that displays in the Status Bar as a reference to create symmetric flares on both sides.

Adjusting the Flare Radius

After a flared staircase has been created, you may want to soften the radius of the flare.

The four handles at the sides and the four handles at the corners flare the stair section when dragged outward. The two handles in the center of the section move the starting point for flaring along the stair section.

To adjust the flare radius

First, adjust the curvature of the flared section.

1. Select the flared stair and click the **Flare/Curve** Stairs edit button to access the flare handles again.

2. Select the handle along the flared edge of the stair. Drag this handle outward very slightly. This forms a more gradual flare.

Then, adjust the starting point of the flare:

1. Select the flared stair and click the **Flare/Curve** Stairs edit button to access the flare handles again.

2. This time, drag the lower of the two central handles upward. The handle above it moves with it. This moves the start point for the bottom flare from the middle of the section toward its top, making the flare even more gradual.

Treads Perpendicular to Flare

Flared stairs often look best when the treads curve to meet the flared side perpendicular to the radius.

To curve the edges of flared treads

1. Select the flared stair and click the **Flare/Curve** Stairs edit button to access the flare handles again.

2. Drag a corner edit handle upward one tread depth or less.
3. When you are finished editing the curve, click the **Main Edit Mode** to restore the stairs’ regular edit handles and toolbar buttons.

This type of tread curving works only on flared edges and concentrates the curvature at that edge.

Flared treads can also be curved using the Curve edit handle, which curves the treads more uniformly.

Curving the Treads

When treads are curved, all treads in the section show some degree of curvature. Treads close to the curved end have a greater curve than those at the opposite end, but both ends can be curved.

To curve stair treads

1. Select the staircase, then click the **Flare/Curve Stairs** edit button.
2. Drag the edit handle at the center of the bottom edge a small distance to curve the treads.
3. When you are finished editing the curve, click the **Main Edit Mode** to restore the stairs’ regular edit handles and toolbar buttons.

Starter Treads

The first and second treads of a staircase can be turned into starter treads by clicking the **Starter Tread** edit button. Starter treads extend to the side of the staircase, have rounded edges and are common on traditional staircases.

A starter tread can be added only to open sides of a stair section. If one side of a stair section is against a wall or wrapped (see “Wrapped Stairs” on page 560), only the exposed tread end can become a starter tread.
To create starter treads

1. Click on a staircase to select it.

2. Click the Starter Tread edit button. An edit handle displays on each end of both the first and second treads.

3. Drag either of the handles on the first tread outward from the stair section. If the stair section is against a wall, only one handle displays on the side opposite the wall.

4. As you drag, the ends of the tread become rounded.

5. Two additional edit handles display on each side of the tread, along the back edge.

6. Drag either of the two square handles upward to increase the width of the rounded ends of the tread.

7. Drag the edit handle on the second tread outward from the stair section to create a second starter tread.

8. To make changes to existing starter treads, select the stairs, click the Starter Tread edit button and repeat the above steps as needed.

9. When you are finished editing the starter treads, click the Main Edit Mode to restore the stairs’ regular edit handles and toolbar buttons.

Winders

Winders are steps located where a staircase turns and are narrower on the inside of the turn than they are on the outside. A staircase defined as a winder expands to fill in any gaps between the side of the stairs and nearby walls.

Curved stair sections are typically used to create winders, although straight stairs can also be used. See “Curved Stairs and Ramps” on page 548.

To create winders

1. In an enclosed room area, place and connect the stair sections that you want to be winders. For best results:

 • The stairs should be two straight sections connected by a curved section between them;
 • The curved section should be adjacent to a 90° corner, as illustrated.

2. Select the staircase and click the Open Object edit button to open the Staircase Specification dialog.

3. On the General panel, place a check in the Winders check box and click OK.
4. The steps nearest the wall corner adjust their shapes and extend into the corner after the stair is changed to a winder.

The Winders attribute directs the stair section to expand or contract to meet nearby walls, and can also be used to create a partial railing. See “Partial Railings” on page 562.

Winders sometimes have treads that are too narrow at the inside curve. The Ignore Subsection Boundaries option can address this issue. See “Ignore Subsection Boundaries” on page 556.

In situations where the conditions for stair winders cannot be met, you can use adjacent landings. See “Landings” on page 554.

Wrapped Stairs

Check Allow Wrap on the STYLE panel of the Staircase Specification dialog and the selected stairs can be wrapped around the corner of a deck or landing. Curved stairs and stairs with multiple subsections cannot be wrapped. See “Style Panel” on page 568.

Stair sections that wrap around a corner to meet one another must have identical attributes. As a result, edits made to one wrapped stair section apply to all adjacent, wrapped sections.

To wrap stairs around a deck

1. Begin by drawing a deck. See “Decks” on page 323.

2. Use the Straight Stairs tool to place a stair section on each side of the corner around which you want them to wrap.

3. Move the stair sections toward the corner of the deck. When the two sections are sufficiently close to the corner, they will merge to form wrapped steps.

You can also draw stairs down from a deck by right-clicking to draw them or by pressing the Alt key while you drag. See “To draw stairs going downward” on page 549.

To wrap stairs around a landing

1. Use the Draw Stairs tool to create two perpendicular stair sections with top ends that share a corner.

2. Click between them to create a landing.

3. Rotate one stair section 180°.
Other Special Railings and Stairs

Stairs can be customized to meet a variety of needs.

Solid Railings

To create a solid rail along a staircase, position a solid Railing against, but not underneath, the stairs. Specify it as Solid and that it Follow Stairs. See “Rail Style Panel” on page 309.

The solid railing recognizes the adjacent stairs and climbs alongside them.

If any balusters extend beyond the railing, eliminate them by unchecking Left Railing or Right Railing in the Staircase Specification dialog. See “Style Panel” on page 568.

4. The stairs wrap around the corner. Notice that the Up arrow displays on the most recently edited stair section.

Fully Housed Stringers with Balusters

Fully housed stringers with balusters can also be created by positioning a pony wall next to the stairs.

To create fully housed stringers

1. Create a staircase, then select the stairs and click the Open Object edit button.
2. On the Style panel of the Staircase Specification dialog, uncheck Stringer at Wall and click OK.
3. Draw an Interior Wall or Half Wall against, but not underneath, the stairs.
4. Select the wall and click the Open Object edit button.
5. On the General panel of the Wall or Railing Specification dialog, make sure Railing is checked.
6. On the Wall Types panel:
 - Check Pony Wall.
• Specify the **Lower Wall Type** as the same interior wall as the upper wall.
• Specify the **Elevation of Lower Wall Top**. This value should equal the stairs’ riser height plus the height above the treads.

7. **On the RAIL STYLE panel:**
• Check **Follow Stairs**.
• Specify desired **Railing Height**.
• Click OK.

Partial Railings

A staircase can be enclosed on one side by a combination of wall and railing.

Partial railings can be created by specifying the stairs as winders and increasing the **Max Tread Contraction** in the **Staircase Specification** dialog. See “Style Panel” on page 568.

The **Max Tread Contraction** defines the largest distance that any section of the stair system is allowed to move inward when the stairs are turned into winders. If any point on the edge of the stairs would have to move inward more than this defined amount in order to locate the surface of the wall, the stairs do not contract and snap to that wall.

To create a partial stair railing

1. Create a staircase and draw an **Interior Wall** against, but not underneath, the stairs.
2. Select the stairs and click the **Open Object** edit button.
3. On the **GENERAL** panel of the **Staircase Specification** dialog, check **Winders**.
4. On the **STYLE** panel, define the **Max Tread Contraction**. If the interior wall is 4” thick, setting this value to 4” should be sufficient.
5. On the **STYLE** panel, increase the **Stringer Bottom** value to enclose the area under the stairs with railings. The best value depends on your stair design.
6. On the **RAILING** panel, remove the check from either **Right** or **Left Railing at Wall**, depending on the position of the stairs and wall in your plan.
7. Click the **Object Snaps** toggle button to temporarily turn off Object Snaps. See “Object Snaps” on page 131.
8. Select the stairs and use the side edit handle to move the edge of the stairs to approximately the middle of the wall.
9. You may need to **Zoom** in on the stairs and wall to move the stair edge.

Railing Panels

You can specify panels, including glass panels or cables, as a stair or ramp’s railing in the **Staircase and Ramp Specification** dialogs. See “Railing Panel” on page 572.

Inset or Middle Railing

You can use a **Railing** to create inset stair railings or a middle railing.

To use railing panels with stairs

1. Create a staircase and draw a **Railing** under the stairs.
 • Make sure that the railing is located entirely within a single stair section.
Creating a Stairwell

An interior staircase must be located in a stairwell, an opening to the floor above. A stairwell is an Open Below room type on the floor above. See “Room Types and Functions” on page 315.

1. Position it so that it is aligned with the left edge.

2. Select the railing and click the Open Object edit button. See “Wall Specification Dialog” on page 297.

3. On the RAIL STYLE panel of the Railing Specification dialog,
 • Select the Panels radio button.
 • Check Follow Stairs.

4. On the NEWELS/BALUSTERS panel, click the Browse button to the right of Panel Type and select the railing panel you want to use on the stairs, then click OK.

5. Select the staircase and click the Open Object edit button.

6. On the NEWELS/BALUSTERS panel of the Railing Specification dialog, uncheck Left Railing to prevent the default stair railing from generating in addition to the railing panel.

7. Repeat these steps if you want railing panels under the right side of the stairs, as well.

Concrete Stairs

To make a solid concrete staircase

1. On the STYLE panel of the Staircase Specification dialog:
 • Set the Tread Overhang to zero.
 • Set the Tread Thickness to zero.
 • Uncheck Open Risers.

2. On the STRINGERS panel, you can also uncheck Open Underneath and check Large Stringer Base.

Masonry Stairs

To make a set of masonry stairs

1. On the STYLE panel of the Staircase Specification dialog:
 • Set the Tread Overhang to zero.
 • Set the Tread Thickness to the thickness of the masonry material.

2. On the MATERIALS panel, assign the desired masonry material to the “Tread” component and specify the “Riser/Trim” material as concrete.

Steel Stringer

To make a steel stringer with concrete treads

1. On the STYLE panel of the Staircase Specification dialog,
 • Check Open Underneath.
 • Set the Tread Thickness to 2 inches or more.

2. On the STRINGERS panel, select 1 Center Stringer.

3. On the MATERIALS panel, specify the “Tread” material as concrete and the “Riser/Trim” material as steel.

Creating a Stairwell

If you create a stairwell away from other walls so the Open Below is created in the center of another room, connect a wall of the Open Below room to another wall using an invisible wall.
Creating a Stairwell Automatically

To create a stairwell that matches the perimeter of a selected staircase, click the Auto Stairwell edit button. This button is only available when a living space exists above the staircase. It will not be available if the space above is Open Below or on the Attic Floor.

Auto Stairwell automatically creates a room on the floor above enclosed by railings, defined as Open Below in the Room Specification dialog, and given a Stairwell room label. This room can be selected and edited like any other room.

Creating a Stairwell Manually

Stairwells can also be created manually.

To create a manual stairwell

1. Draw a two-story building. Create the staircase on the first floor.
2. Make the second floor the Current Floor and the first floor the Reference Floor. See “The Reference Floor” on page 543.
3. Select Tools> Floor/Reference Display> Reference Display to show the Reference Floor, including the stairs.
4. On the upper floor, use the Railing tool to create a room around the stairs. Use the edit handles to position the railings as needed.
5. Select the railings one at a time and move them into position.
 - When a railing is selected, its bounding box shows the location of the outer surface of the railing’s drywall layer. For best results, this outer surface (which does not display when the railing is not selected) should meet the top edge of the stairs. See “Wall Types and Railings” on page 267.
 - If you prefer, you can also go Down One Floor and adjust the top edge of the staircase to snap it to the surface of the railing on the floor above.
6. When the railings are positioned properly, select Tools> Floor/Reference Display> Reference Display to turn off the display of the Reference Floor.
7. Click inside the room using the Select Objects tool to select it, then click the Open Object edit button.
8. On the GENERAL panel of the Room Specification dialog, select “Open Below” from the Room Type list. Click OK to close the dialog.
9. Place a Doorway in the railing at the top step for an opening.
10. Select the doorway and define a large width in the Door Specification dialog. If the doorway is specified wider than the railing, its width adjusts to fit the available space.

Rooms Below Staircases

Rooms such as closets or storage areas are commonly located beneath staircases.
To create a room below a staircase

1. Draw a staircase, select it, and click the Open Object edit button to open the Staircase Specification dialog.
 • If Winders are specified for this staircase, set Max Tread Contraction to 2" on the STYLE panel to allow walls to be built entirely under the staircase.
 • On the FILL STYLE panel, select “No Pattern” so the walls and other objects under the stairs can be seen.

2. On the same floor as the staircase, draw the Interior Walls under them, following their shape.
3. Reposition the walls as needed, making sure that each is entirely under the stairs.
4. The wall at the foot of the stairs should be placed no closer to the bottom than the second step.
5. Add a door and specify the Room Type.

Staircase Specification Dialog

Staircases can be defined with the greatest accuracy in the Staircase Specification dialog. To open this dialog, select one or more stair sections and click the Open Object edit button or double-click a stair section using the Draw Stairs, Straight Stairs, or Select Objects tool.

If a staircase is composed of multiple stair sections, the section that you clicked on to select the staircase is the Selected Section; however, information about all the sections is available and can be edited in the dialog.

The settings in the Staircase Specification dialog are similar to those in the Interior and Exterior Stair Defaults dialogs, but affect the selected staircase only. See “Stair and Ramp Defaults” on page 545.

It is recommended that all floor heights, ceiling heights and platform thicknesses be established before using the Staircase Specification dialog.
Staircase Information - Structural information about the selected staircase displays here for reference and updates as changes are made on the GENERAL panel.

- The first comment tells whether or not the staircase reaches the next level, which may be a floor platform or locked landing. It also indicates whether its rise angle is either steeper or more shallow than the Best Fit, described below. If Automatic Heights is unchecked, this comment instead says “Start and end heights are set manually”.

- The second comment, Best fit riser height of ___ requires ___ total risers to reach ___ to next level, describes the ideal rise and run for the selected staircase. The program defines the Best Fit Riser Height as the riser height closest to 6 3/4” (168.75 mm) that allows the selected staircase to meet the next level precisely. This comment is only active if Automatic Heights is checked, below.

If the staircase includes a landing with a user-specified height, that height is used to calculate this information. See “Landing Height and Thickness” on page 555.

- The total number of stair Sections, Landings, and Risers associated with the selected staircase also display here.

- The Rise Angle of the currently active stair section also displays here.

- Click the Make Best Fit button to add or remove risers to the Selected Section. Only available when Automatic Heights is checked and the staircase does not currently use the Best Fit Riser Height.

Make Best Fit will also extend stairs drawn in a downward direction until they reach the terrain. See “Terrain Perimeter” on page 900.

A diagram of a sample staircase’s structure displays here for reference, as well.

The Advanced Options apply to all sections and subsections.

- Select Automatic Treads to have the program define the depth and number of stair treads. If the staircase has multiple sections, each may have different tread depths.

- Select Lock Tread Depth to specify the Tread Depth for each stair section, below, and prevent them from changing. When Lock Tread Depth is selected and the length of the stairs is changed, the number of treads will change.

- Select Lock Number of Treads to specify the number of treads in each stair section and prevent it from changing. When Lock Number of Treads
is selected and the length of the stairs is changed, the tread depths will change.

- If multiple staircases or a staircase with multiple sections is selected, **No Change** may be an option as well. Select this to maintain the multiple sections’ individual settings.

- Uncheck **Automatic Heights** if you would like to specify the bottom and top heights of each stair section, as measured from the default floor height of Floor 1, 0” (mm). When checked, the program automatically defines the top and bottom heights by precisely locating floor platforms and landings. This option cannot be disabled in the **Interior** and **Exterior Stair Defaults** dialogs.

The **Top Height Reference** values control what point on the staircase the Top Height value, below, describes.

- Select **Floor/Landing** for the Top Height value to describe the height of the top tread plus the stated Riser Height.

- Select **Top Riser** for the Top Height value to describe the height of the top riser.

- Check **Ignore Subsection Boundaries** to maintain tread depth throughout a stair section composed of merged subsections, regardless of whether the subsections have different tread depths assigned to them. See “Ignore Subsection Boundaries” on page 556.

- Select **Lock Bottom** to lock the position of the selected stair section’s bottom end to prevent it from moving. Sections and landings below the selected section do not move when you click OK, while those above do move.

- Select **Lock Top** to lock the position of the selected stair section’s top end to prevent it from moving. Sections and landings above the selected section do not move when you click OK, while those below do move.

Lock Bottom and **Lock Top** are actions rather than settings and are not available in the **Stair Defaults** dialogs. If you make changes to a staircase that will affect its length, first lock either the bottom or top end of the Selected Section to prevent it from moving. The height of the Selected Section’s locked end is not affected by these settings - only its position on the X/Y axis.

The specifications for each stair section and subsection are listed and can be edited here. Up to ten items total can display.

A change in one value usually affects other values. You may need to reposition the staircase after making changes.

- The **Section Number** column identifies the Selected Section and the number of each section of the selected staircase. If **Ignore Subsection Boundaries** is unchecked, subsection numbers are also identified. The radio button to the left indicates which section or subsection is selected. See “Displaying Stairs, Ramps, and Landings” on page 550.

- Define the **Length**, or run, of each section or subsection measured along the Walk Line. The length is equal to the number of treads multiplied by the tread depth. See “Walk Line” on page 555.

When the length of a section changes, other sections and landings in the staircase unit move in response. You can specify whether the bottom or top edge of the Selected Section moves when you resize it by selecting either the Lock Bottom or Lock Top radio button, above.

- Define the **Width** of each section. Only one width can be defined for a section, so all subsections in the same section have the same width. If a section is connected to a landing, its width should equal the length of the landing edge that it connects to. See “Landings” on page 554.

- Specify the **Tread Depth**, or run, of each stair tread in the selected section. To lock this value, check **Lock Tread Depth**, above.

If a landing is created between two stair sections and one of them has locked tread depth, the resulting staircase also has locked tread depth. Any landings or sections connected to this new staircase adjust to meet it and then have locked tread depth as well.

- Define the number of **Treads** in a stair section or subsection. To lock this value, select Lock Number of Treads, above.

- Define the **Bottom Height**, the height of the stair section’s bottom edge. To lock this value, click the radio button to the left of the section’s num-
ber, then click the Lock Bottom radio button, above, and click OK.

- Define the **Top Height**, the height of the stair section’s top edge. To lock this value, click the radio button to the left of the section’s number, then click the Lock Top radio button, above, and click OK.

- Define the **Riser Height**, the height of the risers in each stair section.

- Check **Winders** to specify the Selected Section, including subsections, as winders. See “Winders” on page 559.

4. A preview of the selected staircase displays on the right side of the panel. If the staircase includes any landings, only the section that was selected when the dialog was opened will display. See “Dialog Preview Panes” on page 32.

Style Panel

1. Specify characteristics of the staircase **Treads**. See “Anatomy of a Staircase” on page 547.

- Specify the **Tread Overhang**, which is the distance that each tread overhangs the riser.

- Specify the **Tread Thickness**.

2. The **Open Options** control whether the selected stairs have open risers or an open underside.

- Check **Open Risers** to eliminate the riser face under each tread and expose the stringers.

- Uncheck **Open Underneath** to add a skirt below the staircase along the two sides. It looks like a wall in 3D, but only has a single face. Base molding does not generate along the bottom of the skirt, and doors cannot be placed in it. In most cases, the recommended way to enclose the area beneath stairs is to use walls. See “Rooms Below Staircases” on page 564.

- Specify the **Side Inset** of the skirt below the staircase. The default value of 0 aligns the skirt with the outside of the surface of the stringers. Only available when **Open Underneath** is unchecked.

3. Specify the attributes of the staircase’s carpet **Runner**. Only available when **Open Risers** is unchecked, above.

- Specify the **Runner Width**. The default value of 0 does not create a runner.
• Uncheck **Runner Tucked** to have the runner drop straight down from the tread front to the riser below. This is checked by default.

4 **Winder** - Define the **Max Tread Contraction**, which is the amount a tread’s width may be reduced when it meets a wall. See “Partial Railings” on page 562.

This option only takes effect when the stairs are specified as **Winders** on the **GENERAL** panel.

5 Check **Use Walk Line** to have the program calculate the tread depth based on a Walk Line. Uncheck the box to disable this function. See “Walk Line” on page 555.

6 Specify the distance of the **Walk Line from Edge**. The default value is 12” (300 mm).

7 Check **Show Walk Line** to show the Walk Line in plan view.

6 Specify the appearance of the staircase where it meets the **Top Landing**. These options do not affect the edges of landings.

• Check **Nosing at Top Landing** to produce tread nosing attached to platform edge at the top of stairs.

• Check **Riser Surface at Top Landing** to produce a riser surface against the platform edge at the top of the stairs. This allows stair risers to match all the way to the top of the platform.

7 **Options** -

• Check **Automatic Railing Openings** to automatically create a doorway opening when the selected stairs are snapped to a railing drawn on the same floor as the stairs. This is checked by default.

• Check **Allow Wrap** to wrap the selected stairs around the corner of a deck or landing where another, identical stair section is present. See “Wrapped Stairs” on page 560.

8 A preview of the selected staircase displays on the right side of the panel. If the staircase includes any landings, only the section that was selected when the dialog was opened will display. See “Dialog Preview Panes” on page 32.

Stringers Panel

The settings on the **STRINGERS** panel affect all sections of a selected staircase.
Stringer Style -

1. Click a radio button to specify the number of stringers assigned to the staircase. Select Custom Stringers to enable the Left, Middle, and Right settings below.
2. Specify the Height Above Tread, measured straight down from the top outer edge of the tread nosing to the top of the stringer. Only available when 2 Closed Side Stringers is selected, above.
3. Specify the Height Below Tread, measured straight down from the back bottom edge of the tread to the bottom of the stringer. Not available when Custom Stringers is selected, above.
 - The Left, Middle, and Right settings are enabled when Custom Stringers is selected. For each of these:
 1. Specify the Count for each stringer location. Multiple Left and Right stringers are butted side to side while multiple Middle stringers are evenly spaced between them.
 2. Specify the Thickness, measured horizontally.
 3. Specify the Offset of each stringer from its default location. A positive value offsets the stringer(s) to the right; a negative value offsets them to the left.
 4. Specify the Height Below the treads, measured straight down from the back bottom edge of the tread to the bottom of the stringer.
 5. Check Ext to specify the stringer(s) as Exterior and allow them to extend up past the top of the stairs.
 6. Specify the Height Above the stair treads, measured straight down from the top outer edge of the tread nosing to the top of the stringer.
 7. The vertical Depth of the stringers is reported here for reference. This value is affected by the Heights above and below the treads, as well as the stairs Rise Angle.
4. Specify the attributes of the Trim Against Wall that generates when the staircase is positioned against a wall.
 - Specify the Height Above Tread, measured straight down from the top outer edge of the tread nosing to the top of the tread.
 - Specify the Height Below Tread, measured straight down from the back bottom edge of the tread to the bottom of the trim.
 - Specify the Thickness of the trim, measured horizontally.
 - Clip Top - Specify whether to clip the top of the trim where it meets the upper floor level. Trim can be clipped on the Left and/or Right sides of the staircase.
3. Options -
 1. Extend Stringer Top is checked by default and extends a triangular portion of the stringer under the landing or platform at the top of the stairs.
 2. Check Large Stringer Base to widen the stringers at the foot of the staircase. This is helpful when walls are created below the stairs.

A preview of the selected staircase displays on the right side of the panel. To see the stringers, click in the preview and drag upward to rotate. See “Dialog Preview Panes” on page 32.
Check Has Breakline to display a breakline on the selected stairs and enable the settings that follow.

- Select the breakline symbol Style from the drop-down list.
- Specify the Distance from Start, which is the distance from the front of the stairs to the breakline, measured from the staircase’s center line.
- Specify the Breakline Angle. An angle of 0° produces a breakline that is perpendicular to the sides of a straight stairwell.
- Specify the Gap After Break, which is the gap between the section of the stairs located below the breakline and that located above it. A value of 0 produces no gap.
- Specify the Break Symbol Size, which is the total height of the break symbol measured from top corner to bottom corner.

The Current Floor Display settings control the appearance of the portion of the staircase located After the Breakline, or upslope from it, on the floor where the stairs were drawn.

- Select Normal to display the staircase after the breakline using the same Line and Fill Styles as the portion located before the breakline.
- Select Normal to display the staircase after the breakline with the Line and Fill Styles specified for the staircase.
- Select Outline to display the staircase after the breakline using the Line Style assigned to the “Stairs & Ramps, Details” layer and a transparent fill.
- Select Nothing to hide the display of the staircase after the breakline entirely.

The Floor Above Display settings control the appearance of the portion of the staircase located Before the Breakline, as seen from the floor above the stairs.

- Select Normal to display the staircase before the breakline using the same Line and Fill Styles as the portion located after the breakline.
- Select Outline to display the staircase before the breakline using the Line Style assigned to the “Stairs & Ramps, Details” layer and a transparent fill.
- Select Nothing to hide the display of the staircase before the breakline entirely.

Note: Stairs located on the floor below can only be seen if a Stairwell room is defined above them. See “Creating a Stairwell” on page 563.

A preview of the selected staircase displays on the right side of the panel. If the staircase includes any landings, only the section that was selected when the dialog was opened will display. See “Dialog Preview Panes” on page 32.
Railing Panel

By default, the settings on the RAILING panel also affect the railings on any landings attached to the selected staircase or ramp. See “Landings” on page 554.

This panel is also found in the Ramp and Landing Specification dialogs.

Specify how the Railing is applied to the selected staircase.

- **Stair Rail Height** defines the height from tread surface directly over the riser to railing top.
- **Landing Rail Height** defines the height of the landing rail top from the landing surface.
- **Railing On** - Select **Left** and/or **Right** to specify placement of railings on stair sections.
- **Railing at Wall** - Select **Left** and/or **Right** to specify the placement of wall railings. Not available for ramps.

- Check **Railing Transitions** on **Left** and/or **Right** to create “gooseneck” connections between stair and landing railings. This option only has an effect when **Rail Passes Over Newel** is checked. Not available for ramps.

- Check **Smooth Transitions** on **Left** and/or **Right** to specify the placement of smooth connections between stair and landing railings. Not available for ramps.
Check both Railing Transitions and Smooth Transitions to produce a handrail like this:

Style -

- Select Balusters to create regularly spaced balusters between larger newel posts.
- Select Open to create with only newels posts.
- Select Open with Middle Rail to create railings with newel posts and a middle rail.
- Select Panels to create railings composed of panels. The panel style is specified on the NEWELS/BALUSTERS panel. See “Newels/Balusters Panel” on page 573.

Top/Bottom Rail -

- Check Include Top Rail to produce a top rail on the stair railings that receives the top baluster ends and typically acts as a handrail.
- Check Include Bottom Rail to place a low rail on the landing surface that receives the balusters ends.

- Check Raise Bottom, then specify the distance to raise the bottom rail or panel from the stair tread.

Brackets - Click the Library button to apply a 1/4” (2 mm) thick decorative bracket to the exposed sides of the stringers, under each riser. A side stringer with brackets will be moved in 1/4” (2 mm) to accommodate the bracket. See “Select Library Object Dialog” on page 705.

Newels/Balusters Panel

The settings on the NEWELS/BALUSTERS panel will also affect the appearance of railings on any landings attached to the selected staircase. See “Landings” on page 554.

These settings are similar to those found on the same panel of the Ramp and Landing Specification dialogs. See “Ramp Specification Dialog” on page 575.
Newels -

- Uncheck Has Newel Posts, to prevent newels from generating in the selected staircase’s railings. When this box is checked, newels are generated and can be edited using the settings that follow.

- **Type** - Select Square, Round, or newels from the Library. Selecting Library from the dropdown list is the same as clicking the Library button to the right and allows selection of a newel from the library.

- Specify the **Width**, which is the width or diameter of each newel. For Library newels, this is the width at its widest point.

- Specify the **Height**, which is the height from the landing surface to the top of the newel. Only available when Rail Passes Over Newel is unchecked below.

- Specify the **Offset**, which is the amount each newel is offset from the center of the railing.

- Specify the on-center **Spacing** of the newel posts.

The first three **Balusters** settings are similar to the Newels options of the same names, above.

- **Cut Baluster Top** - Each tread normally has two to three balusters, growing longer toward its back. The default is to use the same baluster and cut it off at the bottom to shorten it toward the tread front. Check this box to cut the balusters at the top instead.

Specify the characteristics of the selected railing’s **Panels**. These settings are only available when the railing Style specified as “Panels” on the Railing Panel.

- Specify the panel’s **Thickness**.

- Select “Solid” or “Library” from the **Type** dropdown list.

You can also apply newels, balusters, and panels onto stair or ramp railing directly from the Library Browser. See “Inserted Objects” on page 705.

The **Plan Display Options** control the display of newels, balusters, and rails in plan view. See “In Plan View” on page 550.

- Uncheck **Use Defaults** to enable the settings that follow. When this is checked, the options set in the Staircase Defaults dialog are used.
• Check **Draw Newels** to display newel posts in plan view. Note that newels at the top of the staircase are associated with the railings defining the stairwell. See “Creating a Stairwell” on page 563.

• Check **Draw Balusters** to display balusters in plan view.

• Check **Draw Rails** to display the handrails in plan view.

• Click the **Fill Style** button to open the Fill Style dialog and specify the fill style for newels, balusters, and/or rails, when set to display.

To display newels/balusters under the handrails, specify a Fill Style of “None”.

A preview of the selected staircase displays on the right side of the panel. If the staircase includes any landings, only the section that was selected when the dialog was opened will display. See “Dialog Preview Panes” on page 32.

Rails Panel

The settings on the RAILS panel are similar to those on the RAILS panel of the **Wall Specification** dialog as well as the MOLDINGS panel of a variety of other dialogs. See “Moldings Panel” on page 680.

By default, the settings on the RAILS panel will also affect the appearance of railings on any landings attached to the selected staircase. See “Landings” on page 554.

Line Style Panel

The settings on the LINE STYLE panel are available for a variety of other objects in the program. For information about these settings, see “Line Style Specification Dialog” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected staircase in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the MATERIALS panel affect the appearance of the selected staircase in 3D views and are available for a variety of objects throughout the program. For information about these settings, see “Materials Panel” on page 761.

The settings on this panel will also affect the materials applied to any landings attached to the selected staircase. See “Landings” on page 554.

Arrow Panel

The settings on the ARROW panel control the appearance of the selected staircase’s direction arrow in plan view. See “In Plan View” on page 550.

For information about these settings, see “Arrow Panel” on page 236.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
A diagram of a sample ramp’s structure displays here for reference.

Size - Specify the **Ramp Length** and **Width**.

Specify the **Heights** of various key locations on the selected ramp.

- Uncheck **Automatic Heights/Slope** to activate the settings below, then specify the height and slope of the ramp.
- Specify the **Top Height**, which is the height of the ramp at its high end.
- Specify the **Bottom Height**, which is the height of the ramp at its low end.
- Specify the **Base Height**, which is the height of the bottom surface of the ramp.

Specify the ramp’s **Slope** by typing its **Rise** value in the first field, and the **Run** value in the second field. See “Anatomy of a Staircase” on page 547.

Options -

- Check **Automatic Railing Openings** to automatically create a doorway opening when the selected ramp is snapped to a railing drawn on the same floor as the ramp. This is checked by default.
- Check **Open Underneath** to remove the skirt around the bottom of the ramp so that it has a uniform, sloped thickness that may not reach the floor or terrain at the high end. This is unchecked by default.
- Specify the **Max Thickness**, which is the ramp’s maximum thickness. At the low end of the ramp where it meets the floor or terrain, its thickness may be less than this value.

Specify the structure of the ramp’s **Tread**, which an optional surface layer placed over the top of the ramp.
• Check **Has Tread Surface** to apply a top tread surface to the ramp and enable the settings below.

• Specify the **Tread Overhang**, which is the distance the tread surface extends past the ramp’s edges.

• Specify the **Tread Thickness**, which is the tread surface’s vertical depth.

A preview of the selected ramp displays on the right side of the panel. If the ramp is composed of multiple sections separated by landings, only the section that was selected when the dialog was opened will display. See “Dialog Preview Panes” on page 32.

Selected Line/Arc Panel

The **SELECTED LINE** panel is available when the selected edge is a line as opposed to an arc. For more information, see “Line Panel” on page 234.

The **SELECTED ARC** panel is available when the selected edge has been converted to an arc. For more information, see “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Railing Panel

The settings on the **RAILING** panel are similar to those on the same panel in the **Staircase Specification** dialog. For information about these settings, see “Railing Panel” on page 572.

By default, the settings on this panel will also affect the appearance of railings on any landings attached to the selected ramp. See “Landings” on page 554.

Newels/Balusters Panel

The settings on the **NEWELS/BALUSTERS** panel are similar to those on the same panel in the **Staircase Specification** dialog. For more information, see “Newels/Balusters Panel” on page 573.

By default, the settings on this panel will also affect the appearance of railings on any landings attached to the selected ramp. See “Landings” on page 554.

Rails Panel

The settings on the **RAILS** panel are similar to those on the **RAILS** panel of the **Staircase Specification** dialog as well as the **MOLDINGS** panel of a variety of other dialogs. See “Moldings Panel” on page 680.

By default, the settings on this panel will also affect the appearance of railings on any landings attached to the selected ramp. See “Landings” on page 554.

Line Style Panel

The settings on the **LINE STYLE** panel are available for a variety of other objects in the program. For information about these settings, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel affect the appearance of the selected ramp in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected ramp in 3D views and are available for a variety of objects throughout the program. For information about these settings, see “Materials Panel” on page 761.

The settings on this panel will also affect the materials applied to any landings attached to the selected ramp. See “Landings” on page 554.

Arrow Panel

The settings on the **ARROW** panel control the appearance of the selected ramp’s direction arrow in plan view. See “In Plan View” on page 550.

For information about these settings, see “Arrow Panel” on page 236.

Components Panel

The information on the **COMPONENTS** panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Uncheck **Auto Adjust Height** to specify the selected landing’s **Top Height**.

- A free-standing interior landing will have a default Top Height equal to one riser plus the thickness of the default floor finish. A free-standing exterior landing will have a default top height equal to its thickness. When this box is checked, the landing height may adjust as needed to maintain consistent riser height in all connected stair sections, ramp sections, or adjacent landings.

- The **Top Height** field is only active when Auto Adjust Height is unchecked. See “Landing Height and Thickness” on page 555.

Uncheck **Auto Adjust Thickness** to specify the selected landing’s **Thickness**.

- A free-standing landing will have a default thickness of 6 3/4” (169 mm). When checked, the thickness is based on the riser height of the stair sections it is attached to, or the thickness of the ramps it is attached to.

- The **Thickness** field is only active when Auto Adjust Thickness is unchecked.

Specify how railings are applied to the landing’s **Selected Edge**. See “Selected Edge” on page 168.

- Select **Automatic** to suppress the railing on any portion of the selected edge that either connects to a stair or ramp section or has an adjacent landing, but to produce a railing where that is not the case. See “Landing Railings” on page 555.

- Select **No Railing** to suppress the railing on the selected edge of this landing.

- Select **Has Railing** to produce a railing along the selected edge, even where it connects to a stair or ramp section or has an adjacent landing.

- Check **Apply to All Edges** to apply your selection to all edges of the landing. This is an action rather than a state - the next time this dialog is opened, this box will be unchecked.

A preview of the selected landing displays on the right side of the panel. See “Dialog Preview Panes” on page 32.

The **Polyline Panel** states the length of the landing’s **Perimeter**, its enclosed **Area**, and its **Volume**.

The settings on this panel are available for a variety of other objects in the program. See “Polyline Panel” on page 245.

The **Selected Line/Arc Panel** is available when the selected edge is a line as opposed to an arc. For more information, see “Line Panel” on page 234.

The **Selected Arc Panel** is available when the selected edge has been converted to an arc. For more information, see “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.
Railing Panel

The settings on the RAILING panel are similar to those on the same panel in the Staircase Specification dialog. For information about these settings, see “Railing Panel” on page 572.

There is one setting that is unique to the Landing Specification dialog:

Uncheck Use Connected Stair or Ramp Railing to enable the settings on this panel, the NEWELS/BALUSTERS panel, and the RAILS panel. When checked, the selected landing derives all railing settings from the connected stairs or ramp.

Uncheck Use Connected Stair or Ramp Railing to enable the settings on this panel, the NEWELS/BALUSTERS panel, and the RAILS panel. When checked, the selected landing derives all railing settings from the connected stairs or ramp.

If the selected landing is not connected to a stair or ramp, this checkbox will be named Use Default Interior or Exterior Stair Railing, depending on where the landing is located.

Newels/Balusters Panel

The settings on the NEWELS/BALUSTERS panel are similar to those on the same panel in the Staircase Specification dialog. For more information, see “Newels/Balusters Panel” on page 573.

By default, the settings on this panel will also affect the appearance of railings on any landings attached to the selected ramp. See “Landings” on page 554.

Rails Panel

The settings on the RAILS panel are similar to those on the RAILS panel of the Staircase Specification dialog as well as the MOLDINGS panel of a variety of other dialogs. See “Moldings Panel” on page 680.

Line Style Panel

The settings on the LINE STYLE panel are available for a variety of objects throughout the program. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected landing in plan view. See “Fill Style Specification Dialog” on page 155.

Materials Panel

When a landing is attached to stairs or a ramp, its initial materials are derived from the stairs or ramp. When the landing is attached to a ramp, its top surface material is defined by the Landing Sides component unless the ramp is using a Tread material.

The settings on this are available for a variety of objects throughout the program. For information about these settings, see “Materials Panel” on page 761.

Label Panel

Labels for stair landings display in plan view and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer. See “Displaying Stairs, Ramps, and Landings” on page 550.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Chief Architect’s manual and automatic Roof Tools allow you to draw almost any roof style.

Proficiency with the Roof Tools can only be attained through practice, but mastering these tools saves you time and effort in plan development. For information about creating specific roof styles, see “Roof Tutorial” on page 439 of the Tutorial Guide.

Automatic vs. Manual Roofs

Chief Architect can create just about any roof style. Most common roof styles such as hips and gables can easily be generated automatically. See “Roof Tutorial” on page 439 of the Tutorial Guide.

More complex roof styles, including curved roof planes, can be created manually. The manual roof tools allow you to create any roof system that can be represented using roof planes.

Automatically Generated Roofs

The quickest and easiest way to create a roof over a structure is automatically. By default, a roof plane is generated over each exterior wall, creating a hip roof. The program automatically joins the roof planes at ridges, hips, and valleys and tries to create roof planes that join together to form a single, integrated system. See “Automatic Roofs” on page 584.
Any deviations from the default hip roof can be specified on the ROOF panel of the Wall Specification dialog for any exterior wall. Here, you can specify a Full Gable Wall, High/Shed Gable Wall, or other options instead of a default hip roof. You can also specify a different overhang, pitch, an upper pitch, and the elevation where the upper pitch begins for the roof plane that rests on the selected wall. See “Roof Directives in Walls” on page 287.

When you need the roof planes over an area of a plan to be entirely separate from those over the rest of the structure, you can assign those areas to a non-default Roof Group. See “Roof Groups” on page 584.

Roofs can also be automatically generated based on a Roof Baseline Polyline. When a Roof Baseline Polyline is used, information that determines where and how roof planes are generated is contained in the Roof Baseline Specification dialog. See “Roof Baseline Polylines” on page 602.

Bay, bow, and box windows also produce roof planes automatically. For information about these windows and the roof styles that can be used with them, see “Bay, Box, Bow Windows and Roofs” on page 453.

Manually Drawn Roofs

Any roof system that can be created automatically can also be created manually. Each roof plane is drawn and edited individually, offering full control over the process and limiting the possibilities only to your imagination.

Using Both Techniques

Another useful option is to start with an automatically generated roof and use manual design techniques to finish it. Using both automatic roof generation and the manual roof drawing and editing techniques, you can quickly design highly customized roof systems.

Roof Defaults

Select Edit> Default Settings, to open the Default Settings dialog for a variety of drawing tools, several of which directly affect roof generation.

Roof Defaults Dialog

The Build Roof and Roof Defaults dialogs are nearly identical in appearance and function. The only difference is that the Build Roof dialog has a number of checkboxes that allow you to automatically generate roof planes and related objects. See “Build Roof Dialog” on page 586.

If changes are made to the settings in this dialog after the roof has been built, you will need to rebuild the roof in order for your changes to take effect.

Floor and Ceiling Heights

The initial heights of floors and ceilings, which influence roof heights, are specified in the Floor Defaults dialog for each floor. See “Floor Defaults Dialog” on page 537.

The floor and ceiling heights in individual rooms also influence roof heights and are specified in the Room Specification dialog. See “Structure Panel” on page 334.

Wall Specification Dialog

By default, when an automatic roof is built, a roof plane is generated over each exterior wall, creating a hip roof.
Any deviations from this default hip roof, such as a gable or a different pitch, can be specified in the Wall Specification dialog for any exterior wall. See “Roof Panel” on page 301.

Dormer Defaults

The settings in the Dormer Defaults dialog determine the initial settings for automatic dormers and are much like those in the Dormer Specification dialog. See “Dormer Specification Dialog” on page 617.

The Dormer Defaults dialog can be opened from the Default Settings dialog or by double-clicking either of the Auto Dormer tools.

The Roof Tools

Select Build> Roof to access the Roof Tools.

Build Roof

Select Build> Roof> Build Roof to open the Build Roof dialog, specify the settings for automatically generated and manually drawn roof planes as well as manually drawn ceiling planes, and build or rebuild a roof. See “Build Roof Dialog” on page 586.

When roofs are automatically generated, a roof plane is created over each exterior wall by default, resulting in a hip roof, and the program tries to join them together to form a single, integrated system.

To automatically generate a roof plane using values other than the defaults or to not generate a roof plane bearing on a particular wall (as with a gable or the sides of a shed roof), you can change the settings in the Wall Specification dialog. See “Roof Panel” on page 301.

For more information about creating different roof styles, see “Roof Tutorial” on page 439 of the Tutorial Guide.

Roof Plane

Select Build> Roof> Roof Plane to draw a roof plane manually. See “Roof Planes” on page 591. You can also double-click the Roof Plane button to open the Build Roof dialog.

Note: You cannot use the Roof Plane tool when Auto Rebuild Roofs is enabled in the Build Roof dialog. See “Manually Drawn Roofs” on page 582.

Ceiling Plane

Select Build> Roof> Ceiling Plane to draw a ceiling plane manually. Ceiling planes are drawn and behave much like roof planes. See “Ceiling Planes” on page 606.

Trey Ceiling Polyline

Select Build> Roof> Trey Ceiling Polyline, then click and drag to draw a closed polyline within a room. See “Trey and Coffered Ceilings” on page 327.

Gable/Roof Line

Select Build> Roof> Gable/Roof Line to draw a gable line that generates a gable along a baseline edge when roofs are automatically generated. See “Gable/Roof Lines” on page 610.

Skylight

Select Build> Roof> Skylight, then draw a rectangle over an existing roof plane to create a skylight. The skylight, skylight shaft, and ceiling hole (if a ceiling exists) are drawn at the same time. See “Skylights and Roof Holes” on page 612.

Auto Floating Dormer

Select Build> Roof> Auto Floating Dormer and click within an existing roof plane to place an auto floating dormer. See “Dormers and Crickets” on page 615.

Auto Dormer

Select Build> Roof> Auto Dormer and click within a roof plane to place a dormer. See “Dormers and Crickets” on page 615.

Edit All Roof Planes

Select Build> Roof> Edit All Roof Planes to open the Roof Plane Specification dialog and edit all roof planes in the entire plan at once. See “Roof Plane Specification Dialog” on page 598.
Delete Roof Planes

Select Build > Roof > Delete Roof Planes to delete all roof planes in the plan. See “Deleting Roof Planes” on page 597.

Delete Ceiling Planes

Select Build > Roof > Delete Ceiling Planes to delete all manually drawn ceiling planes in the plan. See “Ceiling Planes” on page 606.

Automatic Roofs

When roofs are automatically generated, a roof plane is created over each exterior wall by default, resulting in a hip roof, and the program tries to join them together to form a single, integrated system.

There are a number of options available to produce variations in this default roof style.

Roof Directives in Walls

To automatically generate a roof plane using values other than the defaults or to not generate a roof plane bearing on a particular wall (as with a gable or the sides of a shed roof), you can change the settings in the Wall Specification dialog for that wall. See “Roof Panel” on page 301.

For more information about creating different roof styles, see “Roof Tutorial” on page 439 of the Tutorial Guide.

Roof Groups

When an automatic roof is generated, the program tries to create roof planes that join together to form a single, integrated system. Different parts of the structure influence how the roof is generated over the whole.

When you need the roof planes over an area of a plan to be entirely separate from those over the rest of the structure, you can assign those areas to a non-default Roof Group. The program treats different Roof Groups as separate buildings for the purpose of automatic roof generation, preventing their roofs from influencing one another.

Bear in mind that the use of Roof Groups typically involves using a combination of both automatic roof generation and manual roof editing, and that changes to Attic walls may also be necessary. See “Using Both Techniques” on page 582.

Roof Groups are assigned using numbers. The Default Roof Group is always 0, and you can assign rooms to other roof groups in the Room Specification dialog. See “General Panel” on page 333.

Curved Walls and Roofs

Automatically generated roof planes are placed over curved walls at specified increments. In the Build Roof dialog, you can specify the degree increments for the roof over curved walls, from 6° to 90°. The lower the number, the more roof sections are created over the curved wall.

The following illustrations show a roof created at two different curved increments: 30° and 15°.
Regular roof plane sections can also generate over concave curved walls. For roof sections to generate over a concave curved wall, the sections’ baselines must be longer than the **Minimum Alcove Size** value on the BUILD panel of the **Build Roof** dialog. If the baselines are shorter, the automatically generated roofs are simplified by either:

- Ignoring the curved wall, as if the walls on either side extended to their meeting point.
- Spanning the concave curved wall with a straight Baseline and produce a roof plane for it from that.

Concave Curved Walls and Roofs

Rebuilding Roofs

By default, when changes are made to the model, the roof does not update to reflect these changes. This is the case even if the roof was automatically built.

When **Auto Rebuild Roofs** is checked in the **Build Roofs** dialog, on the other hand, any changes made to the position of an exterior wall or to its roof directives will prompt the roof to regenerate to reflect these changes. See “Roof Panel” on page 587.

Changes made to floor heights, ceiling heights, or floor or ceiling platform thicknesses will also cause the roof to be automatically rebuilt.

You can also rebuild the roof at any time to reflect the current state of the model by opening the **Build Roof** dialog, checking **Build Roof Planes**, and clicking OK.

Manually drawn roof planes are specified as such in the **Roof Plane Specification** dialog. If a roof plane was automatically generated, it will instead have a **Mark as Edited** checkbox. See “Roof Plane Specification Dialog” on page 598.

When the roof is rebuilt using **Auto Rebuild Roof** or **Build Roof Planes** in the **Build Roof** dialog, all roof planes in the plan, both automatically generated and manually drawn, are deleted and replaced.

- To preserve any manually drawn roof planes, check **Retain Manually Drawn Roof Planes** on the BUILD panel of the **Build Roof** dialog before the roof is rebuilt.
- To preserve any automatically generated roof planes that you have edited, check **Retain Edited Roof Planes** on the BUILD panel of the **Build Roof** dialog before the roof is rebuilt.
Roof planes cannot be edited or manually drawn when Auto Rebuild Roofs is turned on. If you try to either edit or draw a roof plane using the Roof Plane tool, a question message will display.

Build Roof Dialog

The Build Roof dialog is used to automatically build or rebuild roof planes and generate Roof Baseline Polylines. The settings in this dialog act as defaults for both manually drawn and automatic roofs. See “Roof Defaults” on page 582.

To open the Build Roof dialog, select Build> Roof> Build Roof. You can also double-click the Roof Tools button or the Roof Plane button to open this dialog.

Roof planes and Roof Baseline Polylines are generated based on the positions and roof directive settings for each exterior wall in the plan. If you make changes to any of these walls or to any of the settings in this dialog, you will need to build the roof again for them to take effect. See “Roof Panel” on page 301.

Aside from a number of checkboxes on the ROOF panel that allow you to automatically generate roof planes and related objects, the settings in this dialog are also found in the Roof Defaults dialog. See “Roof Defaults” on page 582.

The settings in this dialog are similar to those found in the Roof Plane Specification dialog, but affect all subsequently created roof planes rather than one or more selected roof planes. See “Roof Plane Specification Dialog” on page 598.

There are twelve panels in the Build Roof dialog:

- Roof Panel
- Options Panel
- Structure Panel
- Rafter Tails Panel
- Ridge Caps Panel
- Gutter Panel
- Frieze Panel
- Shadow Boards Panel
- Arrow Panel
- Materials Panel
- Roof Styles Panel
- Components Panel

Note: Under some conditions, when the roof is rebuilt new roof planes may be generated in the same location as retained manually drawn or automatic roof planes.
The **Build** options are commands related to building and rebuilding roof planes.

- **Check Build Roof Planes** to build a new roof structure over the entire model. Unless you specify otherwise, the program discards the existing roof planes and produces new ones.

- If you check **Auto Rebuild Roofs**, the program automatically rebuilds the roof whenever you make a change that affects the generation of roofs, such as changes to exterior walls or ceiling heights.

- **Check Make Roof Baseline Polylines** to delete the existing roof and to create Roof Baseline Polyline(s) based on the exterior wall layout and roof information defined in those walls. Not available when **Build Roof Planes** is checked. See “Roof Baseline Polylines” on page 602.

You can also specify how manually drawn or edited roof planes are handled when the roof is rebuilt automatically. These options are only available when **Build Roof Planes** is checked. See “Rebuilding Roofs” on page 585.

- **Check Retain Manually Drawn Roof Planes** to prevent manually drawn roof planes from being deleted when roof planes are rebuilt. Automatic roof planes may be generated in the same location. Also available if **Make Roof Baseline Polylines** is checked.

- **Check Retain Edited Automatic Roof Planes** to prevent automatic roof planes that have been manually edited - including roof planes over exploded dormers - from being deleted when roof planes are rebuilt. Also available if **Make Roof Baseline Polylines** is checked.

If a newly generated roof plane is coplanar with a retained plane, and the area where they overlap is at least half the area of either of them, the new roof plane is deleted and only the retained plane is kept.

Note: **Under some conditions, new roof planes may be generated in the same location as manually drawn or automatic roof planes that have been retained.**
• Check **Use Existing Roof Baselines** to produce a roof plan based on your Roof Baseline Polyline(s) instead of the exterior wall layout.

The **Specifications** options are basic roof structure settings.

• Enter a value to describe the **Pitch** as a ratio over 12.

• Check **Trusses (no Birdsmouth)** if you wish to frame the roof using trusses rather than rafters. The roof height will be set so that the bottom edge of the truss top chord is flush with the top of the wall. See “Roof Trusses” on page 656.

• If you plan to use both trusses with rafters, leave **Trusses (no Birdsmouth)** unchecked so that the rafters’ depth can be accommodated. See “Mixing Trusses with Stick Framing” on page 660.

Roof Overhang is measured horizontally from the outside Main Layer of exterior walls to the end of the top of the rafter. It includes fascia and shadow boards but not frieze molding or gutters. See “The Main Layer” on page 293.

• **Eave** is the overhang distance outside of bearing walls for roof planes using the default Pitch. If a particular roof plane has a different Pitch, its overhang will adjust to keep its fascia at the same height. Overhang may be greater for a shallower pitch, lesser for a greater pitch.

• **Gable** is the overhang distance at gable ends or rake walls.

If the roof overhang values are not sufficient to extend past the outer surface of exterior walls, the walls may not generate correctly in 3D views.

The **Roof Height** options affect the heights of roof planes.

Specify the amount to **Raise/Lower From Ceiling Height**, which controls the height of roof planes relative to the ceiling height specified for the rooms below.

• The default value is 0, which creates roof planes that bear on the wall top plates at the Ceiling Height of the room below.

• Increase this value to raise roof planes so they do not bear directly on the wall top plates. If roofs are raised sufficiently, Attic walls will automatically generate to support them. The exact height depends on the roof pitch.

• Decrease this value to drop roof planes downward and decrease the height of the bearing walls. If roofs are lowered sufficiently, they may extend into rooms, producing areas with angled ceilings.

• Check **Ignore Top Floor** to ignore the top living floor when roof planes are generated. Roof planes are built on the top plates of the walls below the top floor.

Specify how you would like the eaves of roof planes with different pitches to meet. See “Aligning Eaves” on page 596.

• Check **Same Roof Height at Exterior Walls** to keep bearing walls the same height and change horizontal roof overhang distances as needed so that eaves meet correctly. When checked, this option ignores any overhang values you may have entered in the **Wall Specification** dialog. See “Aligning Eaves” on page 596.

Uncheck this option to raise or lower some roof planes relative to the wall’s top plate, allowing all horizontal overhangs to be the same unless a non-default value has been entered in the **Wall Specification** dialog. See “Roof Directives in Walls” on page 287.

• Check **Same Height Eaves** to keep the eave height for all roof planes the same. Roof planes are raised and lowered as needed so that eaves meet correctly.

The eave height used when this box is checked is that of a roof plane using the default Pitch and Overhang values. When this box is checked, all roof planes are affected, including those that do not need adjustment in order to align with adjacent planes.

When **Same Height Eaves** is checked, any non-default overhang values specified in the **Wall Specification** dialog are used. Roof planes are raised or lowered so that the eave height is the same, regardless of the horizontal overhang.

• Uncheck **Allow Low Roof Planes** only when an upper floor overhangs roof planes below.

Uncheck Automatic Birdsmouth Cut to enable the settings below. When checked, the birdsmouth is calculated based on the pitch and rafter depth and its values are listed here for reference. See “Birdsmouth Cut” on page 597.
The Raise Off Plate and Birdsmouth settings do not affect the bearing wall heights.

- Enter a positive **Raise Off Plate** value in this field to produce the trusses with an energy heel to allow for more insulation.
- Enter a negative **Birdsmouth Cut** value to control the Birdsmouth Depth. For example, for the Birdsmouth Depth of 3”, enter -3”. The location of the Baseline may change if you use the **Raise Off Plate** setting to specify the birdsmouth depth. See “Birdsmouth Cut” on page 597.
- Specify the **Birdsmouth Seat**, which is the horizontal depth of the birdsmouth cut. If you change this value, the **Raise Off Plate/Birdsmouth Cut** value will automatically adjust.

To control the Birdsmouth Cut, you should also check **Same Roof Height at Exterior Walls**, above.

- The **Vertical Structure Depth** displays here as a reference. It can be changed on the STRUCTURE panel. See “Structure Panel” on page 590.

Options Panel

1. Specify how the roof **Eaves** are configured.
 - Specify how the rafter and truss ends are **Cut** by selecting either **Square Cut** or **Plumb Cut**.

2. Check **Boxed Eave** to produce horizontal boxed eaves or uncheck it for sloping eaves. You can also change this for individual roof planes in the **Roof Plane Specification** dialog. See “Boxed Eaves” on page 619.
• Check **Flush Eave** to produce box eaves that build flush with the adjacent exterior wall. When unchecked, boxed eaves build to the gable fascia.

• **Higher Eaves Boxed** - If the selected roof plane contains more than one eave, check this box to box the higher eaves as well as the lower ones.

 ![With Boxed Eave checked](image1)

 ![With Higher Eaves Boxed checked](image2)

• By default, Boxed Eaves extend from the inside edge of the roof fascia to the exterior Main Layer of the wall, enclosing the overhang area. If an exterior room with **Use Soffit Surface for Ceiling** checked is located between the roof’s baseline and an interior room, the Boxed Eave will extend across that room, as well. You can instead uncheck **Default to Overhang** and specify the **Length** of the boxed eaves. Not available if **Flush Eave** is checked.

2 Specify where **Ceiling Break Lines** display. See “Special Ceilings” on page 329.

• **Display At Finish Intersection** positions ceiling break lines where the ceiling finish surfaces intersect.

• Select **Display At Framing Intersection** to position ceiling break lines where the ceiling framing surfaces intersect.

In Chief Architect Interiors, specify how the **Ceiling** surface on the underside of roof planes is built. See “Vaulted and Cathedral Ceilings” on page 330.

• When **Use Room Ceiling Finish** is checked, the ceiling finish thickness and material on the undersides of roof planes are defined by the room below. Uncheck this box to enable the two settings that follow and define the ceiling finish as part of the roof planes instead. When this is unchecked, you can specify the Ceiling Surface material on the Materials Panel.

• Check **Has Ceiling** to enable the Ceiling Thickness option. When this box is unchecked, the selected roof plane will have no ceiling surface at all and the “Ceiling Surface” component will not be available on the Materials panel.

• Specify the **Ceiling Thickness**, which is the thickness of the bottom surface of the ceiling plane.

3 Specify the material components to **Supply** for subsequently-built roof planes. When checked, these items are calculated in the Materials List. See “Materials Lists” on page 943.

• Check **Edge Flashing** to calculate edge flashing in the Materials List when one or more roof planes is against a wall.

• Check **Ridge Vent** to calculate ridge venting in the Materials List.

• Check **Metal Drip Edge at Eave** to calculate metal drip edge along the eaves in the Materials List.

• Check **Metal Drip Edge at Gable** to calculate metal drip edge along any gable eaves in the Materials List.

• Check **Valley Flashing** to calculate valley flashing in the Materials List when two or more roof planes form a valley.

4 **3D Display** - When **Show All Ridges** is checked, a line along each hip between roof planes forming the conical roof above a curved wall displays in Vector Views. Uncheck this box to suppress these lines. See “Rendered and Vector Views” on page 780.

Structure Panel

The settings on the Structure panel of the **Build Roof** dialog are the same as those on the ROOF panel of the **Build Framing** dialog. Changes made in one dialog are also applied in the other. See “Roof Panel” on page 639.

Note: Changes made on the Structure panel will not affect the structure of existing roof planes. To make changes take effect, rebuild the roof.
Rafter Tails Panel
The settings on the RAFTER TAILS panel allow you to specify a rafter tail profile for exposed rafter ends under roof eaves. See “Rafter Tails” on page 622.
The settings on this panel are like those on the MOLDINGS panel found in a variety of dialogs in the program. See “Moldings Panel” on page 680.
A few things about the RAFTER TAILS panel are unique:
• Only one rafter tail profile can be specified at a time, so the Add New button is only available when no profile is currently selected.
• Uncheck Stretch to Fit Rafter to use the rafter tail profile’s default size or to specify its Height and Width, below. When checked, the profile is sized by the program to match the roof rafters.
• Specify the distance that the rafter tail profile should Extend past the inside surface of the sub-fascia. This distance is measured along the top of the rafter tail, so it is greater than the length as measured in plan view.

Ridge Caps Panel
The settings on the RIDGE CAPS panel allow you to specify a profile for ridge caps. See “Ridge Caps” on page 622.
The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Gutter Panel
The settings on the GUTTER panel allow you to specify a gutter profile for the eaves of roof planes. See “Gutters” on page 621.
The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Frieze Panel
The settings on the FRIEZE panel allow you to specify one or more frieze molding profiles to generate under the eaves and/or gable overhangs of roof planes. See “Frieze Molding” on page 621.
The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Shadow Boards Panel
The settings on the SHADOW BOARDS panel allow you to specify one or more shadow board profiles that follow the fascia on eaves and/or gable eaves. See “Shadow Boards” on page 621.
The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Arrow Panel
The settings on this panel allow you to control the appearance of roof plane slope direction arrows. See “Displaying Roofs” on page 593.
For information about these settings, see “Arrow Panel” on page 236.

Materials Panel
The settings on this panel allow you to specify the default materials for the roof’s various components. Some of these materials, as well as their thicknesses, can be specified on the STRUCTURE panel. See “Materials Panel” on page 761.

Roof Styles Panel
The ROOF STYLES panel provides links to tutorial information about creating different roof styles automatically. Click on a roof style to launch the online Help to a page with information about the roof style you selected. See “Roof Tutorial” on page 439 of the Tutorial Guide.

Components Panel
The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Roof Planes
When creating a roof, it is helpful to know how to draw a roof plane manually and be familiar with its parts.
Drawing Roof Planes

Roof planes are CAD-based objects that are created and edited like much closed polylines, and also have pitch, elevation and structural properties.

Before drawing roof planes, you should set your roof defaults so that the 3D attributes of your roof planes are correct. See “Roof Defaults” on page 582.

To draw a roof plane

1. Select Build> Roof> Roof Plane.
2. Click and drag a Baseline from point 1 to point 2, as in the following example:

 ![Baseline example](image)

 Line 1 - 2 is the Baseline

3. Release the mouse button at point 2 and move your cursor in the upslope direction. As you move the cursor, a preview outline of the roof plane displays.
4. Click at point 3 to build the roof plane. Point 3 is located on the ridge edge of the roof plane.

 ![Baseline example](image)

 Location of Roof Baseline in cross-section

The Baseline height is determined by the following formula:

\[
\text{Baseline Height} = \text{Elevation of the wall top plate} + \text{Vertical Structure Depth} - \text{Vertical Birdsmouth Depth}
\]

In a cross section, the Baseline is located directly above the outer surface of the main wall layer, at the top surface of the roof framing.

A roof Baseline displays as a separate line within its roof plane when the “Roofs, Baselines” layer is turned on. In 3D views, it can only be seen if the roof plane is selected.

A Baseline has a tick mark at its center point which indicates the direction that the roof plane slopes upward. If the upslope tick is pointing the wrong direction, either rotate the entire roof plane or delete it and draw a new one.

When drawing the Baseline of a roof plane, here are some things to consider:

- A Baseline does not have to be drawn over a wall, although it often is.
- A Baseline drawn along a wall should be drawn over the outer edge of the wall’s main layer. It tries to snap to that layer.
- The elevation of the top plate is defined by the ceiling height in the room. If the roof plane is not...
drawn over a wall, it’s height is based on the default ceiling height value for the current floor.

• If a Baseline is drawn over the top of any other roof plane, the Baseline height equals the height of the existing roof plane at the point where you started drawing.

Once drawn, a Baseline can be selected in plan view and edited independent of the roof plane. See “Editing Roof Baselines” on page 596.

Eave and Gable Overhangs

Roof overhangs are measured horizontally from the outside Main Layer of exterior walls to the end of the top of the rafter. They include fascia and shadow boards but not frieze molding or gutters. See “The Main Layer” on page 293.

Displaying Roofs

Roof planes are drawn on the “Roof Planes” layer by default, although you can place a roof plane on any layer. See “Line Style Panel” on page 609.

In plan view, you can also choose to display gutters, gable lines, the overhang area, Roof Baseline Polylines, roof labels, frieze molding, ridge caps, shadow boards, valley truss bases and roof openings. See “Layer Display Options Dialog” on page 144.

If the bottom surface of the roof extends below the ceiling height of a room, Ceiling Break lines will display where the flat ceiling ends and sloped ceiling begins. Ceiling Break lines are drawn on the “Ceiling Break Lines” layer.

If the “Roof Planes” layer is turned off and Auto Rebuild Roofs feature is turned on, changes made to the plan that cause the roof to rebuild will not automatically turn on the display of the roof planes. See “Rebuilding Roofs” on page 585.

The appearance of curved roof planes in 3D views can be controlled by adjusting the Facet Angle in the Roof Plane Specification dialog. See “General Panel” on page 598.

Roof Overhang measured horizontally from the wall’s Main Layer to outside of the fascia

The location of a roof plane’s fascia and shadow boards also determines its area and the size of its polyline in plan view. See “Polyline Panel” on page 601.

Roof Layers

Each roof plane is composed of Surface, Structure, and Ceiling Finish layers. These can be specified in the Build Roof dialog. See “Structure Panel” on page 590.

Roof Plane Labels

Roof plane labels indicating the pitch and slope direction are located on the “Roofs, Labels” layer and can be set to display in floor plan and cross section/elevation views.

You can specify whether roof plane labels display the pitch in terms of rise and run or in decimal degrees by checking or unchecking Pitch in Degrees in the Roof Plane Specification dialog. See “General Panel” on page 598.

A roof plane’s label can be customized in its specification dialog. See “Object Labels” on page 515. Roof planes have named value pairs associated with them, so you can create custom labels using Text Macros. See “Text Macros” on page 400.

Manually drawn Ceiling Planes and Skylights can also display labels when the “Roofs, Labels” layer is on. Unlike roof planes, these objects’ do not include a slope indicator and their Automatic Labels are blank; however, you can specify a custom label using text in their specification dialogs. See “Ceiling Planes” on page 606 and “Skylights and Roof Holes” on page 612.
When a roof plane, ceiling plane or roof hole/skylight is selected in a 3D view, its label will display on a temporary basis if the “Roofs, Labels” layer is turned on.

Display on Floor Above/Below

In plan view, roof planes can display on any floor without affecting their height in 3D.

To move the display of a roof plane to a new floor, select it in plan view and click either the **Display on Floor Above** or **Display on Floor Below** edit button. The display of group-selected roof planes can also be controlled in this manner.

Any skylights or roof holes placed in a roof plane moved in this manner will move, as well. Other associated objects like Auto Dormers or gutters will not move, however.

In Cross Section Views

When a roof or ceiling plane is viewed in a cross section, the layers that compose it can be seen, including the roof surface, sheathing, and the ceiling surface.

- If roof framing has been built, its display can be turned on, as well. See “Displaying Framing” on page 645.

In the Materials List

The materials that make up roof and ceiling plane assemblies are listed under different Categories in the Materials List:

- **Roofing** - Lists most materials associated with roofs, including roofing, sheathing, rafters and trusses, gutters, and skylights.
- **Exterior Trim** - Lists automatically generated frieze molding and shadow boards. See “Roof Returns and Other Details” on page 619.
- **Insulation** - Insulation is calculated for roof and ceiling planes above rooms that do not have Flat Ceiling Over This Room checked. See “Structure Panel” on page 334.
- **Wallboard** - Lists ceiling materials for all rooms, including those that use the underside of the roof as their ceiling.
- **Framing** - Lists ceiling framing for manually drawn ceiling planes.

See “Materials Lists” on page 943.

Editing Roof and Ceiling Planes

A selected roof or ceiling plane can be edited in 2D and 3D using edit handles, edit toolbar buttons, its specification dialog, and the **Material Painter**.

A roof or ceiling plane’s Baseline can also be selected and edited. To select it, first select the roof plane and then click the **Select Next Object** edit button. See “The Baseline” on page 592.

By default, all roof planes are deleted and replaced whenever the roof is rebuilt using the **Build Roof** dialog. If you have manually edited roof planes and do not want them to be replaced, be sure to check **Retain Edited Roof Planes**. See “Roof Panel” on page 587.

2D Shape and 3D Orientation

There are two basic aspects to editing roofs: 2D shape and 3D orientation.

- The 2D shape of a roof or ceiling plane can be edited just like a CAD polyline. As a plane is reshaped in 2D, the program maintains its height and pitch in 3D. See “Editing Closed Polyline-Based Objects” on page 180.
- The 3D orientation of a roof or ceiling plane is defined by its height and pitch and can be edited in its specification dialog. See “General Panel” on page 598.

An understanding of these two concepts allows you to design almost any kind of roof.

A roof or ceiling plane’s display and appearance can be customized. See “Displaying Roofs” on page 593 and “Roof Plane Specification Dialog” on page 598.
Adding a Step to an Edge

You can make a step, or jog, in the edge of a roof or ceiling plane by selecting it, clicking the Break Line edit button and then clicking on the roof edge. See “Break” on page 200.

Aligning Roof Edges

By default, the edges of a roof plane will automatically snap to the outer surface of a nearby parallel wall. You can disable this Special Snapping behavior for a selected roof plane in its specification dialog. See “General Panel” on page 598.

After moving a corner edit handle, it may be difficult to make an edge parallel to an eave or a wall. Use the Make Parallel/Perpendicular edit button to align a roof or ceiling plane edge with a wall, another roof plane edge, or another object with a straight edge. See “Using Make Parallel/Perpendicular” on page 197.

Sometimes, what appears to be a single, straight roof plane edge may actually be broken into two or more edges, which can affect your ability to align the edge properly.

A single edge will have three edit handles; if more than three display, more than one edge is present. An extra handle can be removed manually by dragging it into an adjacent handle. You can also use Build> Roof> Fix Roofs. See “Fix Roofs” on page 584.

When Bumping/Pushing is enabled and CAD Stops Move is checked in the Roof Plane Specification dialog, a roof plane will bump against another roof plane, CAD or CAD based object as it is moved. Roof planes cannot push these objects, however. See “Bumping/Pushing” on page 192.

Join Roof Planes

Two roof or ceiling planes can be joined at adjacent edges in both 2D and 3D using the Join Roof Planes edit button. To use this tool, first identify which edges of the roof planes can extend to meet at a ridge, hip, or valley. The program will join the two planes along the line where they intersect whenever possible.

To use Join Roof Planes

1. Select a roof or ceiling plane on the edge to be joined to another plane.
2. Click the Join Roof Planes edit button (or press 2 on the keyboard).
3. Move your pointer to the edge of the second roof or ceiling plane that the first one needs to join to. When your pointer is over the second plane, this plane will highlight.
4. Click on the edge of the second roof or ceiling plane to join it to the first plane.

Note: Join Roof Planes cannot be used to join a roof plane and ceiling plane. Only planes of the same type can be joined using this tool.

If the planes are not close enough, or their shape is not correct, you may need to align their edges, remove extra edges, or move them closer.

When roof or ceiling planes adjust, the program joins them at the proper location and the adjacent edges extend or contract to remain connected. If the joining of the two will completely eliminate or reverse an adjacent edge, the connection cannot be made.

Locating Intersections

When roof planes of differing slopes meet, they create a ridge, hip, or valley. The Join Roof Planes edit tool is the easiest way to move roof plane edges so that they meet correctly; but you can also locate roof plane intersection points where the ridge, hip or valley should be. Once you know where the planes will meet, you can drag edges or corners to those points.

To find roof plane intersection points

1. Make sure that Automatically Place Roof Intersection Points is turned on in the Preferences dialog. See “Architectural Panel” on page 93.
2. Select the roof plane you would like to place intersection points on.

3. Click the edge of another roof plane to place a temporary CAD Point where it would meet the selected roof plane.

4. Repeat steps 1 and 2 for the ridge edge and both fascia edges. You should have three points located on the larger roof plane: these are the intersection points.

5. Once these intersection points are identified, you can snap the corners of the second roof plane to them.

Aligning Eaves

It is not uncommon for roof plans to feature more than one pitch. In order for the eaves of roof planes with different pitches to meet correctly at ridges and hips, you must control the roof planes’ heights and their horizontal overhang distances. Two options in the Build Roof dialog allow you to control how the eaves of automatically generated roof planes align. See “Roof Panel” on page 587.

- **Same Roof Height at Exterior Walls** maintains the default height of roof planes where they bear on exterior walls. The horizontal overhang distances of any non-default roof planes are adjusted so that they continue to join correctly with default roof planes.

- **Same Eave Heights** maintains the default roof plane height at the eaves as well as any non-default horizontal overhang distances. All roof planes are raised or lowered so that they all have the same height at the eaves as default roof planes.

Roof planes that do not join other roof planes with different pitches at ridges or hips are referred to as Independent.

- When **Same Roof Height at Exterior Walls** is checked, Independent roof planes are not affected and will maintain any non-default overhang values.

- When both **Same Roof Height at Exterior Walls** and **Same Eave Heights** are checked, the overhangs of Independent roof planes will be adjusted to preserve their heights at both the exterior walls and the eaves.

Move to be Coplanar

The **Move to be Coplanar** edit button allows you to move the selected roof plane to be coplanar (in the same plane) with the next selected roof plane. You can use this tool in both 2D and 3D views. The results can be easily seen in a cross section view. The two roof planes must have parallel Baselines for this to work.

Raising/Lowering Roof Planes

Roof planes can be raised or lowered in the **Roof Plane Specification** dialog. Begin by locking the **Pitch**, then change the value of the **Baseline Height**. See “General Panel” on page 598.

In addition, when a new floor is added to a plan, you can choose to move any roof planes displaying on the top floor up one floor. See “Adding Floors” on page 538.

Editing Roof Baselines

The pitch direction and initial height of any roof plane - manual or automatic - is determined by its Baseline. See “The Baseline” on page 592.

In plan view, a Baseline can be selected and edited independent of the roof plane. To select it, click on the roof plane at the location of the Baseline and then click the **Select Next Object** edit button. The Status Bar tells you when the roof plane Baseline is selected. See “Select Next Object” on page 169.

If a roof plane Baseline is moved, its height will not change. Instead, the height of the roof plane will be
affected. In most cases, therefore, moving a roof plane’s Baseline independent of the roof plane itself is not recommended.

If the angle of a roof plane’s Baseline is changed, the direction of the roof plane’s pitch will be modified. The Baseline Angle can be modified in either of two ways:

- In the Roof Plane Specification dialog. This will change its angle relative to the floor, and will tilt the roof plane along an axis perpendicular to its Baseline. This method is helpful when a specific eave angle is needed. See “General Panel” on page 598.
- Using its Rotate edit handle in plan view. This will change its angle relative to the roof plane’s eave or ridge and will modify the direction of the pitch. This method is best when the pitch direction matters more than the angle of the eave.
- Both of these methods can be used to modify the same roof plane, although the second approach makes it difficult to control both the pitch direction and eave angle, and is not recommended.

The length of a roof plane Baseline can be lengthened or shortened using its edit handles without changing any of the roof plane’s attributes.

Set Baseline Height Dialog

If you manually draw a roof plane so that it bears on a wall at its Baseline, and is placed in the same location as an existing roof plane, the Set Baseline Height dialog will display. See “The Baseline” on page 592.

- Select Over Wall Top to create a roof plane that bears on the wall it is drawn over and has an overhang as specified in the Build Roof dialog. This option would be appropriate to produce a full height dormer. See “Manually Drawn Dormers” on page 616.
- Select Over the Existing Roof Plane to produce a roof plane with a height based on that of the roof plane below it rather than the wall. The Baseline height equals the top height of the existing roof at the point where you began drawing the new roof plane Baseline, and has no overhang. This option would be appropriate to create a dormer vent or cricket. See “Manually Drawn Crickets” on page 616.

Editing Roof Plane Structure

To create roof planes of a particular depth, begin by setting up the desired roof framing defaults, then build the roof. See “Framing Defaults” on page 625. If you later need to change the structure of the roof planes, make the needed change to the Framing Defaults, and then rebuild the roof. You can also edit roof structure on an individual roof plane basis. See “Roof Plane Specification Dialog” on page 598.

Birdsmouth Cut

The birdsmouth is the notch cut into a rafter where it rests on the wall top plate. You can control its vertical depth and the width of the birdsmouth seat in the Build Roof dialog. See “Roof Panel” on page 587.

There are two ways to create a roof plane with no birdsmouth:

- Check Trusses (No Birdsmouth) in the Build Roof dialog before drawing the roof plane.
- Specify a Raise Off Plate value of at least 1/16” in the Build Roof dialog.

To change the birdsmouth depth after the roof is built, you can move the roof planes up or down, or change the pitch. For example, if you lock the pitch and raise the roof plane by one inch, you decrease the birdsmouth depth by one inch.

Locking Roof Planes

When the roof plan is correct, roof planes can be locked to prevent accidental changes. To do this, lock the “Roof Planes” layer in all layer sets. See “Layer Display Options Dialog” on page 144.

Locking roof planes will not prevent roof planes from being deleted if the floor they are on is deleted.

Deleting Roof Planes

There are several ways to delete roof planes.

Delete the entire roof quickly by selecting Build> Roof> Delete Roof Planes.
You can also delete all roof planes at once in the **Delete Objects** dialog. See “Delete Objects Dialog” on page 221.

In addition, you can select any roof plane or group of roof planes, then press the Delete key or click the **Delete** edit button to delete it from the plan. See “Deleting Objects” on page 220.

Roof Plane Specification Dialog

Select one or more roof planes and click the **Open Object** edit button to open the **Roof Plane Specification** dialog.

You can also open this dialog for all roof planes in the entire plan by selecting **Build> Roof> Edit All Roof Planes**.

General Panel

There are four values that define the 3D orientation of a roof plane: **Ridge Top Height**, **Baseline Height**, **Fascia Top Height**, and **Pitch**.

Locking any of the **Height** values defines that value as the pivot point for the selected roof plane. Each of these dimensions is measured from the first floor default elevation of 0' - 0".

If you lock the **Pitch** and change a Height value, the roof plane moves vertically, keeping the same slope. It will not pivot.

Changing these values does not affect the 2D representation of the roof plane.

Generally speaking, roof planes cannot be deleted if they are locked. An exception to this rule occurs when an entire floor of a plan is deleted. Any roof planes present on a floor will be deleted when the floor is deleted, locked or not. See “Deleting Floors” on page 541.

When a roof plane is deleted, any roof framing associated with it is automatically deleted, as well.
Specify the Height and Pitch of the selected roof plane(s). Heights are measured from the top surface of the roof plane(s) rafters or trusses. See “Roof Planes” on page 591.

- The Top of Plate is defined by the ceiling height of the room below and is reported here for reference. N/A displays if no room is below the roof plane.
- Define the Ridge Top Height, or lock this value to make it the roof plane’s pivot point.
- Define the Baseline Height, or lock this value to make it the pivot point.
- Define the Fascia Top Height, or lock this value to make it the pivot point.

Note: The Fascia Top height will decrease slightly if the fascia edge is aligned with the ridge top of another roof plane.

- Define the Shadow Board Top height, or lock this value to make it the pivot point. Only available when Shadow Boards are present on the selected roof plane. See “Fascia and Shadow Boards” on page 620.
- Specify the Pitch for the selected roof plane, or lock this value to move the roof plane vertically when a Height value is changed.
- Check Pitch in Degrees to display the pitch value in this dialog in degrees in all dialogs as well as in roof plane labels. Values between -89° and 89° can be entered. When Pitch in Degrees in unchecked, Pitch is described in terms of rise and run: x inches in 12 and in metric plans, x mm in 1000.

The diagram to the right of the Height/Pitch settings shows the location of the Lock point. If a Height/ Pitch setting is currently selected for editing, its location will also be indicated using an arrow.

- By default, the selected Show Diagram for option is determined by whether Trusses (no Birdsmouth) was checked in the Build Roof dialog when the selected roof plane was created.
- Select a radio button to choose whether to Show Diagram for Rafters or Trusses. The structure of the roof and location of the Top of Plate Lock point vary between these two options.

Measurements - Information about the structure of the selected roof plane(s) displays here for reference.

- In Chief Architect Interiors only, specify the Structure Thickness of the selected roof plane(s). In Chief Architect Premier, the Structure Thickness is reported here for reference but is specified on the Structure panel. The default Structure Thickness is defined in the Build Framing dialog. See “Build Framing Dialog” on page 632.
- The Birdsmouth Depth is the plumb or vertical depth of the birdsmouth cut. To change it, move the roof plane some way. For example, if you lock the pitch and raise the roof plane by one inch, you will decrease the birdsmouth depth by one inch. See “Birdsmouth Cut” on page 597.
- The Birdsmouth Seat is the horizontal width of the birdsmouth cut. This value is dynamically linked to the birdsmouth depth - if one changes, so does the other.
- The Vertical Structure Depth is defined by measuring a plumb line across the roof plane structure. The degree of pitch affects the Vertical rafter width. The greater the pitch, the greater the vertical structure depth.
- Overhang from Baseline is the horizontal overhang measured from the Baseline to the eave.
- Mark as Edited - When an automatically generated roof plane is modified, the program marks it as "edited", giving you the option of retaining it when the roof is rebuilt. Uncheck this box to remove this status from the selected roof plane. See “Rebuilding Roofs” on page 585.
• **Mark as Edited** is only available for automatically generated roof planes. If a manually drawn roof plane is selected, the words **Manual Roof Plane** will display here instead.

• Check **No Special Snapping** to prevent the selected roof plane from snapping to the outer surface of any walls that it may butt against. When this box is unchecked, the roof plane’s edges will automatically snap to the outside of any nearby parallel walls.

3 Check **Curved Roof** to specify the selected roof plane as curved. See “Curved Roof Planes” on page 604.

• Specify the roof plane’s **Angle at Eave**, **Angle at Ridge** and **Radius to Roof Surface**.

• These three values are interrelated - when one is changed, the other two adjust accordingly. You may find it helpful to first specify the **Radius** value, then the **Angle** values.

A flat roof plane with a pitch of 0 has angles of 0 at both the ridge and eave, as well as a radius of 0.

• Uncheck **Automatic Facet Angle** to specify the **Facet Angle**, which is the angle at which curved roof surfaces are broken in 3D views. The default value is 7.5°; a smaller value produces a smoother curve while a larger value may generate more quickly in 3D views. The **Facet Angle** value must divide into 360° evenly; if it does not, the program will choose the nearest value that does.

4 Specify the angle of the selected roof plane’s **Baseline**, relative to the XY axis. See “Editing Roof Baselines” on page 596.

• A positive **Baseline Angle** value causes the Baseline to tilt upward from its default height. A negative value causes it to tilt downward. The top heights of any walls under the selected roof plane will become angled, as well.

• The **Baseline Height** defined above can be maintained at either the **Start** or **End** point. In plan view, the Baseline direction is clockwise around the house.

Options Panel

The settings on the **OPTIONS panel** are the same as those on the **panel of the same name in the Build Roof** dialog, but affect the selected roof plane only. See “Options Panel” on page 589.

Structure Panel

The settings on the **STRUCTURE panel** are similar to those on the **ROOF panel of the Build Framing** dialog, but apply to the selected roof plane only. See “Roof Panel” on page 639.

One checkbox is unique to the **STRUCTURE panel of the Roof Plane Specification dialog**: check **Retain Roof Framing** to keep the selected roof plane’s framing from being deleted and replaced when roof framing is rebuilt.

Rafter Tails Panel

The settings on the **RAFTER TAILS panel** are the same as those on the same panel of the **Build Roof** dialog, but affect the selected roof plane only. See “Rafter Tails Panel” on page 591.

Most of the settings on this panel are also like those on the **MOLDINGS panel found in a variety of dialogs in the program. See “Moldings Panel” on page 680.

Ridge Caps Panel

The settings on the **RIDGE CAPS panel** allow you to specify one more more ridge cap profiles on the ridge and hip edges of the selected roof plane and are the same as those on the same panel of the **Build Roof** dialog. See “Ridge Caps” on page 622.

If you customize the settings on this panel, bear in mind that your changes may only take effect in the model if the same changes are also made to adjacent roof planes.

Most of the settings on this panel are like those on the **MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Gutter Panel

The settings on the **GUTTER panel** allow you to specify a gutter profile for the eaves of roof planes. See “Gutters” on page 621.

The settings on this panel are like those on the **MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Frieze Panel

The settings on the **FRIEZE panel** allow you to specify a frieze molding profile to generate under the eaves of the selected roof plane and are the same as those on the same panel of the **Build Roof** dialog. See “Frieze Molding” on page 621.
The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Shadow Boards Panel
The settings on the SHADOW BOARDS panel allow you to specify one or more fascia shadow board profiles that follow the selected roof plane’s eaves. See “Shadow Boards” on page 621.

The settings on this panel are like those on the MOLDINGS panel found in many dialogs in the program. See “Moldings Panel” on page 680.

Polyline Panel
The POLYLINE panel states the length of the roof plane’s Perimeter and its enclosed Area, calculated using several different methods.

- The Perimeter is the total length of the roof plane’s sides, not including fascia and shadow boards, with its pitch taken into account. It does not equal the perimeter as measured in plan view unless the roof plane has no fascia or shadow boards and the pitch is 0.
- The Framing Area is the area of the roof plane’s framing, not including the fascia or shadow boards, with the pitch taken into account. It is slightly smaller than the Roof Surface Area as roofing typically overhangs the framing by a small amount.
- The Projected Area is the area of the roof plane polyline, including fascia and shadow boards, as seen in plan view. It does not equal the Roof Surface Area unless the pitch is 0.
- The Roof Surface Area is the area of the roof plane’s top surface, which covers the fascia and shadow boards, with its pitch taken into account.
- The Overhang Area is the area of the roof plane’s overhang, including fascia and shadow boards, with its pitch taken into account.
- The Projected Overhang Area is the area of the roof plane’s overhang, including fascia and shadow boards, as seen in plan view.

Selected Line Panel
The SELECTED LINE panel is similar to the Line panel of the Line Specification dialog. See “Line Panel” on page 234.

Line Style Panel
For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel
The settings on the FILL STYLE panel control the appearance of the selected roof plane in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Arrow Panel
The settings on the ARROW panel allow you to control the appearance of the selected roof plane’s slope direction arrow. See “Displaying Roofs” on page 593.

For information about these settings, see “Arrow Panel” on page 236.

Materials Panel
The settings on the MATERIALS panel allow you to specify materials for the selected roof plane’s various components. For more information, see “Materials Panel” on page 761.

The “Ceiling Surface” component is only available when Use Room Ceiling Finish is unchecked on the STRUCTURE panel. In Chief Architect Interiors this setting is found on the OPTIONS panel along with Has Ceiling, which must be checked.

Label Panel
Roof plane labels display when the “Roofs, Labels” layer is turned on and use the Text Style assigned to that layer. See “Roof Plane Labels” on page 593.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel
The information on the COMPONENTS panel can be used in the materials list. See “Components Panel” on page 959.
Roof Baseline Polylines

Typically, the program builds an automatic roof based on the settings in the Build Roof dialog and on the ROOF panel of the Wall Specification dialog, along with the layout of the exterior walls and floor and ceiling heights.

If you want to build a roof that diverges from the footprint of your building as well as the roof directives in the exterior walls, you can use Roof Baseline Polylines.

To create roof baseline polylines

1. Select Build> Roof> Build Roof.
2. On the BUILD panel of the Build Roof dialog, check Make Roof Baseline Polylines.
3. Click OK. A set of roof Baselines is created along the outside edge of the Main Layer of the exterior walls, forming one or more closed polylines.

As with roof planes, the heights of Roof Baseline Polylines are determined by ceiling heights in the plan. If roof planes will be built at more than one height, a separate baseline polyline is created for each height.

Once created, a Roof Baseline Polyline can be edited in a variety of ways, then used as the basis for the roof then next time it is built automatically.

To create a new roof using the directives in your Roof Baseline Polyline(s), check Use Existing Roof Baselines in the Build Roof dialog and click OK. See “Roof Panel” on page 587.

Displaying Roof Baseline Polylines

Roof Baseline Polylines are placed on the “Roofs, Baseline Polylines” layer by default and use the Text Style assigned to that layer. See “Layer Attributes” on page 142.

Roof directive information displays along each edge of the polyline, including:

- V - vertical (against wall);
- G - gable/shed;
- K - knee wall;
- L - lower (extend slope downward).

If the directive information includes the pitch, the roof plane slopes toward that edge; if it includes the word (vert), it does not.

Editing Roof Baseline Polylines

A Roof Baseline Polyline’s shape can be edited much like a CAD polyline using its edit handles and edit toolbar buttons. See “Editing Closed Polyline-Based Objects” on page 180.

Roof Baseline Polylines always form a closed area with straight sides only. They cannot be severed or curved, but additional joints or corners can be added.

In addition to length and direction, each Roof Baseline Polyline edge has roof directives associated with it, much like the roof directives in individual walls. See “Roof Directives in Walls” on page 287.

An Example

In order for it to reflect any changes that you make to a Roof Baseline Polyline, the roof must be rebuilt.

For a simple example of Roof Baseline Polyline editing, consider an L-shaped house, with a rectangular roof. The inner part of the ‘L’ is a patio that is covered under the same roof.

On the left is the baseline polyline as it was originally produced and the roof plan it creates.

To model the roof plan shown on the right

1. Select the Roof Baseline Polyline along its bottom-most edge.
2. Click the Intersect/Join Two Lines edit button. See “Reshaping Objects” on page 199.
3. Click the left-most edge to remove the two intervening edges.
4. A message box informs you that “The system must delete intervening lines (those on the inside of the L) to join the two selected lines.” Click OK.
5. Open the Build Roof dialog and select the Build Roof Planes and Use Existing Roof Baseline
Roof Baseline Specification Dialog

Like walls, each line of a Roof Baseline Polyline contains roof directives that affect automatic roof generation. Select any edge of a Roof Baseline Polyline click the Open Object edit button open the Roof Baseline Specification dialog.

Roof Baseline Panel

The settings on the ROOF BASELINE panel control the roof directives associated with the selected edge of the Roof Baseline Polyline. See “Selected Edge” on page 168.

Specify the Baseline Height, which is the height of the entire Roof Baseline Polyline, not just that of the selected edge. See “The Baseline” on page 592.

2 Roof Options -

• The first six options: Hip Wall, Full Gable Wall, Dutch Gable Wall, High Shed/Gable Wall, Knee Wall, and Extend Slope Downward are the same as those in the Wall Specification dialog. See “Roof Panel” on page 301.
• Select Against Wall if the roof plane rising from this baseline butts against an exterior wall. This is similar to checking High Shed/Gable Wall.
• The Pitch Options are also found in the Wall Specification dialog. See “Roof Panel” on page 301.

Unlike the Pitch value elsewhere, this value is not a Dynamic Default here; however, you can click on the Default icon to load the current default Pitch. See “Build Roof Dialog” on page 586.

Polyline Panel

The POLYLINE panel reports general information about the size and shape of the selected Roof Baseline Polyline. See “Polyline Panel” on page 601.

Selected Line Panel

This panel is similar to the LINE panel of the Line Specification dialog. See “Line Panel” on page 234.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.
Fill Style Panel

The settings on the FILL STYLE panel control the appearance of the selected Roof Baseline Polyline in plan view. See “Fill Style Specification Dialog” on page 155.

Roof and Ceiling Framing

Roof framing can be both drawn manually and generated automatically. You can also combine the two techniques. As with other kinds of framing, it is often easiest to begin by generating roof framing automatically and then editing it as needed. See “Manual vs. Automatic Framing” on page 627.

Roof Trusses cannot be generated automatically - they must be drawn manually and then replicated. If you intend to use Roof Trusses, make sure the settings in the Build Roof dialog are properly defined before you build the roof. See “Roof Trusses” on page 656.

When using a combination of Roof Trusses and stick framing, begin by drawing the roof planes and ceiling planes. When they are in place, draw and replicate the Roof Trusses. Finally, automatically generate or manually draw the stick framing and edit it as needed. See “Mixing Rafters and Trusses” on page 629.

Curved Roof Planes

Any roof plane can be turned into a curved roof plane in the Roof Plane Specification dialog. See “Roof Plane Specification Dialog” on page 598.

One way to produce a barrel roof is using a single roof plane that starts out flat (zero pitch) and covers the entire building.

Curving a Single Roof Plane

To curve a roof plane

1. Draw a simple four wall structure with a 4 in 12 pitch shed roof.

2. Select the roof plane and click the Open Object edit button to open the Roof Plane Specification dialog.

3. On the GENERAL panel, change the Pitch to 0 in 12.

4. Check Curved Roof and notice that the Angle values below are both at 0.0°.

5. Change the Angle at Eave from 0° to 45° and press the Tab key. Notice that the other values update and that in order to maintain the 0 in 12 pitch, the Angle at Ridge becomes -45°.
Curving Two Roof Planes

You can also create a barrel roof using two roof planes. A 12 in 12 pitch is used because it allows the curved roof to be nearly vertical at the eave and nearly flat at its peak.

To curve two roof planes

1. Draw a simple four wall structure with a 12 in 12 pitch gable roof.

2. Select one of the roof planes and click the Open Object edit button to open the Roof Plane Specification dialog.

3. Check Curved Roof and notice that the Angle values below are identical.

4. Change the Angle at Ridge from 45° to 1°. This makes the roof plane nearly flat at the ridge. The Angle At Eave updates to maintain the 12 in 12 pitch.

5. Repeat this process with the other roof plane.

Compound Curved Roof Planes

Compound curves can be created using two or more curved roof planes or a combination of straight and curved roof planes.

To create a compound curved roof

1. Draw a simple four wall structure with a 4 in 12 pitch gable roof.

2. In plan view, select one of the roof planes and pull its ridge edge back so that it is 4 feet from the wall. Do the same to the other roof plane.
3. Select both roof planes and check **Curved Roof** in the **Roof Plane Specification** dialog. Set the **Angle at Ridge** to 33.6901°, which is the same as 8 in 12. Notice that the **Angle at Eave** is almost flat.

4. Use the **Roof Plane** tool to draw the two high roof planes. As you create each one, draw its Baseline along to the ridge edge of one of the low roof plane. See “To draw a roof plane” on page 592.

5. Select the two new roof planes, click the **Open Object** edit button, and change their **Pitch** to 33.6901° - or 8 in 12. Viewed in 3D, the planes appear to join together into one.

Curved Roof Plane Intersections

Curved roof planes can be joined to other roof planes using the **Join Roof Planes** edit tool. Often, the result is a curved roof valley or hip.

In many instances, a curved roof plane can only be joined to another roof plane if its **Angle at Ridge** or **Radius to Roof Surface** setting is changed. See “General Panel” on page 598.

When that is the case, the **Join Curved Roof Plane** dialog will open when the **Join Roof Planes** tool is used.

- Choose **Lock the Radius to Roof Surface** to maintain the roof plane’s curvature but change its angle at the ridge edge.
- Choose **Lock the Angle at Ridge** to maintain the roof plane’s angle at its ridge edge but change its curvature.

In order to straighten a curved roof edge, select the edge in question and click the **Straighten Curved Edge** edit button.

Ceiling Planes

Ceiling planes are drawn the same way as roof planes and are edited using the same tools. They are useful for creating custom vaulted ceilings. See “Vaulted and Cathedral Ceilings” on page 330.

Ceiling planes are drawn using the same default pitch as roof planes, specified in the **Build Roof** dialog. See “Build Roof Dialog” on page 586.
If you wish, you can specify the desired pitch in the **Build Roof** dialog before drawing a ceiling plane, or you can change the pitch after it is drawn in the **Ceiling Plane Specification** dialog. See “Ceiling Plane Specification Dialog” on page 607.

There are a few things to remember when drawing ceiling planes:

- Ceiling planes should be created over rooms that have **Flat Ceiling Over this Room** unchecked in the **Room Specification** dialog. See “Structure Panel” on page 334.

- The Baseline of a ceiling plane should be drawn along the outer surface of the bearing wall’s Main Layer. This allows the ceiling plane to extend over and be supported by the wall. See “The Main Layer” on page 293.

- The sloping edge at the side of a ceiling plane should butt to the inside of the wall.

- Ceiling planes act independent of the roof planes above.

- Usually, the pitch of a ceiling plane is lower than the pitch of the corresponding roof plane.

Ceiling Plane Specification Dialog

Select a ceiling plane and click the **Open Object** edit button to open the **Ceiling Plane Specification** dialog.

- Ceiling planes can be joined together using the **Join Roof Planes** edit button. See “Join Roof Planes” on page 595.

- Select a ceiling plane and click the **Open Object** edit button to open the **Ceiling Plane Specification** dialog. See “Ceiling Plane Specification Dialog” on page 607.

Displaying Ceiling Planes

Ceiling planes are drawn on the “Ceiling Planes” layer by default, although you can place a ceiling plane on any layer. See “Line Style Panel” on page 609.

Manually drawn **Ceiling Planes** can also display labels when the “Roofs, Labels” layer is on. See “Roof Plane Labels” on page 593.

Editing Ceiling Planes

Ceiling planes can be edited much like roof planes using their edit handles and edit toolbar buttons. See “Editing Roof and Ceiling Planes” on page 594.

Ceiling planes can also be edited in their specification dialog. See “Roof Plane Specification Dialog” on page 598.

As with roof planes, the ceiling planes layer can be locked to prevent them from being selected.

Deleting Ceiling Planes

There are several ways to delete ceiling planes. See “Deleting Objects” on page 220.

- Select **Build> Roof> Delete Ceiling Planes** to delete all ceiling planes in the current plan.

- Ceiling planes can also be deleted at once in the **Delete Objects** dialog. See “Delete Objects Dialog” on page 221.

- Select a ceiling plane or group of ceiling planes, then click the **Delete** edit button or press the Delete key.

The **Ceiling Plane Specification** dialog is similar to the **Roof Plane Specification** dialog. See “Roof Plane Specification Dialog” on page 598.
There are four values that define the 3D orientation of a ceiling plane: **Ridge Height**, **Height Inside Wall**, **Height Outside Wall**, and **Pitch**.

Locking any of the **Height** values defines that value as the pivot point for the selected ceiling plane. Each of these dimensions is measured from the first floor default elevation of 0' - 0".

If you lock the **Pitch** and change a Height value, the ceiling plane moves vertically, keeping the same slope. It will not pivot.

Changing these values does not affect the 2D representation of the ceiling plane.

Specify the **Height** and **Pitch** of the selected ceiling plane. Heights are measured to the bottom surface of the ceiling plane’s rafters or trusses, at the centerpoint of the ceiling plane’s baseline. See “The Baseline” on page 592.

- Select the **Elevation Reference**, which is where the Height values below are measured from.
- Define the **Ridge Height**, or lock this value to make it the ceiling plane’s pivot point.
- Define the **Height Inside Wall**, or lock this value to make it the ceiling plane’s pivot point. If the plane is drawn over a wall, this is located at the inside surface of the wall’s Main Layer.
- Define the **Height Outside Wall**, or lock this value to make it the ceiling plane’s pivot point. Only available when a ceiling plane is drawn over a wall, this is the height of the lower edge of the ceiling rafters, were they not clipped by the wall below.
- Specify the selected ceiling plane’s **Pitch**, or lock this value to move the plane vertically when a Height value is changed.
- Check **Pitch in Degrees** to display the Pitch value in degrees in all dialogs as well as in roof plane labels.

Measurements
- Information about the structure of the selected ceiling plane(s) displays here for reference.
 - In Chief Architect Interiors only, specify the **Structure Thickness**. In Chief Architect Premier, the Structure Thickness is reported here for reference but is specified on the Structure panel. The default Structure Thickness is the same as that for roof planes and is set in the **Build Framing** dialog. See “Build Framing Dialog” on page 632.
The **Vertical Rafter Depth** is defined by measuring a plumb line through the ceiling structure. The greater the pitch, the greater the vertical structure depth.

The **Top of Plate** value is the top plate height of the bearing wall, and is also the ceiling height of the room.

Overhang From Wall Inside - Only appearing when a ceiling plane is drawn over a bearing wall, this is the horizontal distance from the Baseline to the inside Main Layer surface of the wall. The Baseline is typically drawn over the outside Main Layer surface, so this value is equal to the wall’s Main Layer thickness.

Clip End - This is the amount a ceiling rafter’s underside must be clipped at its lower end to rest on the wall top plate, and is zero if the ceiling plane was not drawn over a bearing wall. This value is equal to the ceiling plane’s rise in slope over the distance of the **Overhang from Inside Bottom**.

The **Outside Bottom** value plus the **Clip end** value equals the **Top of Plate** value.

In Chief Architect Interiors only, specify how the **Ceiling Finish** surface on the underside of the selected ceiling plane is built. In Chief Architect Premier, the Ceiling Finish is specified on the **STRUCTURE** panel.

- When **Use Room Ceiling Finish** is checked, the selected ceiling plane’s ceiling finish thickness and material are defined by the room below and the “Ceiling Surface” component will not be available on the **MATERIALS** panel. Uncheck this box to define the ceiling finish as part of the ceiling plane and enable the **Ceiling Thickness** option.

- Specify the **Ceiling Thickness**, which is the thickness of the bottom surface of the ceiling plane.

Check **Curved Ceiling** to specify the selected ceiling plane as curved. See “Curved Roof Planes” on page 604.

- Specify the ceiling plane’s **Angle at Eave**, **Angle at Ridge** and **Radius to Framing Bottom**.

- These three values are interrelated - when one is changed, the other two adjust accordingly. You may find it helpful to first specify the **Radius** value, then the **Angle** values.

A flat ceiling plane with a pitch of 0 has angles of 0 at both the ridge and eave, as well as a radius of 0.

Structure Panel

The settings on the **STRUCTURE** panel of the **Ceiling Plane Specification** dialog are a subset of those found on the **ROOF** panel of the **Build Framing** dialog. See “Roof Panel” on page 639.

Polyline Panel

The **POLYLINE** panel states the length of the ceiling plane’s **Perimeter**, its **Framing Area**, and its **Projected Area**. See “Polyline Panel” on page 601.

Selected Line Panel

This panel is similar to the **LINE** panel of the **Line Specification** dialog. See “Line Panel” on page 234.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel affect the appearance of the selected ceiling plane in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The “Ceiling Surface” component is only available when **Use Room Ceiling Finish** is unchecked on the **STRUCTURE** panel. In Chief Architect Interiors this setting is found on the **OPTIONS** panel along with **Has Ceiling**, which must be checked.

For more information about the settings on this panel, see “Materials Panel” on page 761.

Label Panel

Ceiling plane labels display when the “Roofs, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for ceiling planes is blank, but you can specify a custom label. See “Roof Plane Labels” on page 593.

For information about the settings on this panel, see “Label Panel” on page 516.
Components Panel

The information on the COMPONENTS panel can be used in the materials list. See “Components Panel” on page 959.

Gable/Roof Lines

The Gable/Roof Line tool can be used to automatically generate a gable above the bearing wall of a hip roof plane. It is best used in situations where roof directives in walls are not possible. For example:

• Where a wall is not present, such as across the front of an alcove;
• Over a Bay, Box, or Bow Window.

See “Roof Directives in Walls” on page 287.

In addition, the Gable Over Door/Window edit button allows you to add a small Gable/Roof Line over one or more selected doors or windows the next time automatic roof planes are built.

Gable/Roof Lines display in plan view when the “Roofs, Gable Lines” layer is set to display and can be selected and edited much like regular CAD lines. See “Editing Line-Based Objects” on page 171.

Creating a Gable

To create a gable using a Gable/Roof Line

1. Select Build> Roof> Gable/Roof Line, then click and drag to draw a line outside of the exterior wall that you want to create a gable over.
2. Position the Gable/Roof Line within 10 feet (2260 mm) of the wall’s Main Layer but not touching it. See “The Main Layer” on page 293.
 • Make sure that the Gable/Roof Line is exactly parallel to the exterior wall.
3. Resize the Gable/Roof Line so that it is the length of the desired gable.
 • The length of the Gable/Roof Line determines the gable width at the wall Main Layer, not at the overhang.
 • At the larger roof eave, a gable roof is wider than the gable line by twice the overhang distance.
5. Select Build> Roof> Build Roof and regenerate the roof. See “Build Roof Dialog” on page 586.

Gables produced using Gable Roof Lines

To use the Gable Over Door/Window tool

1. Select one or more doors or windows.
2. Click the Gable Over Door/Window edit button.
• **Gable Over Door/Window** is not available for openings placed in Full Gable Walls or for Bay, Box or Bow Windows. See “Bay, Box, Bow Windows and Roofs” on page 453.

3. In the **Gable Line Specification** dialog, specify the desired Pitch and Overhang for the gable roof. See “Gable Line Specification Dialog” on page 612.

4. The next time automatic roof planes are built, gables will be created over each of these doors and windows.

- Each gable will extend 12” (300 mm) on either side of its door or window.
- If two of these openings are within 30” (750 mm) of each other on the same wall, a single gable will be created.
- If you move or resize the door or window(s), the associated Gable/Roof Line will not update until the roof is built again.

5. To remove a Gable Over Door/Window, select the door(s) or window(s) and click the **Delete Gable Over Opening** edit button, or select the gable line and click the **Delete** edit button. The next time the roof is built, the gable will be removed.

Covering an Alcove

A **Gable/Roof Line** can also be used to maintain a roof plane baseline where there is no wall below. For example, you can use it to extend a roof plane across an alcove, rather than wrap into it.

In order for a **Gable/Roof Line** to direct the roof to extend over an alcove or other area where no wall is present, it must be aligned with the exterior walls’ Main Layer.

Covering a Bay

A **Gable/Roof Line** drawn across a bay causes a gable to be build above the bay when roofs are automatically generated.
In order for the gable to be built, at least one end of the Gable/Roof Line must extend past the side walls of the bay.

Gable/roof line extends past end of side wall

If the Gable/Roof Line is drawn along the outer edge of the bay’s outer wall’s Main Layer, the resulting gable will extend only to the eave of the larger roof. Draw the Gable/Roof Line beyond the bay’s outer wall to extend out past the larger roof’s eave.

Gable/roof line drawn beyond outer wall of bay results in gable extending to cover bay

Gable Line Specification Dialog

Select a gable line and click the Open Object edit button to open the Gable Line Specification dialog. This dialog also opens whenever the Gable Over Door/Window edit button is clicked.

Gable Line Panel

The settings on this panel affect the structure of the two roof planes associated with the selected Gable/Roof Line.

The defaults for these settings are set in the Build Roof dialog. See “Roof Panel” on page 587.

Line Panel

The settings on the Line panel are available for a variety of other objects in the program. See “Line Panel” on page 234.

Line Style Panel

The settings on the Line Style panel are available for a variety of other objects in the program. See “Line Style Panel” on page 235.

Arrow Panel

The settings on the Arrow panel are available for a variety of other objects in the program. See “Arrow Panel” on page 236.

Skylights and Roof Holes

A skylight can be created by selecting Build> Roof> Skylight and drawing a rectangular polyline within a single roof plane. You can also simply click once within a roof plane to place a 2' x 2' skylight. These measurements describe the skylight’s projected size, as measured in plan view: roof pitch is not taken into account.
The Skylight tool places a flat panel skylight into a roof hole, produces a hole in the ceiling platform below, and automatically generates the skylight shaft between these two holes.

To place a skylight in a vaulted ceiling, uncheck Flat Ceiling Over This Room in the Room Specification dialog, draw the ceiling planes to produce the vault and edit them as needed, and then draw the skylight. See “Structure Panel” on page 334.

Although inserted into roof planes, skylights are able to display in both plan and 3D views when their containing roofs do not.

Editing Skylights

Skylights can be selected individually or in groups and can be edited using the edit handles, edit toolbar buttons, or the Roof Hole/Skylight Specification dialog. See “Roof Hole/Skylight Specification Dialog” on page 613.

Skylights must always be contained by a single roof plane. If the roof plane is deleted, any skylights or holes it contains are also deleted. Aside from this restriction, skylights can be edited much like standard closed polylines. See “Editing Closed Polyline-Based Objects” on page 180.

If you clear the Skylight check box in the Roof Hole/Skylight Specification dialog, the curb and glass for the skylight is removed but the opening remains.

By default, the flat ceiling hole does not display separately; but it can be edited separately, and even deleted entirely. See “Roof Hole/Skylight Specification Dialog” on page 613.

A roof hole can also be created using the Create Hole edit tool. See “Polyline Holes” on page 184.

Roof Hole/Skylight Specification Dialog

Select a skylight and click the Open Object edit button to open the Roof Hole/Skylight Specification dialog. See “Skylights and Roof Holes” on page 612.
General Panel

1. Check **Skylight** to specify this polyline as a skylight. If unchecked, the curb and glass for the skylight are removed but the opening remains.

 - Specify the **Frame Width** and **Height** of the selected skylight. These values describe the skylight’s projected size, as measured in plan view: roof pitch is not taken into account.

2. The **Inside Hole Rim** settings define how the hole for the skylight is framed, as well as the shape of the skylight well where it passes through the roof plane.

 - Select **Square Sides** to cut the framing for the skylight square to the pitch of the roof.
 - Select **Plumb Sides** to produce framing for the skylight that is plumb-cut.
 - Select **Plumb/Square** to produce framing with the bottom edge plumb-cut and the top edge, square-cut.

3. The **Ceiling Hole** settings affect how the hole in a room’s Flat Ceiling is created below the roof hole/skylight. These options do not affect the hole in a manually drawn Ceiling Plane. See “Structure Panel” on page 334.

 - Select **Skylight Automatically Generates Ceiling Hole** to automatically generate and maintain the skylight’s ceiling hole.

 - Select **Manually Edit Ceiling Hole Polyline** to display the editable ceiling hole polyline in plan view in addition to the polyline in the roof plane.

 - Select **Do not generate ceiling hole** to generate a hole through the roof plane but not the flat ceiling.

 - Uncheck **Generate shaft to ceiling hole** to generate a roof hole and a hole in the flat ceiling, but no vertical surfaces connecting them. When checked, a shaft between the two is produced. Not available if Do not generate ceiling hole is selected, above.

Polyline Panel

The **POLYLINE** panel states the roof hole/skylight’s **Perimeter**, its **Framing Area**, and its **Projected Area**. See “Polyline Panel” on page 601.

Selected Line Panel

This panel is similar to the **LINE** panel of the **Line Specification** dialog. See “Line Panel” on page 234.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel control the appearance of the selected roof hole or skylight in plan view. See “Fill Style Specification Dialog” on page 155.

Note: The hole produced in a sloping ceiling plane by a skylight must be always manually maintained if the skylight is moved or resized.
Dormers and Crickets

Dormers can be drawn manually or placed automatically using the Auto Dormer tools.

Automatic Dormers can be placed only under certain conditions:

• Automatic Dormers can only be placed entirely within a single roof plane. They cannot extend past the eaves or ridge of this roof plane.
• Automatic Dormer side walls cannot be positioned above other walls in the plan.

If you click within a roof plane to place an automatic dormer, but click too close to an eave or the ridge, a dormer will not be created; however, its outline will. Move this outline box to a location that meets the dormer’s requirements and it will be created.

Automatic dormers reside by default on their own layer, “Auto Dormers”. Their display cannot be turned off; however, you can lock this layer to prevent unintended editing. See “Layer Display Options Dialog” on page 144.

The initial width, height, roof style and other settings of Auto Dormers are set in the Dormer Defaults dialog. See “Dormer Defaults” on page 583.

Auto Floating Dormer

Select Build> Roof> Auto Floating Dormer and click the roof plane where you would like to place the center of the dormer's front wall.

The bottom edges of all floating dormer walls are cut off by the underlying roof plane. To produce such a dormer manually, check Roof Cuts Wall at Bottom for the dormer walls on the ROOF panel of the Wall Specification dialog.

Usually, no room is defined by the walls of this type of dormer.

These objects is blank, but you can specify a custom label. See “Roof Plane Labels” on page 593.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. See “Components Panel” on page 959.

The images below show both the outside and inside of a typical floating dormer.

A floating dormer can be placed in plan view on the same floor that its underlying roof plane displays on, or it can be placed on the floor above. Normally, it does not matter what floor the dormer is on; but in some cases, it may need to be on the floor above so that the dormer walls do not interfere with walls or railings in the room below.

Regardless of which floor it is placed on, a dormer must always fit within a single roof plane. When placing a dormer on the floor above, you may find it helpful to turn on the Reference Display. See “The Reference Floor” on page 543.

You may also find it helpful to display the underlying roof plane on the floor above using the Roof Plane Specification dialog. See “Roof Plane Specification Dialog” on page 598.

If the dormer is placed on the same floor as the underlying roof plane and the room below, and if the
room has a flat ceiling, then a hole will be produced in the ceiling under the dormer.

Auto Dormer

Select Build> Roof> Auto Dormer and click on a roof plane where you want the center of the dormer’s front wall to be.

The walls of an auto dormer go to the floor and meet a knee wall on either side on the back of the dormer. This knee wall must run parallel to the underlying roof plane’s Baseline.

- If you are creating a (non-floating) auto dormer, a knee wall must already exist. The dormer side walls run back to the knee wall and the knee wall is broken where the dormer walls meet it.
- The knee wall does not have to be designated as such in the Wall Specification dialog unless you are generating an automatic roof. See “Knee Walls” on page 289.
- A non-floating dormer must always be created on the same floor as the knee walls.

Manually Drawn Dormers

Once you are familiar with Chief Architect’s roof tools, drawing dormers manually can be quite simple. There are several different ways to draw dormers; some methods work better in certain applications.

A variety of resources with information about drawing dormers manually is available at chiefarchitect.com.

There are a few things to keep in mind.

- Walls extend upward until they meet an overlying roof plane.
- A wall can also be cut by underlying roof planes if Roof Cuts Wall at Bottom is checked in the Wall Specification dialog. For this to work properly, the edge of the roof plane must extend completely through the width of the wall. See “Clerestory and Dormer Walls” on page 288.
- Polylines can be converted into a Hole in Roof/Ceiling that allows walls to extend above or below the roof line. See “Convert Polyline” on page 205.

Manually Drawn Crickets

The automatic roof generator will not produce crickets in a roof plan; however, you can manually draw a cricket using the Roof Plane tool. See “Crickets” on page 69 of the Tutorial Guide.

Editing Auto Dormers

Auto Dormers are a collection of objects that behave as one. When a dormer is selected, it can be edited using its edit handles, edit tools, and specification dialog. See “Dormer Specification Dialog” on page 617.

If you click the Explode Dormer edit button, the dormer’s individual components can be edited.
Using the Mouse

When selected, an auto dormer displays three edit handles. The Move handle displays over the front wall and allows you to relocate the dormer. Two resize handles display on the side walls and allow you to change the width of the dormer.

There are some things to keep in mind when editing auto dormers and auto floating dormers using the mouse.

- Dormers move at 90° angles unless the Ctrl key is pressed before moving them.
- The dormer must be contained within one underlying roof plane.
- Auto dormers cannot be moved beyond the required knee wall.

Editing the Window

Dormer windows can be selected, edited, deleted and replaced just like other windows. See “Editing Windows” on page 436. You can place several windows in the front wall.

Unless the dormer's window has been edited or changed in the Window Specification dialog, when the dormer width is changed, its width changes automatically to fill the front dormer wall. If the window has been edited, its width stays fixed. If a change to the dormer makes its front wall too short to hold the window, the window reverts to auto width.

Exploding Dormers

Click the Explode Auto Dormer edit button to explode a selected auto dormer into its component parts. The dormer walls, roof planes, window, and hole in the roof/ceiling can be edited individually.

The program treats roof planes over an exploded auto dormer as though they were manually drawn, allowing you to protect them from being rebuilt in the Build Roof dialog. See “Roof Panel” on page 587.

Once exploded, it is not possible to block the components into a Dormer object again.

Dormer Specification Dialog

Select a dormer or dormers and click the Open Object edit button to open the Dormer Specification dialog.

The settings in this dialog are also found in the Dormer Defaults dialog, where they apply to all dormers as they are created rather than to a selected dormer.
Specify the selected dormer’s **Roof Style**.
- Choose a roof **Type** from the drop-down list. You can choose from Hip, Gable, Shed, Gambrel, Mansard, Barrel, Curved Eave, Hip Curved Eave or Eyebrow.

Describe the **Pitch** of the dormer’s roof planes.
- Specify the **Pitch** of the dormer roof planes. The default dormer pitch applies to all dormer roof types except Shed, which has a default 3 in 12 pitch. For Gambrel and Mansard types, this applies to the lowest, or eave, roof planes.
- Check **Pitch in Degrees** to display the pitch in degrees in all dialogs as well as in roof plane labels; uncheck it to display the pitch in terms of rise and run.
- The **Second Pitch** specifies the upper roof of a Gambrel, Mansard, curved eave, and hip curved eave.
- When a Second Pitch is used, specify the **In from Eave** distance, measured from the lower roof plane eave to where the upper roof plane starts.

Roof Overhang - Specify the depth of the selected dormer’s **Eave** and **Gable Overhangs**.

Specify the characteristics of the dormer’s **Fascia/Rafters**.
- Specify the **Fascia Depth** for gable fascia and the **Eave Fascia Depth**.
- Specify the **Rafter Depth**.
- The **Vertical Rafter Depth** displays for reference.
- Specify whether to include Boxed Eaves, Gutters, Frieze, and/or Shadow Boards.
- Select either **Plumb** or **Square Rafter Cut**.
Roof Returns and Other Details

5. Check Auto Roof Returns to generate roof returns on the selected dormer. Roof Returns can be only specified for Gable dormers. See “Roof Returns” on page 620.

- Specify the horizontal **Length** of the roof return in inches (mm).
- Enter a value in inches (mm) to **Extend** the roof returns past the dormer overhang.

- Specify a **Gable**, **Hip**, or **Full** roof return.
- Specify a **Sloping** or **Flat** roof return. See “Roof Tutorial” on page 439 of the Tutorial Guide.
- Check the boxes to **Include Shadow Boards**, **Ridge Caps**, and/or **Frieze** molding on the roof returns.

Walls Panel

- Select a **Wall Type** for the dormer walls from the drop-down list.
- Specify the **Height** of the dormer, as measured from where the top of the underlying roof plane meets the dormer front wall exterior to the top plate of the dormer roof’s bearing walls.

This top height is called the dormer ceiling height, even if the ceiling in the dormer is not flat. The top dormer window casing is usually close to this height.

- Check **Set to Existing Ceiling** to assign the ceiling height of the room behind the dormer to the dormer. Not available in the Dormer Defaults dialog.
- **Height to Reach Existing** shows the difference between the dormer height where the inside of the wall meets the underside of the roof and the ceiling of the room behind it.
- Specify the dormer’s **Width**, measured from the outside surfaces of the dormer side walls.

- **Form Room Inside Dormer** is used only for floating dormers and creates a flat ceiling in the dormer. If you check this option, you should define the dormer on the floor above the room it is positioned over. If this room has a flat ceiling, checking this option makes a hole in the ceiling under the dormer. This option should normally be left unchecked.

Only available in the Dormer Defaults dialog, if **Set Inside Window Trim Width** is checked, the inside casing width for dormer windows defaults to the **Inside Window Trim** value entered below. Dormer windows can appear too narrow on the outside due to the space required for the inside casing to clear the inside surfaces of the side walls. This value sets the width for the inside casing of the dormer window.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Roof Returns and Other Details

Chief Architect offers a selection of tools to add architectural details to your roof design.

Boxed Eaves

Boxed eaves have a flat, horizontal soffit surface instead of a soffit that follows the underside of the rafter ends. Boxed eaves can either extend out to the gable fascia or build flush with the adjacent exterior wall.
You can specify Boxed Eaves for all roof planes in the **Build Roof** dialog and for individual roof planes in the **Roof Plane Specification** dialog. See “Options Panel” on page 589.

The flush eave end uses the wall’s surface material by default; however, you can specify a different material if you wish. See “Materials Panel” on page 591.

Roof Returns

A roof return is a small decorative roof plane that connects to the low side of a gable roof overhang and extends below the upper triangular portion of the gable wall. Three styles of roof returns that can be produced automatically.

The first two styles are called **Gable** and **Hip** returns since the return ends in a gable or hip.

The third is called a **Full** return because it extends under the entire gable to connect both sides and is sometimes referred to as a water table. In order for a Full return to be created, the roof planes on each side must have the same Fascia Top Height.

It is not difficult to manually draw roof returns using small roof planes, but it is quicker to produce them automatically.

Roof returns are generated automatically on a wall by wall basis using settings found in the **Wall Specification** dialog. See “Roof Panel” on page 301.

These roof return settings are also found in the **Dormer Specification** dialog for gable roof dormers and function similarly. See “Roof Panel” on page 618.

The pitch of an automatically generated roof return is the same as that of the roof plane above it. Its structure is the same as that of the subfascia and eaves of the roof plane above. See “Structure Panel” on page 600.

Fascia and Shadow Boards

Fascia and shadow boards can be added to both automatic and manually drawn roof planes. They can be generated when the roof planes are drawn when specified in the **Build Roof** dialog, and can also be added to or removed from individual roof planes and roof plane edges in the **Roof Plane Specification** dialog.

- Fascia and eave fascia can be specified in the **Build Framing** and **Build Roof** dialogs. See “Roof Panel” on page 639.
- One or more shadow boards profiles can be specified in the **Build Roof** dialog. See “Shadow Boards Panel” on page 591.
- Fascia and shadow boards are generated whenever the roof is built or rebuilt.
- Fascia and shadow board materials can be specified separately. See “Materials Panel” on page 591.

Fascia and shadow boards display in 3D views and are included in the materials list.
Fascia

The material specified for fascia in the Build Roof dialog displays as part of the roof plane rather than as a separate object. It displays in 3D views but not in plan view.

In addition, sub fascia boards are created when roof framing is generated and are placed on the “Framing, Roof Rafters” layer. The fascia material is not applied to these framing members, however.

The width and depth of fascia and eave fascia can be specified in the Build Framing dialog. See “Roof Panel” on page 639.

Shadow Boards

Shadow boards are added to both automatic and manually drawn roof planes when one more shadow board profile is specified in the Build Roof dialog. They can also be added to, removed from, or customized for individual roof planes in the Roof Plane Specification dialog. See “Shadow Boards Panel” on page 591.

Automatically generated shadow boards are 3D Molding Polylines that follow the eaves of the roof. You can specify whether each profile is applied along eaves, along gable eaves, or along both. You can also use the same shadow board profile multiple times and adjust the offsets for each to suit different conditions. See “Molding Polylines” on page 684.

Shadow boards are placed on the “Roofs, Trim” layer. By default, this layer is locked, turned on in 3D views but not in plan view.

If a shadow board polyline is edited, it will no longer be considered an Automatic shadow board, and will not be deleted and replaced when the roof is rebuilt.

You can modify individual edges of an Automatic shadow board polyline indirectly by changing settings on the SHADOW BOARDS panel of the Roof Plane Specification dialog.

Soffits

Soffits are the layer of material that covers the rafter ends on the underside of roof eaves and can be constructed in several ways:

- By default, soffits follow the underside of the rafter ends and butt against the inside edge of the fascia. The rafter end depth and thus the soffit height is controlled by the Gable Sub Fascia Depth. See “Roof Panel” on page 639.
- Check Flat Under Eave Sub Fascia for soffits that follow the underside of the rafter ends until they reach the eave subfascia, at which point they flatten out until the butt against the inside of the fascia.
- Boxed eaves can be specified in the Build Roof and Roof Plane Specification dialogs. Boxed eave height is controlled by the Eave Sub Fascia Depth. See “Options Panel” on page 589.

Gutters

Gutters are added to non-sloping eaves on both automatic and manually drawn roof planes when a profile is specified in the Build Roof dialog. They can also be added to, removed from, or customized for individual roof planes and roof plane edges in the Roof Plane Specification dialog. If two roof planes are assigned different gutter profile or materials, however, the gutters will not merge. See “Gutter Panel” on page 591.

Automatically generated gutters are basically Molding Polylines that follow the eaves of the roof but are not created on sloped gable eaves.

- Gutters are regenerated or removed whenever the roof is built. See “Roof Panel” on page 587.
- A gutter profile can be specified. See “Gutter Panel” on page 591.
- The gutter material can be specified. See “Materials Panel” on page 591.

Gutters are placed on the “Roofs, Gutters” layer. By default, this layer is turned on in 3D views but not in plan view, is included in the materials list, and is locked. See “Layer Display Options Dialog” on page 144.

If a gutter polyline is edited, it will no longer be considered an Automatic gutter, and will not be deleted and replaced when the roof is rebuilt.

You can modify individual edges of an Automatic gutter polyline indirectly by changing settings on the GUTTER panel of the Roof Plane Specification dialog.

Frieze Molding

Frieze moldings are added to both automatic and manually drawn roof planes when one or more frieze profile is specified in the Build Roof dialog. They
can also be added to, removed from, or customized for individual roof planes in the **Roof Plane Specification** dialog.

Automatically generated frieze boards are placed along all exterior walls directly under the eaves. Frieze does not generate along railings; however, if an attic wall is built above a railing, it can generate along that wall.

- Frieze moldings are generated whenever the roof is rebuilt.
- You can specify whether each profile is applied under eaves, under gable eaves, or under both. You can also use the same profile multiple times and adjust the offsets for each to suit different conditions. See “Frieze Panel” on page 591.
- The materials used for frieze moldings can be specified. See “Materials Panel” on page 591.

Automatically generated frieze moldings are **3D Molding Polylines** placed on the “Roofs, Trim” layer. By default, this layer is turned on in 3D views but not in plan view, and is locked.

If a frieze molding polyline is edited, it will no longer be considered an Automatic frieze, and will not be deleted and replaced when the roof is rebuilt. See “Frieze Moldings” on page 689.

Rafter Tails

Rafter tails are rafter ends that overhang the bearing walls and are located under the eaves. They can be the full rafter depth or trimmed to the depth of the soffits. Rafter tails can also be partially enclosed by soffits, and sometimes feature decorative profiles.

To produce a particular type of rafter tail, set the correct defaults on the **STRUCTURE** panel of the **Build Roof** dialog before you build both the roof planes and the roof framing. See “Roof Panel” on page 639.

To create full-depth exposed rafter ends
- Uncheck **Soffits**.
- Uncheck **Eave Sub Fascia**.
- Uncheck **Eave Fascia**.

To create hidden, trimmed rafter ends
- Check **Trim Framing To Soffits**.
- Check **Soffits**.

To create full-depth, partially-exposed rafter ends
- Uncheck **Trim Framing To Soffits**.

- Check **Soffits**.
- Specify the desired **Gable Sub Fascia Depth**, which controls the soffit height.

Ridge Caps

Ridge caps are roofing components that straddle the tops of roof ridges and hips. To generate ridge caps in Chief Architect, specify one or more ridge cap profiles in the **Build Roof** dialog, and then build or rebuild the roof. Ridge caps will be produced on both automatically generated and manually drawn roof planes. See “Ridge Caps Panel” on page 591.

The program’s default ridge cap profile has flat sides and is 1/2” (13 mm) thick and 6” (150 mm) on each side. It follows the pitch of each roof plane, and its thickness and size can be edited on the **RIDGE CAPS** panel.

Ridge cap profiles are essentially a molding profile, though, which means that you can choose a different profile or molding symbol from the library or even create and use your own custom profile. See “Molding Profiles” on page 677.

You can also use custom Symbol Moldings for ridge caps, but bear in mind that symbols cannot adjust their shape to match different pitches. As a result, different symbols will be required for different roof pitches. See “Symbol Moldings” on page 679.

Like shadow boards and frieze molding, automatically generated ridge caps are **3D Molding Polylines** placed along the ridges and hips. Ridge Caps are created on the “Roofs, Ridge Caps” layer. By default, this layer is locked, displays in 3D views but does not display in plan view.
If a ridge cap polyline is edited, it will no longer be considered an Automatic ridge cap, and will not be deleted and replaced if the roof is rebuilt.

You can modify individual edges of an Automatic ridge cap polyline indirectly by changing settings on the RIDGE CAPS panel of the **Roof Plane Specification** dialog. Bear in mind, though, that your changes may only be reflected in the model if you make the same changes to adjacent roof planes, as well.
Chapter 24: Framing

In Chief Architect, framing can be produced both manually and automatically, calculated in the Materials List, as well as listed in a schedule.

Manual framing members are drawn by clicking and dragging, like drawing a CAD line. Automatic framing for the major components of a 3D model (floors, ceilings, walls and roofs) can be generated using the Build Framing dialog.

Both manually drawn and automatically generated framing members can be selected and edited in 2D and 3D views.

Trusses are covered in their own chapter, “Trusses” on page 655.

Chapter Contents
• Framing Defaults
• Manual vs. Automatic Framing
• The Framing Tools
• Build Framing Dialog
• Framing Reference Markers
• Joist Direction Lines
• Bearing Lines
• Displaying Framing
• Editing Framing
• Keeping Framing Current
• Build Framing for Selected Object(s)
• Framing and the Materials List
• Framing Specification Dialog
• Framing Schedules

Framing Defaults

Select Edit> Default Settings to open the Default Settings dialog. Select Framing from the list, then click the Edit button to open the Framing Defaults dialog.

The Post, Floor Beam, and Roof Beam Defaults dialogs can also be accessed by double-clicking the respective drawing tools. The Deck Post and Deck Beam Defaults dialogs are similar, and can be accessed from the Deck Room Defaults dialog. See “Room Type Defaults” on page 314.

Both automatic and manually-drawn framing are generated according to the settings in the Framing Defaults dialog. This dialog is nearly identical to the Build Framing dialog in both appearance and function. The only difference is that the Build Framing dialog has check boxes that allow you to generate different types of framing automatically. See “Build Framing Dialog” on page 632.

Any changes made in the Framing Defaults or Build Framing dialog will affect subsequently drawn or generated framing, but not framing already present in the plan.

The settings in the Framing Defaults dialog directly affect a variety of important structural elements in each plan which determine floor, ceiling and roof heights; so it is best to set your Framing Defaults before building your model. See “Drawing a Plan” on page 35.
Floor and Ceiling Framing

Floor and ceiling platform depths contribute to the overall height of a structure, so their default values should be set as early as possible. See “Floor Panels” on page 632.

If you plan to draw floor trusses, also see “Trusses Panel” on page 641.

The default floor and ceiling platform settings for a given floor can be overridden on a room by room basis in the Room Specification dialog, or for individual platforms using Joist Direction lines. See “Structure Panel” on page 334.

By default, automatically-generated floor and ceiling joists run in the direction that results in the shortest span between bearing walls and/or beams. Joist Direction lines also allow you to define the direction that joists in a particular floor or ceiling platform. See “Joist Direction Lines” on page 644.

In standard light frame construction, floor and ceiling platforms are built to pass over or bear on the wall framing; however, this is not always desired. You can specify that joists bear on a selected wall, that platforms hang on it, or that the wall build through platforms in the Wall Specification dialog. See “Structure Panel” on page 299.

Framing Groups

When floor or ceiling framing is automatically generated, the program tries to create a single platform that spans as much of the structure as possible. If you need separate floor and ceiling framing in an area of your plan, as you might for an addition to an existing structure, assign the rooms in that area to a non-default Framing Group.

The program treats different Framing Groups as though they were built at different times. Wall framing builds through and divides the floor framing in different Groups, while ceiling framing butts against a ledger attached to the ceiling framing of an adjacent Group.

Framing Groups are assigned using numbers. The Default Framing Group is 1, which is built “first”. Each subsequently numbered group is framed as though it were added to the structure later.

Although Framing Groups affect how both floor and ceiling framing is generated, the Build Framing for Selected Object(s) edit tool only builds floor framing. See “Build Framing for Selected Object(s)” on page 650.

Wall Framing

Like other types of framing, wall framing is generated based on settings in the Framing Defaults dialog. See “Wall Panel” on page 634 and “Openings Panel” on page 635.

In addition, wall framing is dependent on settings from other sources:

- The wall type definition settings used by each wall type in the plan - particularly, the Layer Thickness and Layer Material assigned to the Main Layer. See “Wall Type Definitions Dialog” on page 294.
- The Thickness and O.C. Spacing of the framing material assigned to each wall type used in a plan. See “Materials and the Materials List” on page 766.
- The structural specifications for individual walls in the plan. See “General Panel” on page 297.

In order for wall framing to automatically generate, a wall’s framing layer must be set as its Main Layer and its framing material must be a Framing type. See “The Main Layer” on page 293.

Rough Openings

The rough openings, trimmers, and sills for doors and windows are set in their respective defaults and specification dialogs. See:

- “Door Specification Dialog” on page 412
- “Window Specification Dialog” on page 438

Note: Door and window bucks do not automatically generate in concrete or block walls.

Headers

Door and window headers can also be set in their respective defaults and specification dialogs.

In addition, a range of header depths for openings of different widths can be specified in the Framing Defaults dialog. Check Calculate from Width in the Door and Window Defaults dialogs to assign header depths to openings based on their width. See “Openings Panel” on page 635.

Like other framing members, headers are assigned a Structure Type such as “Lumber” or “LVL”. By default, the program will try to ensure that an
Opening’s Header Type agrees with the framing material used by the wall it is inserted into. To do this, it compares the Header Type to the wall’s framing material:

- Wood framing types: Lumber, I-Joist, Glulam, Engineered Lumber, LVL, PSL, and VSL.
- Steel framing types: Steel I, Steel Box, C-Channel, and U Channel.

If the Header Type agrees with the wall framing material, it will be unchanged; however, if it does not agree it will change to either “Lumber” in a wood-framed wall or “C-Channel” in a steel-framed wall. To prevent this from occurring and use the specified Header Type regardless of wall material, uncheck Automatic. See “Structure Types” on page 650.

Box headers with top and bottom rails can also be specified. See “Framing Panel” on page 422.

Sill Plates

Sill plates are created when floor framing is generated. They are created over all exterior walls that have either Concrete or Brick material type as their Main Layer material and support a floor platform or a framed wall directly above. See “The Main Layer” on page 293 and “Materials and the Materials List” on page 766.

Sill plate size and number can be specified in the **Wall Specification** dialog of the supporting masonry wall. Only the bottommost plate that comes into contact with masonry is specified as Treated. See “Foundation Panel” on page 303.

These sill plates are placed on the “Framing, Sill Plates” layer by default. See “Displaying Framing” on page 645.

Manual vs. Automatic Framing

Platform, roof, and wall framing can be produced manually or automatically. In most cases, automatically-generated framing is preferable because it is faster than manually placing, replicating and editing numerous individual framing members.

In many plans, though, framing is drawn using both approaches. For example, a combination of automatically generated rafters and manually drawn trusses can be used to model a roof framing plan. See “Mixing Trusses with Stick Framing” on page 660.

When a monolithic slab foundation is created, the bottom plates of framed walls built on the slab are specified as Treated and are placed on the “Framing, Wall” layer by default.

As with sill plates, multiple bottom plates can be specified in the **Framing Defaults** dialog, but only the bottommost plate is specified as Treated. See “Wall Panel” on page 634.

Roof Framing

Settings on the ROOF and TRUSSES panels of the **Framing Defaults** dialog determine the structure of roof planes and manually drawn ceiling planes as well as how they rest on bearing walls, so it is important that their default values be set before building the roof. See “Roof Panel” on page 639 and “Trusses Panel” on page 641.

If changes are made to these defaults that you need to apply to the entire roof plan, you will need to rebuild the entire roof - not just the roof framing. See “Roofs” on page 581.

Deck Framing

Deck rooms have special automatically generated framing and are not affected by the settings in the **Framing Defaults** or **Build Framing** dialogs. See “Decks” on page 323.

Framing Types

By default, most framing is set to use “Lumber” as the material type. If you can select from a number of other types, however, such as I-Joist and Glulam. See “Structure Types” on page 650.

Regardless of how it is created, individual framing members can be selected and edited. See “Editing Framing” on page 648.

Automatic Framing

Automatic framing of floor and ceiling platforms, walls and roofs can be generated using the **Build Framing** dialog. The settings in this dialog control the size, spacing, and type of framing drawn in a plan, and related structural information for the major components of the 3D model. See “Build Framing Dialog” on page 632.
Automatic framing of a particular structural component is not generated until the **Build Framing** dialog is opened to the appropriate panel and one of two check boxes selected:

- Select the **Build** check box to build automatic framing once. For example, check **Build Wall Framing** on the WALL panel, then click OK to build wall framing once based on the current state of the model.
- Select the **Automatic** check box, then click OK to build automatic framing every time a change is made to that structural component in the plan. For example, check **Automatic Wall Framing** on the WALL panel to rebuild all wall framing any time a wall is affected by changes to the model.

> **Note:** When Automatic framing of a particular type is enabled, framing of that type cannot be manually edited or deleted.

By default, joists automatically generate in the direction that results in the shortest span; however, you can produce different results using interior walls specified as **Bearing Walls**, **Bearing Lines**, **Floor/Ceiling Beams**, and/or **Joist Direction** lines. See “Bearing Lines” on page 645 and “Joist Direction Lines” on page 644.

Manual Framing

Framing objects can also be drawn manually. With the exception of Posts, framing objects are drawn by clicking and dragging in a straight line, the way other line-based objects are. See “Draw Line” on page 231.

The manual framing tools are organized into families: general framing, floor and ceiling framing and roof framing. The family that a drawing tool belongs to determines where it can be used:

- **Roof framing objects can only be drawn within the area of one or more roof planes.**
- **Floor and ceiling framing objects can only be drawn within one or more floor or ceiling platforms.**
- **General Framing** objects and **Posts** can be drawn anywhere in a model.
- **General Framing** objects can also be drawn in CAD Details. See “CAD Details” on page 255.
- **Wall Bridging** can only be drawn in a Wall Detail window. See “In Wall Detail Views” on page 647.

Rebuilding and Retaining Framing

Rebuilding and Retaining Framing

It is important to remember that by default, framing does not update automatically when changes are made to the model. For example, if a door is moved or resized, wall framing must be rebuilt. If the footprint is enlarged, the wall framing and any roof or platform framing that is affected must be rebuilt.

You can direct the program to rebuild the automatic framing of floors/ceilings, walls and/or roofs every time a change to the model affects one of these components. To do this, select the **Automatic** check box on the **Floor**, **Wall**, and/or **Roof** panels of the **Build Framing** dialog.

You can also rebuild the framing of a single wall, roof plane, or ceiling plane by clicking the **Build Framing for Selected Object** edit button. The floor framing for a selected room can also be rebuilt using this tool.

To learn more, see “Keeping Framing Current” on page 649.

When automatic framing associated with a particular panel in the **Build Framing** dialog is generated, any existing automatically produced framing of that type is deleted and replaced. You can prevent this from happening to a selected wall, room, or roof plane by checking **Retain Wall Framing** or **Retain Roof Framing** in the object’s specification dialog. See “Structure Panel” on page 299, “Structure Panel” on page 334, or “Structure Panel” on page 600.

Mixing Manual and Automatic Framing

Floor and ceiling platforms can be framed with a combination of manually-drawn and automatically generated joists. Similarly, roof planes can be framed with a combination of manually drawn and automatic rafters.

If you plan to use this approach, bear in mind that automatically generated joists and rafters will not be created in the same location as an existing, manually drawn joist or rafter; but, they will not necessarily use the same layout. For consistent layout, consider using a **Framing Reference Marker**. See “Framing Reference Markers” on page 642.
Manually drawn floor, ceiling, and roof framing is unaffected when automatic framing is rebuilt and remains along with the newly produced automatic framing. In contrast, manually drawn wall framing is deleted when automatic framing is rebuilt. You can, however, prevent this from happening by checking Retain Wall Framing in the Wall Specification dialog.

Mixing Rafters and Trusses

Roofs can be framed with rafters, trusses, or a combination of the two. If you plan to combine roof trusses with rafters and/or ceiling joists, you can save time by:

- Check Trusses (No birdssmouth) in the Build Roof dialog before automatically building or manually drawing a roof. See “Build Roof Dialog” on page 586.
- Draw and position all roof trusses before automatically generating framing to produce rafters and ceiling joists. See “Roof Trusses” on page 656.

For more information, see “Mixing Trusses with Stick Framing” on page 660.

Framing with Beams

Floor/Ceiling Beams can be drawn in a plan either before or after automatic framing has been generated. Default settings for beams can be set in the Framing Defaults dialog. See “Beams Panel” on page 637.

If a Floor/Ceiling Beam is present and wall framing is generated, posts will be placed under the beam in any walls that pass under it and studs and top plates will build around the beam as necessary.

If a Floor/Ceiling Beam is created before automatic floor or ceiling framing, you can specify whether joists bear on the beam or hang on its sides.

To build joists that bear on a beam

1. Draw a Floor/Ceiling Beam at the desired location in your plan.
2. Select the beam and click the Open Object edit button. On the GENERAL panel of the Beam Specification dialog, confirm that:
 - The Top Height value is equal to the Ceiling Height of the room(s) over which the beam is placed.
 - Bearing Beam is checked.
3. Click OK, then select Build> Framing> Build Framing and build the appropriate floor or ceiling framing. See “Floor Panels” on page 632.

To build joists that butt against a beam

1. Draw a Floor/Ceiling Beam at the desired location in your plan.
2. Select the beam and click the Open Object edit button. On the GENERAL panel of the Beam Specification dialog:
 - Specify the desired Depth value and then lock it.
 - Specify the Bottom Height value so that it is equal to the Ceiling Height of the room(s) over which the beam is placed.
 - Uncheck Bearing Beam.
3. If necessary, select Build> Framing> Joist Direction and draw a line perpendicular to the beam and within the floor or ceiling platform.
4. Click OK, then select Build> Framing> Build Framing and build the appropriate floor or ceiling framing. See “Floor Panels” on page 632.

The Framing Tools

Select Build> Framing to access the automatic and manual Framing Tools.

The Framing Tools family has three separate parent buttons: General Framing Tools, Floor/Ceiling Framing Tools, and Roof Framing Tools.

The default settings for framing members are derived from their respective panels in the Framing Defaults dialog.

Most types of framing can be created both manually and automatically. Once created, both automatically generated and manually drawn framing members can be selected and edited. See “Editing Framing” on page 648.
Build Framing

Select **Build > Framing > Build Framing** to open the **Build Framing** dialog. Here, you can define settings that control how framing is drawn and generate automatic framing. See “Build Framing Dialog” on page 632.

General Framing

General Framing objects are generic, framing members that can be drawn outside of a floor or ceiling platform or roof plane. Select **Build > Framing > General Framing**, then click and drag in a straight line to create one of these objects. In plan view, a horizontal framing member is created; in a Wall Detail, vertical members can also be drawn. See “In Wall Detail Views” on page 647.

Wall Bridging

Wall Bridging, or blocking, can be created both automatically and manually, but can only be drawn manually in a Wall Detail. To do so, open a Wall Detail and select **Build > Framing > Wall Bridging**, then click and drag in a straight line across the wall in the view. See “In Wall Detail Views” on page 647.

Each run of bridging has gaps where it crosses studs, but behaves as a single object.

Automatic wall bridging can be created when wall framing is built or rebuilt. See “Wall Panel” on page 634.

Post

Posts can only be placed manually. To do so, select **Build > Framing > Post** and click in plan view.

Post with Footing

Posts can also be created with footings beneath them. Select **Build > Framing > Post** and click in plan view to place a post centered over a footing. Post footings are **Slab** objects and can be selected independent of their posts. See “The Slab Tools” on page 531.

Rafter

Rafters can be drawn both manually and automatically. To draw a rafter manually, select **Build > Framing > Rafter** in plan view, then click and drag in a straight line within a roof plane.

Rafters are edited like other framing members, except that you cannot set the height. If a rafter is moved, its height and slope are automatically reset to fit under the roof plane at its new position.

Roof Blocking

Roof Blocking is automatically generated in the eaves if a soffit is not present; otherwise, blocking is drawn manually. In plan view, select **Build > Framing > Roof Blocking** and click and drag in a straight line within a roof plane. Blocking is typically drawn perpendicular to the rafters, but at the same pitch.

Each run of blocking behaves as a single object but has gaps where it crosses rafters, trusses or other blocking.

Before drawing Roof Blocking:

- Specify whether you want **In Line**, **Stagger** blocking, or **Cross** bridging in the **Framing Defaults** dialog.
- Build the roof framing. See “Roof Panel” on page 639.

In 3D, roof blocking is tilted to follow the pitch of the roof plane in which it is drawn.

Roof Truss

Roof trusses can only be drawn manually. To do so, select **Build > Framing > Roof Truss** in plan view and click and drag in a straight line within one or more roof planes. Roof planes and either a default or manually drawn ceiling must be present before a roof truss can be drawn. See “Roof Trusses” on page 656.

Roof Beam

Roof beams can only be drawn manually. To do so, select **Build > Framing > Roof Beam** in plan view and click and drag in a straight line. Roof beams are normally be drawn across rafters and placed directly under them.
Joist
Floor and ceiling joists can be drawn both manually and automatically. To draw a joist, select **Build > Framing > Joist** in plan view, then click and drag in a straight line within a floor or ceiling platform.

Joists are always drawn as the ceiling framing for the current floor. See “The Current Floor” on page 542. Whether a floor or ceiling joist is drawn is determined by the presence of a floor platform above.

- If there is no floor platform above, a ceiling joist is drawn.
- If there is a floor platform above, a floor joist is drawn.

If you want to draw floor joists for Floor 1, for example, you must do so on Floor 0. See “Foundations” on page 521.

Joists can be automatically generated for multiple floors in the **Build Framing** dialog. See “Floor Panels” on page 632.

Floor/Ceiling Beam
Floor and ceiling beams can only be drawn manually in plan view. Select **Build > Framing > Floor/Ceiling Beam**, then click and drag in a straight line within a floor or ceiling platform.

Beams can be drawn in two different ways:
- **Under Joists** places the beam underneath the joists so the joists can bear on it.
- **With Joists** places the top of the beam even with the tops of the joists it supports. The joist then butts against it. See “Beams Panel” on page 637.

Joist Blocking
Joist blocking can only be drawn manually in plan view. To do so, select **Build > Framing > Joist Blocking**, then click and drag in a straight line within a floor or ceiling platform.

Before drawing Joist Blocking:
- Specify whether you want **In Line**, **Stagger** blocking, or **Cross** bridging in the **Framing Defaults** dialog.
- Build the floor and/or ceiling platform. See “Floor Panels” on page 632.

Regardless of how many joists or other objects it crosses, each run of blocking behaves as a single object.

Floor/Ceiling Truss
Floor and ceiling trusses can only be drawn manually in plan view. Select **Build > Framing > Floor/Ceiling Truss**, then click and drag in a straight line within a floor or ceiling platform. See “Floor and Ceiling Trusses” on page 656.

Framing Reference Marker
Framing Reference Markers are manually-placed reference points that specify how automatically-generated framing is laid out. To place one, select **Build > Framing > Framing Reference Marker** in plan view and click to place a Framing Reference Marker.

A Framing Reference Marker can also be created by placing a **Marker** and then specifying its type. See “Markers” on page 393 and “Framing Reference Markers” on page 642.

Bearing Line
Bearing Lines direct the program to lap or butt joists and/or rafters where they cross the line instead of spanning from wall to wall, and can only be drawn in plan view. To draw one, select **Build > Framing > Bearing Line** and click and drag in a straight line. See “Bearing Lines” on page 645.

Joist Direction
Joist Direction lines define the direction in which joists run in a floor or ceiling platform and can only be drawn in plan view. To draw one, select **Build > Framing > Joist Direction** and click and drag within a floor or ceiling platform. See “Joist Direction Lines” on page 644.
Build Framing Dialog

Automatic framing can be generated by selecting **Build> Framing> Build Framing** to open the **Build Framing** dialog. This dialog can also be accessed by double-clicking the **General Framing** button or any of the **Floor/Ceiling Framing Tools** buttons.

The settings in this dialog are similar to those found in the **Framing Defaults** dialog.

Each major structural component of the model has its own panel or panels in the **Build Roof** dialog. The number of panels in the dialog varies depending on how many floors are in your model. There will be a panel called “1st” for the first floor, “2nd” for the second floor, and so on.

- Floor and ceiling framing settings are found on the **Floor panels**. See “Floor Panels” on page 632.
- Wall framing settings are located on the **WALL, OPENINGS, and FIREPLACES panels**. See “Wall Panel” on page 634, “Openings Panel” on page 635, and “Fireplaces Panel” on page 637.
- Floor/Ceiling Beam and Roof Beam settings are found on the **BEAMS panel**. See “Beams Panel” on page 637.
- Post, floor/ceiling beam and roof beam settings are found on the **POSTS panel**. See “Posts Panel” on page 638.
- Roof framing settings are located on the **ROOF and TRUSSES panels**. See “Roof Panel” on page 639 and “Trusses Panel” on page 641.
- The settings on the **ROOF panel** are the same as those on the **STRUCTURE panel** of the **Build Roof** dialog. See “Roof Panel” on page 639.
- You can specify how framing looks in plan view on the **PLAN VIEW panel**. See “Materials Panel” on page 642.
- You can set the default materials used for framing on the **MATERIALS panel**. See “Materials Panel” on page 642.

For best results, create roof framing before or at the same time that ceiling joists are generated.

Floor Panels

The default floor and ceiling framing for individual floor levels is set here. The defaults for all floor levels, however, is set in the Floor/Ceiling Platform Defaults dialog. See “Floor and Room Defaults” on page 314.

The floor framing for a given floor level is always generated or manually drawn on the floor below. As such, the floor framing settings for a given floor level are found on the **FLOOR panel** for the floor below it. For example, the floor framing settings for Floor 2 are found on the **1ST panel**, while the floor framing settings for Floor 1 are found on the **FOUNDATION panel**. See “Floor and Ceiling Platforms” on page 325.

In order to create the floor framing for Floor 1, a Floor 0 must be present. If a Floor 0 has not been built, the **Build Floor Framing** checkbox on the **FOUNDATION panel** will not be available. See “Foundations” on page 521.
Check **Automatic Floor/Ceiling Framing** to regenerate floor and ceiling framing whenever changes are made to the model. See “Automatic Framing” on page 627.

- Check **Use Framing Reference** to build ceiling framing to a Framing Reference Marker. If a reference is present, the center of the first joist is placed at this point and spacing goes from there. If joists are lapped, the surface is placed at this point. When this is unchecked, the program tries to position ceiling joists so that they coincide with rafters. See “Framing Reference Markers” on page 642.

Specify how the **Ceiling Above Floor X** is built. These settings are only relevant for rooms that do not have living space above them.

- Check **Build Ceiling Framing** to generate or regenerate ceiling framing when the OK button is clicked. Only available when there is no living space above at least part of the current floor. Not available in the **Framing Defaults** dialog.

- The **Ceiling Structure** depth displays here for reference. Click the **Edit** button to open the **Ceiling Structure Definition** dialog and define the layers of materials that form the ceiling platform. See “Material Layers Definition Dialogs” on page 750.

- Check **Default** to use the Ceiling Structure Definition set in the **Floor/Ceiling Platform Defaults** dialog. See “Floor and Room Defaults” on page 314.

- Enter a value for the On Center **Spacing** of ceiling joists above the current floor.

- Specify the **Joist Width**, which is their horizontal thickness.

- Specify how the ceiling framing members **Bear on Beams** and bearing walls: they can either **Lap** side by side or **Butt** end to end. The lap is 8” (200 mm) and centered over the support.

- Specify what style of **Blocking / Bridging** is produced for the ceiling when **Joist Blocking** is manually drawn after joists are in place. See “Joist Blocking” on page 631.

- **In Line** produces blocking pieces that align with each other.
- **Stagger** produces blocking that alternates on either side of the line you draw.
- **Cross** produces cross bridging that looks like in line blocking in plan view, but shows as cross bridging in 3D views and the materials list.

Specify how the **Subfloor for Floor X** is built. These settings are relevant only for rooms that have living space above them.

- Check **Build Floor Framing** to generate or regenerate floor framing when the **OK** button is clicked. Not available in the **Framing Defaults** dialog or if there is no floor located below the floor in question.
- The **Floor Structure** depth displays here for reference. Click the **Edit** button to open the **Floor Structure Definition** dialog and define the layers of materials that form the floor platform. Only available if there is living space above at least part of the current floor.
- Check **Default** to use the Floor Structure Definition set in the **Floor/Ceiling Platform Defaults** dialog.

- Enter a value for the on center **Spacing** of floor joists above the current floor.
- Specify the **Joist Width**, which is their horizontal thickness.
- Check **Rim Joist** to create rim joists across the ends of the floor joists when floor framing is generated. If this is unchecked, line blocking across the ends of the floor joists is usually drawn in later.
- Specify the **Rim Joist Width**, which is the horizontal thickness.
- Select the **Rim Joist Type** from the drop-down list.
- Specify how the floor framing members **Bear on Beams**: they can either **Lap** or **Butt** over beams and bearing walls. The lap is 8” (200 mm) and centered over the support.
- Specify what style of **Blocking/Bridging** is produced for the floor when **Joist Blocking** is manually drawn after joists are in place. See #2, above.

![Wall Panel](image-url)
Check Automatic Wall Framing to regenerate wall framing whenever changes are made to the model. See “Automatic Framing” on page 627.

Specify how Wall studs are created.

- Check Build Wall Framing to build wall framing for the entire model. Framing is built in walls whose Main Layer material type is “framing”. Not available in the Framing Defaults dialog. See “Wall Type Definitions” on page 292.
- Check Use Wall Framing Material to use the stud thickness and spacing defined for the framing material used by each wall type. See “Define Material Dialog” on page 769. Uncheck this box to use the thickness and spacing values below for all wall types.
- Specify the Stud Thickness for all walls in the plan. Stud depth is equal to the thickness of each wall layer that has a Framing material. Not available when Use Wall Framing Material is checked.

Specify where and how Blocking is drawn.

- Specify the Stud Spacing for all walls in the plan, starting from the Framing Reference Marker, if one is present. See “Framing Reference Markers” on page 642. Not available when Use Wall Framing Material is checked.
- Define how top and bottom Plates are generated.
- Specify the Top Plate Count, as well as their Thickness.
- Specify the Bottom Plate Count, as well as their Thickness.
- Specify where and how Blocking is drawn. Each run of blocking behaves as a single object but has gaps where it crosses studs. See “Wall Bridging” on page 630.
 - Check Exterior to automatically produce blocking on exterior walls when wall framing is built.
 - Check Interior to automatically produce blocking on internal walls when wall framing is built.
 - In Line produces blocking pieces that align with each other.
 - Stagger produces blocking that alternates on either side of a center line along the wall.

Wall blocking is generated exactly half-way up each wall’s total height. Once created, it can be selected in a Framing Overview or Wall Detail.

Mitre Ends of Angle Walls - Specify how wall corners that are not right angles are framed. 90° corners are not affected by these settings.

- Select Mitre Plate Ends to mitre the ends of the top and bottom plates. If unchecked, top and bottom plates will be butted together.
- Select Rotate End Studs to rotate the studs closest to mitre ends to the angle of the mitre. If unchecked, studs will remain perpendicular to the angle of the walls.
- Select Horizontal Frame Thru to frame through the horizontal walls in plan view, butting vertical walls against them. If unchecked, walls that are vertical in plan view will frame through.

Wall Detail Views -

- Check Build Wall Framing Details from Exterior to have Wall Detail views display from the exterior of the plan rather than the interior. See “In Wall Detail Views” on page 647.
- Specify the Default Fill Style for wall framing members in Wall Detail views by clicking the Fill Style button to open the Default Wall Detail Fill Style dialog. See “Displaying Framing” on page 645.

Openings Panel

Various defaults for door and window headers as well as the trimmers for bay/box/bow windows can be set here.

The rough openings for doors and windows can be specified in the Door and Window Defaults and Specification dialogs. See “Rough Openings” on page 626.
Specify default **Header Sizes**, dependent on width of the door or window, including its Rough Opening. These values should be set so that the wider the opening, the deeper the header.

- If the top of an opening’s Rough Opening is closer to the top plate than the **Maximum Depth**, a solid header is produced to fill the entire space. Short cripple studs between the header and top plate are not produced.

Specify how **Bay/Box/Bow Trimmers**, are generated.

- Specify the **Maximum Number** of trimmers that a Bay, Box, or Bow Window with a lowered top height can have on each side of the opening.
- Specify the **Component Thickness**, which is the thickness of a thinner trimmer for manually resized Bay/Box/Bow Window components if a standard trimmer does not fit. See “Resizing Components” on page 452.

Check **List Cut Header Lengths in Mixed Reporting** to show precut headers in the Materials List. Precut headers are shown only if the walls have been framed and Mixed Reported is selected as the reporting method. See “Structural Member Reporting” on page 945.

If this is unchecked, the Materials List produces a total footage for all headers. When checked, each different length of precut header is listed separately. Note that the total number of headers is affected by the **Count** value of each door and window.

Plan Views -

- Specify the default **Header Fill Style** for door and window headers by clicking the **Fill Style** button to open the **Wall Header Fill Style** dialog. See “Displaying Framing” on page 645.
Fireplaces Panel

The rough openings for legacy Fireplaces placed in walls can be set on the FIREPLACES panel.

1 Specify the characteristics of fireplace Headers.
 • Specify the Type of material used for fireplace headers.
 • Specify the Thickness of fireplace headers.
 • Specify the Count of boards used to form a fireplace header.

2 Specify when to generate multiple Trimmers on each side of a fireplace. These values include the fireplace’s Rough Opening. See “Rough Openings” on page 626.
 • Double Trimmer At - Fireplace openings of this width or greater receive two trimmers on each side when framed.
 • Triple Trimmer At - Fireplace openings of this width or greater receive three trimmers on each side when framed.

3 Specify the characteristics of fireplace Sills. A sill is only generated if a fireplace is raised sufficiently off the floor.
 • Specify the Thickness of fireplace sills.
 • Check Double Sills to specify a double sill for all fireplaces.

Beams Panel

Floor/Ceiling Beams 🏠 and Roof Beams 🏠 are not automatically generated: they can only be drawn manually. See “Manual Framing” on page 628.

Posts and beams may be created under a Deck room automatically, depending on its size, location, and other variables. Deck Framing defaults are set in the Deck Room Defaults dialog. See “Deck Framing and Planking” on page 323.
Click the Edit Floor Beam Defaults to open the Floor/Ceiling Beam Defaults dialog. This dialog is similar to the Framing Specification dialog. See “Framing Specification Dialog” on page 651.

Click the Edit Roof Beam Defaults to open the Roof Beam Defaults dialog. This dialog is also similar to the Framing Specification dialog.

The Options settings affect the positioning of Floor/Ceiling Beams.

- Specify the Placement of Floor/Ceiling Beams relative to the joists. With Joists places beams at the same height as the joists so they hang on the beams; Under Joists places beams below joists so they bear on the beams. See “Bearing Lines” on page 645.

- Align Exterior with Outer Layer/Main Layer - When a Floor/Ceiling Beam is drawn along and over an exterior wall, its exterior surface can snap to either the wall’s outer layer or outer Main Layer, as specified here. See “The Main Layer” on page 293.

Posts Panel

Posts are not automatically generated: they can only be drawn manually. See “Manual Framing” on page 628.
1. Click the **Edit Post Defaults** to open the **Post Defaults** dialog. This dialog is similar to the **Framing Specification** dialog for posts. See “Framing Specification Dialog” on page 651.

2. The **Post Footings** settings control the initial attributes of footings created with the **Post with Footing** tool.
 - Specify the **Height Above Floor** value, measured from the top of the subfloor of the room in which the post is placed.
 - Specify the top to bottom **Thickness** of the footing.
 - Specify the **Width** of the footing. This is the length of each side of a square footing and the diameter of a round footing.
 - Select the **Square** or **Round** radio button to specify the initial shape of post footings. Once created, a post footing can be edited like other closed polylines. See “Editing Closed Polyline-Based Objects” on page 180.
 - Specify the **Rebar Size Number** for post footing Rebar.
 - Specify the **Rebar Count**, or number of bars, for Post Footings.

Roof Panel

The settings on the ROOF panel of the **Build Framing** dialog are exactly the same as those on the **Structure** panel of the **Build Roof** dialog. See “Build Roof Dialog” on page 586.

These settings are also found on the **Structure** panel of the **Roof Plane Specification** dialog. Those settings that apply to ceiling planes are available in the **Ceiling Plane Specification** dialog. See “Roof Plane Specification Dialog” on page 598.

Note: Changes made on the Roof panel will not affect the structure of existing roof planes. To make changes take effect, rebuild the roof.
Check **Automatic Roof Framing** to automatically rebuild roof framing if changes are made to the roof plan. See “Automatic Framing” on page 627.

- Check **Use Framing Reference** to use a defined starting point for rafter layout. See “Framing Reference Markers” on page 642.

Note: Use Framing Reference is useful when framing a gable roof, but not necessarily a hip roof. See “Framing References and Roof Framing” on page 644.

Roof

- Check **Build Roof Framing** to build roof framing for the entire model. Not available in the **Framing Defaults** dialog. See “Roofs” on page 581.

- Uncheck **Angled Dormer Hole** to frame dormers using rafters under the dormer valleys and a double header where the peak of the dormer roof meets the main roof plane. When checked, a five-sided hole is framed with two angled double rafters located under the dormer valleys. If a double header does not fit within the main roof plane, an angled dormer hole is produced regardless of this setting.

- Uncheck **Trim Framing To Soffits** to generate full-depth rafters all the way to the subfascia. If checked, rafter depths are trimmed to the top surface of the soffits in the eave area. Does not affect decorative rafter tail ends. See “Rafter Tails Panel” on page 591.

- Specify the **Spacing** of automatically generated rafters. This also sets the initial offset value for laying out rafters using the **Multiple Copy** edit button. See “Multiple Copy” on page 139.

- Specify the **Maximum Lookout Spacing**. Depending on a roof plane’s length, its lookouts may be spaced closer than this value, but not further.

Specify the **Blocking Style**. See “Roof Blocking” on page 630.

- Check **Vertical** to generate blocking that is oriented vertically, or plumb. When unchecked, blocking is perpendicular to the roof framing.

- **In Line** produces blocking pieces that align with each other.

- **Stagger** produces blocking that alternates on either side of the line you draw.

- **Cross/Bridging** produces cross bridging that looks like in line blocking in plan view, but shows as cross bridging in 3D views and the materials list.

Roof Layers - Define the layers of materials that together form the default roof plane assembly.

- The roof **Surface** depth displays here for reference. Click the **Edit** button to open the **Roof Surface Definition** dialog and define the layers of materials located above the structural layers. See “Material Layers Definition Dialogs” on page 750.

- The roof **Structure** depth displays here for reference. Click the **Edit** button to open the **Roof Structure Definition** dialog and define the layers of materials that form the roof structure.

When a roof plane or ceiling plane is located over a room with Flat Ceiling Over This Room unchecked, a ceiling surface on the underside of the plane will generate.

- When **Use Room Ceiling Finish** is checked, the ceiling finish layer is based on the specifications of the room(s) below. See “To create a cathedral ceiling” on page 330.

- When Use Room Ceiling Finish is unchecked, the depth of the **Ceiling** finish depth displays for reference and can be edited here. Click the **Edit** button to define the material layers located below the structural layers in the **Roof Ceiling Finish Definition** dialog.

- Check **Soffits** to include soffits under the eaves and specify their **Thickness**.

- Check **Flat Under Eave Sub Fascia** to extend soffits downward until they meet the subfascia. When unchecked, soffits slope downward to the fascia, if the fascia depth is sufficient.
4 **Roof Size** - Specify the desired **Width** and **Depth** for **Rafters**, the **Ridge**, **Lookouts**, **Gable Sub Fascia** (barge rafter), **Eave Sub Fascia**, **Gable Fascia**, **Eave Fascia** and **Blocking**.

Note that the **Gable Sub Fascia** setting controls the height of both gable and eave soffits, and thus the depth of rafter tails when **Trim Framing to Soffits** is checked, above.

Uncheck the boxes beside **Lookout**, **Eave Sub Fascia**, **Gable Fascia** and/or **Eave Fascia** to prevent these framing members from generating when roof framing is built. When these boxes are checked, these items will generate as specified here.

Trusses Panel

Changes to the settings on this panel do not affect any trusses that are already present in the current plan. See “Trusses” on page 655.

1. Specify the **Roof Truss Member Depths**.
 - Specify the depth of the **Top Chord**.
 - Specify the depth of the **Bottom Chord**.
 - Specify the depth of the **Webbing**.

2. The **Maximum Horizontal Span** settings control the maximum length between junctions of the webbing and the **Top Chord** and **Bottom Chord**. Changing these values can create different truss configurations such as kingpost, queenpost, fink, double fink, fan, howe, or double howe.

 These distances are measured horizontally for both roof and floor and ceiling trusses. In some instances, especially in more complex trusses, making these spans equal may result in the webbing appearing more normal or standard. See “Trusses” on page 655.

3. Check **Require Kingpost** to include a central vertical webbing member. If this is unchecked, a vertical member may still be created, depending on the Maximum Horizontal Span settings and the length of the truss.

4. Specify the **Floor/Ceiling Truss Member Depths**.
 - Specify the depth of the **Top Chord**.
 - Specify the depth of the **Bottom Chord**.
 - Specify the depth of the **Webbing**.

Chief Architect does not engineer trusses. Always consult an engineer or truss company to have your trusses professionally designed.
The **Maximum Horizontal Span** setting controls the maximum length between junctions of the webbing and the top and bottom chords.

Truss Spacing

Trusses are always drawn manually, so while their depth, span, and kingpost defaults are specified in the **Build Framing** dialog, their spacing is not.

Plan View Panel

The settings on the **Plan View** panel affect the appearance of Joists, Rafters, Trusses, and General Framing members in plan view. See “Displaying Framing” on page 645.

- Specify the **Default Fill Style** for joists, rafters, and General Framing members by clicking the **Fill Style** button to open the **Default Framing Fill Style** dialog. See “Displaying Framing” on page 645.
- The Default Fill Style is not a dynamic default setting. Any framing already present in the plan will not be affected if you change it.
- Check **Use Line for Framing** to show joists, rafters, and General Framing members as single lines rather than as closed polylines. See “Displaying Framing” on page 645.

Materials Panel

The default materials that display on General Framing objects are specified on the **Materials** panel. These materials are used in 3D views only and are not used in the Materials List. Materials List information is derived from the structure Type of each framing object. See “Framing and the Materials List” on page 650.

Changes made on the **Materials** panel of the **Build Framing** dialog only affect subsequently created framing: both manually drawn and automatically generated.

The settings on this panel of the **Build Framing** dialog are the same as in many other specification dialogs. See “Materials Panel” on page 761.

Framing Reference Markers

Framing Reference Markers are reference markers that specify the starting point for the layout of automatically-produced framing, including Deck joists. See “Decks” on page 323.
Wall and floor framing always build to the Framing Reference Marker if one is present.

Ceiling and roof framing only build to the Framing Reference Marker when Use Framing Reference is specified for that type of framing.

Typically, a single Framing Reference Marker on Floor 1 is used for the entire model.

When more than one Framing Reference Marker is present, framing layout starts at the one closest to the center of the area to be framed.

If no Framing Reference Marker is found on the floor being framed, the closest Framing Reference Marker on Floor 1 is used.

When Automatic Wall Framing is checked, wall framing automatically rebuilds if a Framing Reference Marker is added or moved. See “Automatic Framing” on page 627.

Automatic Floor/Ceiling Framing and Automatic Roof Framing, on the other hand, do not respond when a Framing Reference Marker is added or moved. These framing types must be rebuilt using the Build Framing dialog. See “Build Framing Dialog” on page 632.

Using Framing Reference Markers

To place a Framing Reference Marker, select Build> Framing> Framing Reference Marker. Click in plan view to place the Framing Reference Marker.

When Object Snaps are enabled, Framing Reference Marker snap to framing members and other CAD-based objects first, and then to a wall Main Layer surface or corner if possible. See “Object Snaps” on page 131.

Framing Reference Markers can be modified just like other markers. See “Markers” on page 393.

When framing is generated using a Framing Reference Marker, the first framing member of a given type snaps to this point and all other framing members are laid out from there.

Wall and roof framing snap to the Framing Reference Marker at their centers.

Floor and ceiling framing snaps to the Framing Reference Marker at their centers when it is set to Butt Over Support in the Build Roof dialog. See “Floor Panels” on page 632.

Floor and ceiling framing snaps to the Framing Reference Marker along an edge when it is set to Lap over a supporting beam or wall. If Lap is selected, the surfaces where the joists lap are placed at reference spacing, so that joists are placed on either side of the framing reference locations.

Move to Framing Reference

Manually drawn framing and automatic framing that was not generated using a Framing Reference Marker can be moved relative to a Framing Reference Marker using the Move to Framing Ref edit button.

When a framing member using the Move to Framing Ref edit button, the on-center spacing distance set in the Build Framing dialog is used.

The Move to Framing Ref edit button may also reference spacing specific to a particular floor or ceiling platform. See “Joist Direction Lines” on page 644.

A group of selected framing objects that are all parallel to each other can be moved using the Move to Framing Ref edit button. Only one of the objects in the group is compared to the Framing Reference Marker and moved; the remaining objects are simply moved the same amount as the first object. Ideally, therefore, the group should have proper spacing relative to each other before the move.

To move framing objects to a framing reference marker

1. Group select the framing objects.
2. Click the Move to Framing Ref edit button.
3. The framing members are moved to the nearest Framing Reference Marker.

Framing References and Ceiling Framing

For floor joists, the starting point for layout is always the Framing Reference Marker. Ceiling joists, on the other hand, only use a Framing Reference Marker if
Use Framing Reference is checked in the Build Roof dialog. See “Floor Panels” on page 632.

If the Use Framing Reference checkbox is cleared, the program will try to position ceiling joists so that they coincide with rafters. Be sure to build the roof framing first if you are doing this.

A Framing Reference Marker is not usually used for both ceiling joists and nearby rafters that run the same way because one is placed on top of the other.

Framing References and Roof Framing

Framing Reference Markers are useful when framing a gable roof, but not necessarily a hip roof. When a Framing Reference is used, common rafters on either side of a hip rafter do not meet in the same place.

If the Framing Reference is not used, the automatic framing utility starts common rafter spacing from each end of the horizontal ridges, which results in common rafters on either side of hip jacks meeting each other.

Joist Direction Lines

By default, automatically-generated floor and ceiling joists will run in the direction that results in the shortest span between bearing walls and/or beams. A Joist Direction line allows you to define the direction that joists in a particular floor or ceiling platform run, regardless of span.

To draw a Joist Direction line, select Build> Framing> Joist Direction, then click and drag as you would draw a CAD line. In order to have any effect, a Joist Direction line must be drawn within the area of a single floor or ceiling platform.

To avoid unexpected results, only one Joist Direction line should be present in a given floor or ceiling platform, and it should not extend outside of the extents of that platform.

Joist Direction lines are located on the “Framing, Bearing Lines” layer by default and use the Text Style assigned to the layer that the Joist Direction line is on. See “Text Styles” on page 398.

Multiple Joist Directions

By default, all of the rooms on each living floor share a single floor platform and a single ceiling platform. If you require joists that run in two directions in either of these platforms, begin by dividing the platform in question in two. There are a number of ways to do this:

• Divide the living area into separate rooms with different platform thicknesses and/or heights. See “Floor and Ceiling Platforms” on page 325.

Joist Direction Specification Dialog

A Joist Direction line can control the joist depth and spacing in the floor or ceiling platform in which it is drawn. To change these values, select a Joist Direction line and click the
Bearing Lines

It is not unusual for joists to lap or butt in the middle of a span rather than build across a platform. When they do, they typically bear on a wall or beam at that point. To produce joists that break over a support, specify the wall or beam in question as Bearing in its specification dialog:

- Check Bearing Wall in the Wall Specification dialog. See “Structure Panel” on page 299.
- Check Bearing Beam in the Framing Specification dialog. See “General Panel” on page 651.

Joists lap or butt over the support depending on the option selected in the Build Framing dialog. See “Floor Panels” on page 632.

In either case, the joists’ overlap or butted ends are centered over the support. When an offset from the center is required, do not specify the wall or beam as Bearing and instead draw a Bearing Line.

A Bearing Line directs the program to lap or butt joists where they cross the line instead of framing across to a wall.

Displaying Framing

The display of framing members is controlled in the Layer Display Options dialog. By default, framing objects are created on one of over twenty layers with names that begin with “Framing,”: Ceiling Beams, for example, are placed on the “Framing, Ceiling Beams” layer. Once

Note: This is not the recommended method for specifying joist depth and spacing in most cases. You should instead use the settings in the Room Specification dialog. See “Room Specification Dialog” on page 332.
created, though, framing objects can be placed on any layer you wish. See “Layer Attributes” on page 142.

In Plan View

In plan view, wall studs and posts are represented by box-based CAD objects that look like Cross Boxes. See “Cross Box” on page 246 and “Editing Box-Based Objects” on page 184.

Joists, rafters, trusses, General Framing, and headers are represented in plan view by line-based CAD objects that are look like long, thin rectangles. See “Editing Line-Based Objects” on page 171.

You can specify a default fill style for line-based framing members in the **Build Framing** dialog. See “Plan View Panel” on page 642, “Openings Panel” on page 635, and “Fill Styles” on page 155.

By default, newly drawn line-based framing members of a given type display in front of older ones. Posts, meanwhile, display in front of beams, but behind joists. You can specify the drawing order of framing members in their specification dialogs. See “Line Style Panel” on page 653.

If you prefer, joists, rafters, trusses, and General Framing can instead be represented by a single line. The **Use Line for Framing** setting can be set differently for each floor in a plan. See “Plan View Panel” on page 642.

Framing Labels

Framing labels are located on the “Framing, Labels” and “Framing Header Labels” layers and can be set to display in plan view, Wall Details, and cross section/elevation views. See “Object Labels” on page 515.

- Headers, posts, and beams have automatic labels consisting of the object’s depth and width followed by the member type. In Imperial plans, the nominal size is used when the framing Type is “lumber”.

- Automatic header labels include the total number of headers for the associated opening in parentheses. By default, only one header for a given opening displays a label while the other(s) are suppressed.

- Joists, rafters, studs, plates, and wall blocking do not have automatic labels; however, you can specify a custom label in their specification dialog. See “Framing Specification Dialog” on page 651.

Header label defaults can be set in the **Door** and **Window Defaults** dialogs, and can be preset for each door or window in its specification dialog. See “Framing Panel” on page 422.

Framing objects have named value pairs associated with them, so you can create custom labels using Text Macros. See “Text Macros” on page 400.

In 3D Views

The easiest way to view framing in 3D is to use either the **Orthographic Framing Overview** or **Perspective Framing Overview** tool, which display the model using the 3D Framing Set layer set. See “Framing Overview” on page 786.

Framing objects can display in other 3D and cross section/elevation views, although by default they are not set to do so. If you wish to see framing in these views, turn on the framing layers in the appropriate layer set.

To reveal framing covered by other objects or wall layers, use the **Delete Surface** tool. See “Delete 3D Surface” on page 792.

In Cross Section/Elevation Views

To display framing in a cross section/elevation view, make sure the framing layers are turned on in that view. See “Layer Display Options Dialog” on page 144.

You can also use the **Delete Surface** tool to temporarily delete the surfaces of wall layers or other objects that block the view.

In cross section/elevation views, horizontal framing objects that are cut by the cross section plane display as boxes containing an ‘X’. **Wall Blocking**, Joist Blocking, and Roof Blocking cut by the cross section plane displays as a box containing a single diagonal line. See “Cross Section/Elevation Views” on page 787.
Wall Details are a special type of wall elevation view in which only the studs, plates and headers used to frame a selected wall display. They are the only views in which Wall Bridging can be created. See “Wall Bridging” on page 630.

A Wall Detail view for each framed wall in your plan is automatically created by the program when its wall framing is built. To view the Wall Detail associated with a specific wall, select the wall and click the Wall Detail edit button. See “Editing Walls” on page 280.

In addition, a Wall Detail will open if you select a wall framing member in the Materials List and click the Find Object in Plan edit button. See “Find Object in Plan” on page 511.

To locate the owner wall of a selected wall framing member in the Wall Detail, a Framing Overview, or other 3D view in which wall framing can be seen, click the Find Wall edit button. See “Selecting Walls” on page 280.

Wall Details are also listed and can be accessed in the Project Browser. The name of each Wall Detail is the same as the Automatic Label of the wall it is associated with. See “Project Browser” on page 56.

Most wall framing members occupy the entire thickness of its wall layer. Some, notably doubled headers or corner sheetrock nailers, may be turned sideways. If a wall has multiple framing layers, they will display in the same Wall Detail view, but in separate locations. Double or triple headers display one behind the other in a Wall Detail. You can select them using the Select Next Object edit button. See “Select Next Object” on page 169.

By default, Wall Details show walls as viewed from the exterior. You can specify whether Wall Details are viewed from the interior or exterior in the Build Framing dialog. You can also specify the default fill style for framing objects in Wall Details. See “Wall Panel” on page 634.

Each Wall Detail is created with a text object that states what wall layer is shown as well as from which side the framing is being viewed.

The framing members of an individual wall can be selected and edited in its Wall Detail. If you rebuild wall framing after manually editing in a Wall Detail, your changes will be lost. To protect changes made to a wall’s framing, check Retain Wall Framing in the Wall Specification dialog. See “General Panel” on page 297.

As with regular 3D views, Wall Details can be sent to layout and printed. See “Layout” on page 961 and “Printing and Plotting” on page 983.

Framing Materials and Types

The appearance of a framing member in 3D and cross section/elevation views is affected by the material assigned to it and also by its Type.

The material specified for a framing member determines what it looks like in camera views by applying a texture, pattern, or color to its surface. Materials have no effect on how the framing is calculated in the Materials List, however.

The default materials for framing are set:

- In the Floor and Ceiling Structure Definition dialogs for floor and ceiling framing. See “Floor and Ceiling Platform Definitions” on page 325.
- In the Wall Type Definitions dialog for wall framing. See “Wall Type Definitions Dialog” on page 294.
- In the Framing Defaults dialog for General Framing, Posts, and Rafters. See “Materials Panel” on page 642.

Framing Types can also influence how a framing member looks in camera views because some types have special profiles - for example, I-Joists, Steel-I, and C-Channel. Framing types are also stated in the Description column in the Materials List. See “Structure Types” on page 650.
In the Materials List
When framing is calculated in the materials list, its dimensions and type are noted. Treated lumber is also counted separately from regular lumber. See “Structure Types” on page 650.

Framing lengths can be counted using one of several methods to produce, for example, cut lists and buy lists. See “Structural Member Reporting” on page 945.

If framing is not present in a plan when a Materials List is created, it will not be calculated. See “Framing and the Materials List” on page 650.

Editing Framing
Framing members can be individually selected in all views, and some types can be group selected. To group-select framing in plan view, first select any of the Framing Tools. See “Marquee Select” on page 169.

To select framing objects of a particular type, use the Marquee Select Similar tool’s Restrictive Selection option. Wall framing can only be selected in this way in a Wall Detail view. See “Marquee Select Similar” on page 170.

Once selected, they can be edited much like other line-based objects can using the edit handles, edit toolbar buttons, or the Framing Specification dialog. See “Framing Specification Dialog” on page 651.

When Start and End Indicators are enabled in the Preferences dialog, a selected framing member will display an S and an E at its start and end points. This makes it easier to choose which end to lock when specifying its Length or Angle. See “Edit Panel” on page 95.

Framing is organized into families which determine where it is generated and where it can be manually drawn. See “Manual vs. Automatic Framing” on page 627. Once framing has been created, however, it can be moved out of its structural component. In order to move roof framing above or below a roof plane, you must first check Manual Rafter Height in the Framing Specification dialog. See “General Panel” on page 651.

Using Dimensions
Framing members can be both moved and resized using dimensions. See “Moving Objects Using Dimensions” on page 365.

Using the Edit Tools
A selected framing member can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Mitered and Lapped Joints
Mitered joints can be created using the Join and Mitre Ends edit button. Click on a framing member such as a joist, click the Join and Mitre...
Ends edit button, then click on another nearby joist to extend and/or trim the two objects as needed so that they join at an angled cut. See “Fillet Lines” on page 201.

You can instead make two framing members meet at a lapped intersection using the Join and Lap Ends edit button. The selected framing member will butt against the second one, which laps the end of the first.

The Join and Mitre Ends and Join and Lap Ends tools not available for Posts, Floor/Ceiling Trusses, or Roof Trusses.

Multiple framing objects can also be trimmed to length using the Trim Object(s) and Extend Objects edit tools. See “Trim and Extend” on page 212.

Steel and Concrete
You can set framing defaults to generate steel framing and concrete structural members as well as lumber and other framing types. Individual framing members can also be specified as concrete or steel, as well.

When setting up defaults or modifying an individual object, make sure you specify both the desired framing Type and the material. See “Framing Materials and Types” on page 647.

Roof and Floor Trusses
Roof and floor trusses cannot be edited like regular framing members can and are discussed in their own chapter. See “Editing Truss Envelopes” on page 659.

Deleting Framing
Individual and group-selected framing members can be deleted the way other objects in the program are. See “Deleting Objects” on page 220.

Categories of framing, such as wall framing or floor and ceiling framing, can also be deleted in the Delete Objects dialog. See “Delete Objects Dialog” on page 221.

Keeping Framing Current

When you modify your plan, move walls, raise or lower platforms or redesign the roof, any framing present in the plan will not update to reflect your changes. In order for the framing to be updated, you must regenerate automatically produced framing and either edit or delete and replace manual framing.

For this reason, it is recommended that you wait until your model is finished, or nearly finished, before creating framing. See “Drawing a Plan” on page 35.

Automatic Framing
Automatically-generated framing can be rebuilt using either of two checkboxes in the Build Framing dialog:

• Select a Build check box to build automatic framing once. For example, check Build Wall Framing on the WALL panel to build wall framing once based on the current state of the model. If the model is changed later, you may need to do this again.

```java
Keeping Framing Current

When you modify your plan, move walls, raise or lower platforms or redesign the roof, any framing present in the plan will not update to reflect your changes. In order for the framing to be updated, you must regenerate automatically produced framing and either edit or delete and replace manual framing.

For this reason, it is recommended that you wait until your model is finished, or nearly finished, before creating framing. See “Drawing a Plan” on page 35.

Automatic Framing
Automatically-generated framing can be rebuilt using either of two checkboxes in the Build Framing dialog:

• Select a Build check box to build automatic framing once. For example, check Build Wall Framing on the WALL panel to build wall framing once based on the current state of the model. If the model is changed later, you may need to do this again.

Manual Framing
It is vital to remember that manually drawn framing objects and copies of them are not retained when automatic framing is rebuilt.

If a plan is not final, therefore, do not spend a lot of time altering or copying automatically produced framing objects. It is best to wait until your design is final before doing manual framing work.

```
Build Framing for Selected Object(s)

The Build Framing for Selected Object(s) edit tool allows you to build or rebuild the framing for a selected wall, floor platform, roof plane, or ceiling plane.

Build Framing for Selected Object(s) is only available for walls using a framed wall type, and for railings specified as Solid. See “Wall Type Definitions” on page 292.

Build Framing for Selected Object(s) is not available if the selected object has Retain Framing specified. See “Rebuilding and Retaining Framing” on page 628.

Framing for Rooms

The Build Framing for Selected Object(s) edit tool is only available for rooms that have Floor Under This Room checked, Monolithic Slab Foundation unchecked, and a framing material specified in its Floor Structure Definition. See “Structure Panel” on page 334.

If the selected room is adjacent to other rooms that are in the same Framing Group, the program will ask whether you would like to create a new Framing Group for the selected room:

- Click Yes to create a new Framing Group, assign the selected room to it, and generate floor framing for that room.
- Click No to generate floor framing across the entire platform using the existing Framing Group assignments.

See “Framing Groups” on page 626.

Framing and the Materials List

Each framing member created in a plan is counted in the Materials List. See “Materials Lists” on page 943.

Framing can be calculated using one of several reporting methods. See “Structural Member Reporting” on page 945.

Depending on what a framing member is used for, it may be listed in the Framing (F), Subfloor (SF), or Roofing (R) category. See “Categories” on page 948.

- Framing includes all wall framing, posts, and General Framing objects.
- Sub Floor lists floor and ceiling framing joists as well as sheathing.
- Roofing includes trusses, rafters, and sheathing.

It is important to note that the floor, ceiling, and roof framing counted in the Materials List may vary considerably depending on whether framing of those types is actually present in the plan:

- If no framing is present in the model, then the required floor, ceiling, and roof framing is estimated. Total lineal footage for various depths of rafters and joists is estimated, rather than a quantity of specific lumber lengths and sizes. Wall framing is not estimated.
- If even one floor, ceiling, or roof framing object exists in the plan, then objects in that category are counted instead of estimated for the Materials List.

Structure Types

A variety of structural member Types is available for use in Chief Architect. They fall into four categories:

- Wood framing types: Lumber, I-Joist, Glulam, Engineered Lumber, LVL, PSL, and VSL.
- Steel framing types: Steel I, Steel Box, C Channel, and U Channel.
- Solid Concrete.
- Round (Posts only).

You can select any of these Types as the default for floor and ceiling framing, headers, roof framing, beams, and posts. See “Build Framing Dialog” on page 632.

You can also specify the Type for individual framing members in their specification dialog. See “General Panel” on page 651.

Changing the framing member Type does not affect how framing is placed, but it may change its profile in cross section and 3D views and will affect its description in the Materials List.

The framing member Type does not affect the appearance of the material used by a framing
member in 3D views. See “Framing Materials and Types” on page 647.

Structural Member Reporting

You can specify whether framing materials are calculated by lineal foot, as a cut list, or as a buy list. See “Structural Member Reporting” on page 945.

Framing Specification Dialog

Select a framing member and click the **Open Object** edit button to open the **Framing Specification** dialog for the type of framing member selected.

The settings in this dialog are similar to those in the **Post and Beam Specification** and **Defaults** dialogs. See “Framing with Beams” on page 629.

You can also open the specification dialog for the framing objects(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

General Panel

The options available in on the **GENERAL** panel will vary depending on the type of framing member selected.

When **Automatic Height** is checked, the selected Roof Rafter, Roof Beam, or Roof Blocking object generates within the structural layer of the roof plane(s) it is drawn in.
• Uncheck this box to enable the Manual Height settings that follow.
• If the selected object’s height is edited outside of this dialog, Automatic Height will become unchecked automatically.

Depth and Height -

• Check the box beside Raise/Lower, then enter a positive value to raise or negative value to lower the framing object from its current position. The amount is added to both the Top and Bottom Heights when you click either Apply or OK, and does not affect the Depth. When Raise/Lower is checked, the other Depth and Height settings are disabled.
• Select the radio button beside one of the height values to Lock it, then change a value that remains available.
• Specify the Top Height of the post, as measured from the first floor subfloor at 0”. For a rafter, this is the top height at its low end.
• Specify the Bottom Height of the post, as measured from the first floor subfloor at 0”. For a rafter, this is the bottom height its low end.
• Specify the Depth of the framing object. For a rafter, this is the depth measured perpendicular to the roof plane.
• Manual Rafter Height - Normally, the height of each Rafter or Roof Beam end is reset after any move or edit so that it is located just under the roof surface. Check this box to allow the height of the object to be changed. Only available for Rafters and Roof Beams.

Options -

• Set the framing member’s Width, as seen in plan view.
• Specify a selected wall framing member’s Thickness, as seen in plan view. Only available for wall framing.
• Select a structural member Type from the drop-down list. The Round Type is unique to Posts. See “Structure Types” on page 650.
• Check Show Cross to display the selected Post as a cross box in plan view. Only available for Posts. See “Displaying Framing” on page 645.

Length and Angle - Lock the point about which you want like the selected object to resize and/or rotate, then specify its exact length and angle. See “Editing Framing” on page 648.

• Specify the Length of the framing object. Rafter length is measured along the top of the rafter, and so is greater than the length measured in plan view. Not available for Posts.
• Width 1 and 2 - Specify the Post width in each dimension. When a Round Post is specified, Width 1 refers to its diameter and Width 2 is not available.
• Specify the Angle of the framing object in plan view. Changing this rotates the object about the location specified by the radio buttons described below.

Note: Instead of counting individual concrete posts and beams in the Materials List, the total volume of their concrete is calculated. The square footage for beam and post forms is also listed.
• Select **Lock Center** to resize or rotate the object about its center point.

• Select **Lock Start** to resize or rotate the object about the location from which you started drawing the framing object.

• Select **Lock End** to resize or rotate the object about the location where you stopped drawing it.

Specify the **Rebar** and **Stirrups** for concrete Posts and Beams. The Rebar and Stirrup settings are only available when the selected object is a Post or Beam and “Solid Concrete” is selected from the Type drop-down list.

• Specify the **Size Number** for both Rebar and Stirrups.

• Specify the **Count**, or number of bars, for both Rebar and Stirrups.

• Specify the length of Rebar **Extensions**.

• Specify the distance that Stirrups **Overlap**.

Rafter Tails Panel

The **RAFTER TAILS** panel is only available for Rafters, Subfascia, and Roof Beams. The settings here allow you to specify a rafter tail profile for exposed end rafter ends under roof eaves. See “Rafter Tails Panel” on page 591.

Line Style Panel

The settings on the **LINE STYLE** panel affect the selected object’s line style, its bumping behaviors, and its drawing order. See “Line Style Panel” on page 235.

Fill Style Panel

For floor, ceiling, and roof framing, and General Framing, the settings on the **FILL STYLE** panel affect the selected object’s appearance in plan view. See “Fill Style Specification Dialog” on page 155.

For studs and other wall framing that displays as a cross box in plan view, the settings on this panel affect the selected object’s appearance in Wall Details. See “In Wall Detail Views” on page 647.

For headers only, the **FILL STYLE** panel allows you to control the appearance of the selected object in both plan view and Wall Details. Click either of the **Fill Style** buttons to open the **Plan View Fill Style** or **Wall Detail Fill Style** dialog.

Materials Panel

The default materials on this panel are set in the **Build Framing** dialog. If you change the selected object’s framing Type, the material here may update - unless you have previously specified a non-default material. See “Materials Panel” on page 761.

Label Panel

Framing labels can display in plan view and cross section/elevation views when the “Framing, Labels” layer is turned on and use the Text Style assigned to that layer. See “Text Styles” on page 398.

Automatically generated wall framing can also display in Wall Detail views. When accessed from a Wall Detail, this panel will have Wall Detail Position and Orientation settings.

For more information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the **COMPONENTS** panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the **OBJECT INFORMATION** panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the **SCHEDULE** panel determine which schedule categories the selected object is included in. See “Schedule Panel” on page 519.

Framing Schedules

The **Framing Schedule** tool allows you to produce customizable framing schedules as well as framing labels that display schedule numbers. See “Schedules and Object Labels” on page 505.
Schedules of particular types of framing can be created by controlling which **Objects to Include** in the schedule. For example, a Deck Framing Schedule can be created by including “Deck” Objects while excluding all other Object types. See “General Panel” on page 512.

In plans using US Units, when a board’s Structure Type is “Lumber”, its nominal size will be reported in the Nominal column of a Framing Schedule. For all other Structure Types, fractional inches are used.

Framing schedules created in **Wall Detail** views use a special **Only Include Objects from this Detail** setting and a selection of Objects to Include that report only wall framing members present in the current view. See “In Wall Detail Views” on page 647.

If placed into a Truss Detail, a framing schedule’s Objects to Include will be restricted to floor, ceiling, and roof trusses. **Only Include Objects from this Detail** is also used. See “Truss Details” on page 659.
There are two basic ways to frame a roof. The first is commonly called “stick framing,” or sometimes “handstacking” or “cut-and-stack.” This type of roof incorporates framing such as rafters, ridges, and ceiling joists. See “Framing” on page 625.

The other method is to use prefabricated, engineered roof trusses. Chief Architect allows you to design and display a wide variety of trusses.

Disclaimer

Chief Architect does not engineer trusses. The trusses displayed by Chief Architect are for illustrative purposes only. They can show how trusses are used in your plan, and help you communicate to the licensed engineer who produces your final truss design where you want your trusses and how you would like them to work.

Truss Defaults

The default settings for floor, ceiling and roof trusses are set in the Framing Defaults dialog. Select Edit> Default Settings and in the Default Settings dialog, select Framing and click the Edit button.

- The default settings for truss chord and webbing depth, maximum span, and kingpost are set in the Framing Defaults dialog. See “Trusses Panel” on page 641.

- The overall depth of individual Floor/Ceiling Trusses are based on the thicknesses of the platforms in which they are drawn. See “Floor Panels” on page 632.

- The structure of Roof Trusses is determined by the position of the roof plane(s) above and the ceiling plane(s) below. See “Roof Planes” on page 591 and “Ceiling Planes” on page 606.
Floor and Ceiling Trusses

Floor and ceiling trusses can be used instead of joists to frame platforms. As with manually-drawn floor and ceiling framing, the presence of a room above determines whether a floor or ceiling truss is drawn. For example, a truss drawn on the first floor of a single story home will be a ceiling truss, while a truss drawn on the first floor of a two-story building will be a floor truss for the 2nd floor.

Floor and ceiling trusses can only be drawn manually. To place a floor or ceiling truss in your plan, select Build> Framing> Floor/Ceiling Truss, then click and drag within a floor or ceiling platform in plan view. See “Drawing Trusses” on page 657.

To create a sloped truss ceiling truss, draw a Roof Truss and specify it as a Sloping Flat Truss. See “General Panel” on page 667.

The TRUSSES panel of the Build Framing dialog contains default settings for floor and ceiling trusses. See “Trusses Panel” on page 641. These default settings can be overridden by the settings in the Floor/Ceiling Truss Specification dialog. See “Floor/Ceiling Truss Specification Dialog” on page 669.

Roof Trusses

Roof trusses can be used instead of or in combination with rafters to frame roofs and ceilings. Roof trusses can only be drawn manually, and can only be created where a roof and ceiling are already present. Select Build> Framing> Roof Truss, then click and drag in plan view within one or more roof planes to manually draw a roof truss. See “Drawing Trusses” on page 657.

If you intend to use roof trusses, you need first to build your roof planes with this in mind. Before building the roof, select the Trusses (no Birdsmouth) checkbox in the Build Roof dialog. When this is checked, roof plane thickness is based on the default Top Chord Depth set in the Framing Defaults dialog. See “Trusses Panel” on page 641.

If Trusses (no Birdsmouth) is not checked, the roof plane thickness is determined by the rafter Depth setting on the ROOF panel of the Framing Defaults dialog. If you plan to use both trusses and rafters, you should leave this unchecked.

Roof Truss Placement

A roof truss can only exist in a space defined by the roof planes above it and the ceiling or manually drawn Ceiling Plane below it. This is because the shape of a truss is defined by the location of the roof and the ceiling.

If the program either does not find both roof and ceiling planes, or if there is not enough room between them to model a truss, a warning message displays. For example, if you draw a truss in a roof overhang where there is no ceiling, this message displays:

“Roof and ceiling surfaces too close together or cannot be found, so cannot make truss.”

The incorrect truss may still display in plan view with a label of the form “TR-*”. If it does, it should be deleted or moved. See “Editing Trusses” on page 658.

One or both ends of a truss may be truncated if they are drawn across another truss. If this happens, it will end exactly on the surface of the existing truss, producing a girder truss. See “Girder Trusses” on page 666.

Trusses can end on interior walls. You can draw a truss that partially crosses the building by starting and/or ending it within 24” (600mm) of an interior wall. The truss extends over the wall’s Main Layer. Its end lines up with the Main Layer surface on the far side of the wall.

Roof Truss Webbing

The webbing in a newly drawn truss is controlled by the Top Chord and Bottom Chord settings in the Framing Defaults dialog. See “Trusses Panel” on page 641.

Changing these default values may cause different truss configurations such as kingpost, queenpost, fink, double fink, fan, howe, or double howe to be represented.
Drawing Trusses

Trusses cannot be generated automatically: they must be manually drawn and then replicated. All trusses are drawn similar to the way CAD lines are and can be drawn in plan view only. See “Draw Line” on page 231.

To draw and replicate trusses

1. Select the either the Floor/Ceiling Truss or Roof Truss tool, then click and drag within either a floor/ceiling platform or one or more roof planes.
 • As they are drawn, roof trusses will snap to any walls that they cross.
 • When a roof truss ends over an exterior wall, it will extend into the roof eave, stopping at the inside edge of the Eave Sub Fascia.
 • Floor/Ceiling trusses will snap to the wall surfaces, the exterior surface of a wall’s Main Layer, as well as to a variety of CAD-based objects, and can be drawn to any length.

2. Reposition the truss:
 • Floor/ceiling trusses are often positioned relative to an exterior wall or Framing Reference Marker. See “Framing Reference Markers” on page 642.
 • Roof trusses are can be positioned over a gable end wall or at the ridge end of a hip.

3. Open the truss’s specification dialog and edit its settings to meet your needs. See “Roof Truss Specification Dialog” on page 667 or “Floor/Ceiling Truss Specification Dialog” on page 669.

4. Make multiple copies of the truss at specified intervals using the Multiple Copy edit tool.

The copies of Roof Trusses automatically conform to the structural conditions in their new locations. As a result, replicated Roof Trusses and their labels may be different from the original. See “Truss Labels” on page 660.

Unlike Roof Trusses, Floor/Ceiling Trusses do not conform to new structural conditions when they are either moved or copied. See “Moving Trusses” on page 658.

To replicate trusses using Multiple Copy

1. Select the truss to be copied in plan view.

2. Click the Multiple Copy edit button.

3. Click the Multiple Copy Interval edit button to open the Multiple Copy dialog. See “Multiple Copy” on page 139.

4. Enter the correct spacing in the All Trusses box. Once set, click OK.

5. Select the truss and use the Move edit handle to drag it perpendicularly. The pointer becomes a four-headed arrow when it is over the Move handle.

6. New trusses appear as you drag. Drag as far as necessary to produce all desired trusses. Each truss is created according to the particular Roof/Ceiling/Truss Base planes above and below it.

Displaying Trusses

The display of trusses and their labels is controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Truss labels display in plan view, cross section/elevation views, and the Truss Detail, and are used in the Materials List. See “Truss Labels” on page 660.

In 3D Views

The easiest way to view trusses in 3D is to use either the Orthographic Framing Overview or Perspective Framing Overview tool, which display the model using the 3D Framing Set layer set. See “Framing Overview” on page 786.

Trusses can display in other 3D and cross section/elevation views, although by default they are not set to do so. If you wish to see trusses in these views, turn on the “Framing, Trusses” layer in the appropriate layer set.

You can create exposed trusses by placing roof and ceiling planes to produce the desired truss structure, drawing the trusses, and then removing the ceiling. See “Vaulted and Cathedral Ceilings” on page 330.
To reveal trusses covered by other objects, you can use the Delete Surface tool. See “Delete 3D Surface” on page 792.

In the Truss Detail

All the floor, ceiling and roof trusses present in the current plan display in the Truss Detail, which is a special CAD Detail window in which a diagram of each truss configuration present in the plan is automatically generated. See “Truss Details” on page 659.

In the Materials List

All trusses are listed under the Roofing category in the Materials List. Their labels appear in the Size column, along with their length. See “The Materials List Tools” on page 943.

Editing Trusses

Trusses can be selected like other objects in Chief Architect. See “Selecting Objects” on page 167.

Once selected, trusses can be edited using dimensions, the edit toolbar buttons, their edit handles, and their specification dialog. See “Roof Truss Specification Dialog” on page 667.

When Start and End Indicators are enabled in the Preferences dialog, a truss selected in plan view will display an S and an E at its start and end points. See “Edit Panel” on page 95.

Trusses can be deleted all at once in the Delete Objects dialog. See “Delete Objects Dialog” on page 221.

Using Dimensions

Trusses can be relocated precisely using dimensions. See “Moving Objects Using Dimensions” on page 365.

Using the Edit Tools

A selected truss can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Using the Edit Handles

When selected in plan view, trusses edit like CAD lines. See “Editing Line-Based Objects” on page 171.

When editing a roof truss’s length, bear in mind that if you position either of its ends at a location that doesn’t correspond to a roof plane edge, interior wall, or another truss, No Special Snapping will automatically become checked in its specification dialog.

When selected in a Cross Section/Elevation or 3D view, a truss can be edited like a closed polyline. See “Editing Truss Envelopes” on page 659.

The depth of truss chords can be changed in the truss’s specification dialog, but not using the edit handles.

Moving Trusses

Trusses can be moved using their Move edit handle, the Multiple Copy edit tool, or the Transform/Replicate Object edit tool. It’s important to note that Roof and Floor/Ceiling Trusses may behave differently when they are moved:

- When a Roof Truss is moved, its shape updates to conform to the structural conditions defined by the roof and ceiling in its new location. To prevent this from occurring, check Lock Truss Envelope and Webbing in the Roof Truss Specification dialog before moving the truss. See “Lock Truss Envelope and Webbing” on page 659.
- This is not the case with Floor/Ceiling Trusses: when moved to a location with a different platform structure, a Floor/Ceiling Truss will not update to conform to its new surroundings. It is important to draw, position, and copy them within the same floor or ceiling platform structure. If a different Floor/Ceiling Truss depth is needed, a new truss should be drawn.

Special Truss Snapping

By default, Roof Trusses have a number of special snapping behaviors that are used even when Object Snaps are toggled off. See “Object Snaps” on page 131.
These special behaviors include:

- As they are drawn, Roof Trusses will snap to any walls that they cross.
- When drawn along an exterior wall, a Roof Truss will snap so that its outer surface is flush with the outer surface of the wall’s Main Layer.
- When drawn along a roof plane edge, a Roof Truss will snap to the roof plane’s edge or corner.
- The center line Roof Trusses will snap to the line along which two roof planes meet.
- When a Roof Truss ends over an exterior wall, it will extend into the roof eave, stopping at the inside edge of the Eave Sub Fascia.

Floor/Ceiling Trusses can be drawn to any length but also have special snapping:

- Floor/Ceiling trusses will snap to the wall surfaces, the exterior surface of a wall’s Main Layer, as well as to a variety of CAD-based objects.

If you edit a truss in such a way that its ends do not correspond to a special snapping location, No Special Snapping will automatically become unchecked in its specification dialog. This allows you to easily customize a truss but may make it difficult to snap to commonly used locations.

You can check or uncheck No Special Snapping in the Roof Truss Specification dialog. See “General Panel” on page 667.

Editing Truss Envelopes

A truss envelope is the shape defined by a truss’s top and bottom chords. When a truss is drawn, the envelope is derived from the floor platform, ceiling platform, or roof that the truss is drawn in.

When a truss is viewed in a 3D view, its envelope can be edited like a closed polyline. See “Editing Closed Polyline-Based Objects” on page 180.

This function can be used to change a roof truss end or overhang as well as the overall truss shape. Changing the truss envelope does not change the structure that it is drawn in, however.

In addition, when a Roof Truss is moved, its shape updates to conform to the structural conditions defined by the roof and ceiling in its new location. As a result, a Roof Truss’s label can change when the truss is moved to a new location.

Floor/Ceiling Trusses do not update when moved to a location with different structural conditions.

Lock Truss Envelope and Webbing

The Lock Truss Envelope and Webbing attribute can be used to prevent a Roof Truss envelope from updating when it is moved or replicated. See “Roof Truss Specification Dialog” on page 667.

Truss Details

A Truss Detail is a special CAD Detail window in which a diagram of each truss configuration present in the plan is drawn. To open a plan’s Truss Detail, select CAD > CAD Detail Management. See “CAD Details” on page 255.

You can also select a Floor/Ceiling or Roof Truss and click the Open Truss Detail edit button. The Truss Detail will open centered on the selected truss.

A Truss Detail is created automatically when a truss is created, and displays all trusses present in the current plan. If multiple trusses are identical, they share a single diagram. Each truss’s label displays centered below the truss diagram. When automatic or
custom labels are in use, the quantity of each truss configuration is also listed.

In a Truss Detail, individual chords and webbing are represented using framing members. The truss label information is presented in a Text object.

The trusses in a Truss Detail are linked to the actual trusses in the plan. If you move a truss in a Truss Detail, it will move in the model as well. To modify the information in a Truss Detail without affecting the model, use **CAD Detail From View** to create a line-drawn copy first. See “CAD Detail from View” on page 256.

To locate a selected truss in plan view, click the **Find Trusses** edit button.

Truss Labels

Labels for roof trusses display when the “Framing, Roof Truss Labels” layer is turned on in the current view. Similarly, floor and ceiling trusses display when the “Framing, Floor/Ceiling Truss Labels” is turned on. See “Layer Display Options Dialog” on page 144.

Truss labels are available in three formats: automatic, user-specified, and schedule callouts. See “Object Labels” on page 515.

Truss labels can display in plan view, cross section/ elevation views, and the Truss Detail. Automatic and user-specified labels are used in the Label column of the Materials List. See “Displaying Trusses” on page 657.

Truss labels use the Text Style specified for their layer in the current view. See “Text Styles” on page 398.

By default, truss labels are centered on the truss that they identify. If the truss is moved or deleted, the label is moved or deleted as well. With the exception of those in the Truss Detail, truss labels have their own Move edit handle which displays when the truss is selected. See “Editing Trusses” on page 658.

Truss labels obey the **Minimum Display Size** for labels set in the **Preferences** dialog. See “Appearance Panel” on page 80.

If two or more trusses share the same configuration with identical chords and webbing, they will also share the same truss label. In the Truss Detail, automatic and user-specified labels shared by multiple trusses will be followed by the total number of those trusses, in parentheses.

Automatic Truss Labels

Automatic roof truss labels use the format TR-X, where X is a number indicating the order in which each distinct truss configuration was created. For example, the first truss type created in a plan is labeled TR-1; the second, TR-2; and so on.

Floor and ceiling trusses are labeled FTR-X and use the same numbering convention.

Mixing Trusses with Stick Framing

After the trusses for your roof are in place, additional roof framing can be added. See “Roof Framing” on page 627.

Framing Defaults

Roof planes created using defaults set up for trusses will continue to use those defaults when stick framing is added. If you intend to add rafters, the roof planes should be created while **Trusses (no Birdsmouth)** is unchecked in the **Build Roof** dialog. See “Roof Panel” on page 587.

Leaving **Trusses (no Birdsmouth)** unchecked has a similar effect on roof trusses to that of **Raise Off Plate**: roof truss bottom chords may be longer than expected and their top chords, higher. This is neces-

Note: The Truss Detail is for display of trusses only. Editing the members that make up the trusses in the Truss Detail is possible but not recommended.

To restore an edited Truss Detail diagram

1. Delete any new members you have drawn in the detail view.
2. In plan view, select the truss and click the **Open Object** edit button to open the **Roof Truss Specification** dialog.
3. Check **Force Truss Rebuild** and click **OK** and the truss regenerates along with its Truss Detail diagram.
sary to create the space needed to accommodate the rafter’s depth.

Automatic Framing

The Build Framing dialog can be used to generate roof framing in areas not framed by the trusses, including gable eaves and the ends of hips. Note that rafters will not generate closer than 14” (350mm) to an existing, parallel truss.

Automatically generated roof framing will not extend through an existing roof truss. Instead:

- Automatically produced rafters generate inward from the eave until they butt into a truss.
- Blocking for standard and hip ridges generates as individual rafter objects between trusses.
- Lookouts will pass over Reduced Gable trusses and will end at the next truss in. See “Roof Truss Specification Dialog” on page 667.
- Hip ridges and common rafters at the end of a hip roof will pass over a Drop Hip Truss. See “Drop Hip or California Hip” on page 664.

Manually Drawn Framing

Unlike automatically generated roof framing, manually drawn rafters will extend through trusses. Rafters can also snap to truss edges as they are being drawn or when they are being edited. See “Manual Framing” on page 628.

Truss Bases

A Truss Base is a closed polyline that defines the area in which valley fill roof trusses are to be built across and above the tops of normal, full size roof trusses.

Valley fill trusses are often used in reverse gable conditions, where a roof ridge builds onto a roof plane that has a ridge running at a different angle. A classic example of this is an “L” shaped house with a gable roof. The main portion of the house is trussed through from end to end with normal trusses. Starting at its outside end, the smaller wing is trussed with normal trusses until the main house is reached. Where the wing’s roof builds over the main house, valley fill trusses are used.

Normal roof trusses are built between roof planes and ceiling planes. See “Roof Trusses” on page 656. Valley fill roof trusses created using a Truss Base, on the other hand, are built between a larger, supporting roof plane below and overbuilt roof planes above.

Truss bases are drawn and can be edited much like roof planes, with some limitations. See “Truss Base Specification Dialog” on page 663.

To work correctly, a truss base must be in the same plane with the underlying roof plane, so their baselines should be collinear.
To create a truss base

1. Create an L-shaped house with a reverse gable roof.

 The triangular area of overlap between the main roof and the gable must be defined as a Truss Base.

2. Select **Build > Roof > Truss Base**, then draw a baseline that is collinear with the baseline of the roof plane that will support the overbuild. See “The Baseline” on page 592.

3. Move the pointer and click on the point where the gable intersects the main roof.

 A rectangular Truss Base is created. Use its edit handles to reposition it and change its shape as needed.
 - The two angled sides should be collinear with the roof valleys.
 - The straight bottom edge must remain collinear with the Truss Base baseline and that of the underlying roof plane.

4. Draw the normal **Roof Trusses** across the length of the main portion of the house. See “Roof Trusses” on page 656.
 - The trusses of the underlying roof generate through the Truss Base, but stop at the Truss Base’s bottom edge so that no overhang is produced in that area.

5. When the trusses of the underlying roof are in place, draw the first truss of the reverse gable and position it over the outer wall.

6. With this truss selected, click the **Multiple Copy** edit button and drag the Move edit handle up to the peak of the Truss Base.
 - Copies of the truss appear as you drag the pointer.
 - The truss copies all appear to be full length until you release the mouse.
8. When you release the mouse button, any copies drawn in the Truss Base are clipped by it.

Truss Base Specification Dialog

Select a truss base and click the **Open Object** edit button to open the **Truss Base Specification** dialog. This dialog is almost identical to the **Roof Plane Specification** dialog. Although truss bases are not the same as roof planes, Chief Architect handles the positioning of the two in a similar manner.

General Panel

Four values define 3D orientation of a truss base: Bottom at Ridge Height, Inside Bottom Height, Outside Bottom Height, and Pitch. These values are related; if one is changed, the others change as well. These values are measured from the first floor elevation of 0’ 0”. The Pitch should be set identical to that of the roof plane that surrounds the truss base.

Click the radio button to the right of a value to define it as the pivot point for the truss base and prevent it from being changed.

Changing these values does not affect the 2D representation of the truss base.

Specify the **Height/Pivot** of the selected truss base.

Trusses drawn perpendicular to the baseline of a Truss Base go under the Truss Base. Trusses drawn parallel to the baseline of the Truss Base become valley fill trusses drawn over it.

Editing Truss Bases

A selected truss base can be edited in plan view using edit handles, edit toolbar buttons, and the **Truss Base Specification** dialog.

Truss bases can be edited much the way roof planes can, with some limitations. They are not actual 3D objects, so they cannot be assigned materials, moldings or other design attributes; however, their shape, height, pitch and display can be edited. See “Editing Roof and Ceiling Planes” on page 594.
• Define the **Bottom at Ridge Height**, or lock this value to make it the truss base’s pivot point.

• Define the **Inside Bottom Height**, or lock this value to make it the truss base’s pivot point. If the truss base is drawn over a wall, this is located at the inside surface of the wall’s Main Layer.

• Define the **Outside Bottom Height**, or lock this value to make it the truss base’s pivot point.

• Specify the selected truss base’s **Pitch**, or lock this value to move the truss base vertically when a Height value is changed.

• Check **Pitch in Degrees** to display the Pitch value in degrees.

Polyline Panel

The POLYLINE panel states the length of the truss base’s **Perimeter** and its enclosed **Area**. Truss bases have no thickness, so they do not have a **Volume**. See “Polyline Panel” on page 245.

Selected Line Panel

For information about the SELECTED LINE panel, see “Line Panel” on page 234.

Line Style Panel

The settings on the LINE STYLE panel affect the appearance of the selected Truss Base in plan view. For information about these settings, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected Truss Base in plan view. For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

Hip Trusses

A variety of different hip truss configurations can be created, including:

• **Step Down Hip**

• **Drop Hip or California Hip**

• **Subgirder Hip**

Step Down Hip

Step Down hip roofs are the quickest style of hip truss framing to produce.

To create a step down hip truss system

1. First, draw a **Roof Truss** at the apex of the triangular hip roof plane. When **Object Snaps** are enabled, it will snap into position. See “Object Snaps” on page 131.

2. Select the truss; click the **Multiple Copy** edit button; and click and drag the Move handle down into the hip to create copies at regular intervals. See “To replicate trusses using Multiple Copy” on page 657.

3. Stop when the height of the hip truss reaches a reasonable minimum.

4. Using the **Roof Truss** tool, draw hip jacks along the hip ridge from the last truss out into the overhang.

5. Using the **Roof Truss** tool, draw a jack truss from the intersection of the last hip truss and the hip jack to the eave.

6. Select the jack truss; click the **Multiple Copy** edit button; and lay out jack trusses up to the other hip jack.

Drop Hip or California Hip

A Drop Hip, or California Hip, system uses trusses with lowered top chords to support stick frame hip ridges and common rafters.

To create a drop hip truss system

1. Start a drop hip truss system as you would a step down hip system.

2. When the hip trusses are drawn, group select them, open the **Truss Specification** dialog, and select the **Drop Hip Truss** check box. See “General Panel” on page 667.

3. Use the **Build Framing** dialog to produce the common rafters, and the short joists at the hip end. See “Build Framing Dialog” on page 632.

The amount that the top chord is lowered is derived from the rafter **Depth** on the ROOF panel of the **Framing Defaults** dialog. Because both common rafters and hip ridges must pass over this truss, the
ridge depth should be set equal to that of the rafter depth.

Subgirder Hip
Subgirders are the partial trusses that butt into the doubled truss at the end of the main run.

To create a subgirder truss system
1. Draw a Roof Truss where the hip apex meets the ridge.
2. Double it by drawing a second truss on the far side from the hip section.
3. Using the Roof Truss tool, draw the first subgirder from the hip apex out to the eaves.
4. Select it and use the Multiple Copy edit button to make copies in both directions. Stop when the height of the subgirders reach a reasonable minimum.
5. Finish off with hip jacks and jack trusses as in a step down hip system.

Special Roof Trusses
A number of special purpose roof trusses can be created in Chief Architect.

Energy Heels
To provide more space for ceiling insulation at the exterior walls, roofs are sometimes raised off of the top plate with an energy heel. To create a truss with an energy heel, a vertical member is added over the supporting wall and the bottom chord stops there rather than extending into the overhang.

To create an energy heel
1. In the Build Roof dialog:
 • Check Trusses (no Birdsmouth);
 • Uncheck Automatic Birdsmouth Cut;
 • Specify the desired energy heel height as a positive Raise Off Plate value.
2. Automatically generate or manually draw the roof planes.
3. Draw and position the first truss. See “To draw and replicate trusses” on page 657.
4. Open this truss’s specification dialog and check Energy Heel and Force Truss Rebuild, then click OK. See “Roof Truss Specification Dialog” on page 667.
5. Use the Multiple Copy edit tool to replicate the truss as needed.

Attic Trusses
Attic trusses, a variation of roof trusses, can be drawn if a plan contains an Attic area on both sides and above an upstairs room, such as in a Cape Cod style home. The following is a typical cross section view of a building with attic trusses:

Certain conditions must be met before an attic truss can be built:
• The structure should be sufficiently wide to allow for a loft and attic spaces.
• The loft area must be on a living floor. It cannot be on the Attic floor. See “The Attic Floor” on page 543.
• The loft area must have Attic rooms on both sides. See “Room Types and Functions” on page 315.
• The loft area must be separated from the Attic rooms on both sides by Knee Walls. See “Knee Walls” on page 289.
• A flat ceiling in the loft area and a floor below must be present.
• The roof pitch must be steep enough to provide appropriate ceiling height for the loft area. Typical pitches for such a condition are 8 in 12 or greater.
• The roof should bear on the walls of the floor below the loft area and form continuous planes from ridge to baselines.

Once these conditions are met, a roof truss is ready to be designated as an attic truss.

1. Select the roof truss in plan view and click the Open Object edit button to display the General panel of the Roof Truss Specification dialog.
2. Check the box beside Attic Truss and click OK. See “Roof Truss Specification Dialog” on page 667.

Draw a new truss from an existing truss to the roof edge, as you would to draw a hip or end jack truss; or draw a truss between two trusses, forming a girder. This may be necessary for a large opening, such as a skylight.

Trusses cannot be drawn through each other. If a truss is drawn through an existing truss, the program automatically shortens it so that it butts into the existing truss.

Sloping Flat Trusses

A sloping flat truss is a roof truss that builds within the structural layer of the roof plane(s) it is drawn in. In order to create one, the roof plane(s) must have a structural layer deep enough to accommodate its chords and webbing.

To create a sloping flat truss

1. Select the roof plane in which you would like to draw sloping flat trusses and click the Open Object edit button.
2. On the Structure panel of the Roof Plane Specification dialog, specify the roof Structure depth as the desired depth of the sloping flat truss. See “Structure Panel” on page 600.
3. Select the roof truss and click the Open Object edit button.
4. On the General panel of the Roof Truss Specification dialog, check the boxes beside Sloping Flat Truss and Force Truss Rebuild, then click OK.

Scissors Trusses

Trusses drawn between roof planes and sloping ceiling planes of a different pitch than the roof are called Scissor trusses. See “Ceiling Planes” on page 606.

The following is an example of a scissors truss drawn beneath an 8 in 12 pitch gable roof and above 4 in 12 pitch ceiling planes.

Girder Trusses

Girder trusses provide support for trusses that are cut short, for example, by a reverse gable or a skylight. They are often doubled- or tripled-up for strength.
5. Use the Multiple Copy edit tool to replicate the truss within the area of the roof plane(s) edited in step 2.

Roof Truss Specification Dialog

Select a roof truss or group of roof trusses and click the Open Object edit button to open the Roof Truss Specification dialog.

The Roof Truss Specification dialog allows you to redefine parts of an existing truss or group of trusses. Some settings affect only individual trusses, such as gable trusses, while others affect the whole group.

The shape or volume of a roof truss is controlled by the roof planes above it and the ceiling planes below it. It cannot be changed from this dialog.

⚠️ Truss webbing is drawn for representational purposes only and as with trusses in Chief Architect in general, is not engineered.

General Panel

The defaults for many of the settings on the General panel are set in the Build Framing dialog. See “Trusses Panel” on page 641.

1. **Member Sizing** - Specify the sizes of the different members that form the selected truss.
 - Specify the depths of the **Top Chord** and **Bottom Chord**.
 - Specify the depth of the **Webbing**.
 - Specify the **Thickness**, which is the width of the truss in plan view.

2. **Maximum Span**, which is the maximum horizontal distance between supports along the **Top** and **Bottom Chords**. When these values are equal, the truss webbing often appears more regular.

3. Additional **Options** allow you to create special truss types.
 - Check **Require Kingpost** to require a vertical webbing member from the roof peak to the bottom chord.
If Require Kingpost is unchecked, a kingpost may still be supplied, depending on the truss length and the specified maximum spans.

- **Check End Truss** to replace the webbing with vertical members positioned and spaced the same as the wall studs below.

If an End Truss is in the same position as a gable attic wall, it replaces the framing that would otherwise be produced for that wall.

- **Check Energy Heel** to model remove the bottom chord from the overhang area. For an energy heel to be modeled, the roof should also be raised off the top plates by at least 7", depending on the roof pitch. See “Energy Heels” on page 665.

- **Check Drop Hip Truss** to lower the flat top of a truss in the hip area of a roof so that common rafters and hip ridges can pass over and be supported by it. See “Drop Hip or California Hip” on page 664.

- **Check Reduced Gable** to lower the top chord of an End Truss so that lookouts can pass over the truss. Reduced trusses do not have overhangs, but you can draw short rafters drawn at the ends of the truss.

- **Check Attic Truss** to specify an attic truss. See “Attic Trusses” on page 665.

- **Check Sloping Flat Truss** to create a truss with a bottom chord that follows the underside of the roof plane(s) it is drawn in. When this is unchecked, the bottom chord follows the ceiling of the room or manually drawn ceiling plane below. See “Sloping Flat Trusses” on page 666.

- **Check Force Truss Rebuild** to rebuild the truss envelope based on the current state of the ceiling and roof when you click **OK**. Not available if Lock Truss Envelope and Webbing is checked.

- **Check Lock Truss Envelope and Webbing** to lock the size and configuration of the selected truss. If a locked truss is moved, it will maintain its original settings and will not fit properly if the new roof and ceiling conditions are different from the original.

- **Check No Special Snapping** to prevent the selected truss from using special truss snapping behavior. This box may become unchecked automatically if you edit a truss using its edit handles. When checked, **Object Snaps** may still occur. See “Special Truss Snapping” on page 658.

Line Style Panel

The settings on this panel affect the appearance of the selected truss in plan view only. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on this panel affect the appearance of the selected truss in plan view. See “Fill Style Specification Dialog” on page 155.
Materials Panel

The settings on the MATERIALS panel affect the appearance of the selected truss in 3D views. See “Materials Panel” on page 761.

Label Panel

Roof truss labels can display in plan view and cross section/elevation views when the “Framing, Roof Truss Labels” layer is turned on and use the Text Style assigned to that layer. See “Text Styles” on page 398.

Truss labels also display in the Truss Detail. See “Truss Details” on page 659.

For more information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected object is included in. See “Schedule Panel” on page 519.

Floor/Ceiling Truss Specification Dialog

To open the Floor or Ceiling Truss Specification dialog, select one or more floor or ceiling trusses and click the Open Object edit button. See “Floor and Ceiling Trusses” on page 656.

General Panel

Specify the **Member Depth** of the different components of the selected truss.

- Specify the depth of the **Top Chord**.
- Specify the depth of the **Bottom Chord**.

Note: If a truss is listed in a schedule using callout labels, the settings here are overridden and the schedule label is used instead.

Default values for trusses are set in the Build Framing dialog. See “Trusses Panel” on page 641.

Specify the depth of the **Webbing**.

Specify the **Thickness** of the truss’s chords and webbing.
• Specify the **Overall Thickness** of the selected truss.
• Specify the thickness of the **Webbing**.

Specify the **Maximum Span**, which is the maximum horizontal distance between supports along the **Top and Bottom Chord**.

Options -

- Check **Vertical Supports** to use vertical supports in the selected truss.
- Check **Force Truss Rebuild** to rebuild the truss envelope based on the existing floor or ceiling platform when you click OK. Not available if Lock Truss Envelope and Webbing is checked, below.
- Check **Lock Truss Envelope and Webbing** to lock the size and configuration of the truss. A locked truss which has been relocated will maintain its original settings.
- Check **No Special Snapping** to prevent the selected truss from snapping along its long edge to a wall’s Main Layer or to the corner of a roof plane. If enabled, **Object Snaps** may still occur. See “Special Truss Snapping” on page 658.

Line Style Panel

The settings on this panel affect the appearance of the selected truss in plan view only. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on this panel affect the appearance of the selected truss in plan view only. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected truss in 3D views. See “Materials Panel” on page 761.

Label Panel

Floor and ceiling truss labels can display in plan view and cross section/elevation views when the “Framing, Floor/Ceiling Truss Labels” layer is turned on and use the Text Style assigned to that layer. See “Text Styles” on page 398.

Truss labels also display in the Truss Detail. See “Truss Details” on page 659.

For more information about the settings on this panel, see “Label Panel” on page 516.

Note: If a truss is listed in a schedule using callout labels, the settings here are overridden and the schedule label is used instead.

Components Panel

The information on the **COMPONENTS** panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the **OBJECT INFORMATION** panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the **SCHEDULE** panel determine which schedule categories the selected object is included in. See “Schedule Panel” on page 519.

Framing and Truss Schedules

The **Framing Schedule** tool allows you to produce customizable framing and truss schedules as well as object labels that display schedule numbers. See “Schedules and Object Labels” on page 505.

Framing schedules created in a Truss Detail use a special **Only Include Objects from this Detail** setting and a selection of Objects to Include that report only floor, ceiling, and roof trusses. See “Truss Details” on page 659.
Chief Architect offers a wide selection of trim and molding options. Corner boards, quoins, and frieze moldings can be added to a building’s exterior. Molding polylines and 3D molding polylines can be edited as 2D CAD objects using the CAD editing tools, then extruded to display in 3D for a variety of powerful applications.

In addition, Chief Architect offers a wide selection of trim and molding options for doors, windows, rooms, and many interior objects. See “The Library” on page 691.

You can also assign moldings to a variety of objects, such as rooms and cabinets, in those objects’ specification dialogs. See “Specification Dialogs” on page 32.

Chapter Contents

- Trim and Molding Defaults
- Corner Boards
- Corner Board Specification Dialog
- Quoins
- Quoin Specification Dialog
- Editing Corner Boards and Quoins
- Millwork
- Molding Profiles
- Symbol Moldings
- Applying Moldings
- Molding Polylines
- Displaying Molding Polylines
- Editing Molding Polylines
- Molding Polyline Specification Dialog
- 3D Molding Polyline Specification Dialog
- Frieze Moldings

Trim and Molding Defaults

Select Edit> Default Settings to open the Default Settings dialog where you can access the defaults for a variety of drawing tools, including a number that affect trim and moldings.

- Click the + beside “Corner Trim” to access the defaults for Corner Boards and Quoins. See “Corner Boards” on page 674 and “Quoins” on page 675.
- Click the + beside “Floors and Rooms”, then beside “Floor Levels”. Select a floor level and click the Edit button to specify the default moldings for rooms on that floor. See “Floor Level Defaults” on page 314.
- Click the + beside “Door” to access the defaults for Interior and Exterior Doors. See “Door Defaults” on page 403.
- Select “Window” and click the Edit button to specify the default casing for windows. See “Window Defaults” on page 427.
- Click the + beside “Cabinet” to access the defaults for the Cabinet Tools, where you can specify default crown and other moldings. See “Cabinet Defaults” on page 459.
Corner Boards

Corner boards are added to a building exterior in any view by selecting Build> Trim> Corner Boards.

Click at a wall corner where you want to add trim. Be sure to click where the outside wall surfaces meet. If you click where the inside surfaces meet, corner trim will be created inside the room.

You can also add Corner Boards to all exterior corners at once by selecting Build> Trim> Auto Place Corner Boards.

By default, Auto Place Corner Boards adds Corner Boards to outside corners only. If you prefer, you can specify that inside corners receive corner boards in the Corner Board Defaults dialog. See “General Panel” on page 674.

Corner boards extend from the top plate down to the bottom of the floor platform of the floor on which it is placed, but do not extend to other floors. You must add corner boards to all floors of the building that you want to have corner boards.

A selected corner board or boards can be moved, but only to another wall corner or corners. In 3D views, corner boards can be lengthened or shortened using the edit handles. Corner boards can be copied, deleted and resized similar to other objects using the edit toolbar or the Corner Board Specification dialog.

The default material for corner boards is defined by the Exterior Trim entry in the Material Defaults dialog. See “Material Defaults” on page 758.

Corner Board Specification Dialog

Select one or more corner boards and click the Open Object edit button to open the Corner Board Specification dialog.

The settings in this dialog are similar to those in the Corner Board Defaults dialog, but affect the selected corner boards rather than all subsequently created corner boards.

General Panel

Specify the Width and Thickness of the selected corner board(s).

Check Set Top/Set Bottom to specify the top and bottom heights of the corner board(s).

- If Set Top is unchecked, the top of the corner board automatically extends to the top plate.

- If Set Bottom is unchecked, the bottom of the corner board automatically extends to the bottom of the floor platform.

In the Corner Board Defaults dialog, an additional Auto Place Option is available.

- Check Include Inside Corners to place Corner Boards on inside corners when the Auto Place
Quoins

Select Build > Trim > Quoins in any view and click at a wall corner where you want to place quoins.

You can also add Quoins to all exterior corners at once by selecting Build > Trim > Auto Place Quoins.

By default, Auto Place Quoins adds Quoins to outside corners only. If you prefer, you can specify that inside corners receive quoins in the Quoin Defaults dialog. See “General Panel” on page 674.

Quoin Specification Dialog

Select one or more quoins and click the Open Object edit button to open the Quoin Specification dialog.

The settings in this dialog are the same as those in the Quoin Defaults dialog, but affect the selected quoins rather than all subsequently created quoins.

Layer Panel

For information about the LAYER panel, see “Layer Panel” on page 149.

Materials Panel

The settings on the MATERIALS panel are available for a wide variety of objects in the program. For information about these settings, see “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Note: The Auto Place Quoins tool does not place quoins on manually drawn dormers or at intersections with Attic Walls. See “Attic Walls” on page 289.

A selected quoin or quoins can be moved, but only to another wall corner or corners. In 3D views, quoins can be lengthened or shortened using the edit handles. Quoins can be copied, deleted and resized similar to other objects using the edit toolbar or the Quoin Specification dialog.

The size of quoins in plan view is relative on their size in 3D.

Initially, quoins use the same material as the default material of the wall surface they are placed against. This material is specified in the Wall Type Definitions dialog. See “Wall Specification Dialog” on page 297.
Specify the **Size** and **Position** of the quoins in the selected Quoin object.

- Specify the **Width**, which is the horizontal dimension of each quoin in the selected Quoin object. The dimension along the other wall is half this value when they are staggered or mirrored.
- Specify the **Thickness**, which is the amount that the quoin protrudes from the exterior surface of the wall.
- Specify the **Quoin Height** for individual quoins in the selected Quoin object.
- Specify the **Quoin Gap**, which is the distance between successive quoins.

Check **Set Top/Set Bottom** to specify the top and bottom heights of the quoin(s) in the text fields.

- If **Set Top** is unchecked, the top of the corner board automatically extends to the top plate.
- If **Set Bottom** is unchecked, the bottom of the quoin automatically extends to the bottom of the floor platform.

Specify the arrangement of quoins used by the selected Quoin object.

- **Uniform** - Produce quoins that are of equal length on both sides of the corner.
- **Staggered** - Produce quoins that have one long side and one short side staggered on opposite sides of the corner.
- **Mirrored** - Produce quoins that alternate having either two long sides or two short sides.

When Staggered or Mirrored is selected, check **Swap Start Block** to switch the starting order for the quoins.

In the **Quoin Defaults** dialog, an additional **Auto Place Option** is available.

- Check **Include Inside Corners** to place Quoins on inside corners when the **Auto Place Quoins** tool is used. When unchecked, only outside corners receive quoins.
Editing Corner Boards and Quoins

Before a corner board or quoin can be edited, it must be selected. Click on a trim object when the Select Objects tool is active. Corner boards and quoins can also be group selected and edited. See “Selecting Objects” on page 167.

Corner boards and quoins can be edited using their edit handles, the edit toolbar buttons, and their specification dialogs.

Using the Mouse

Depending on the type of view, a corner board or quoin displays a different set of edit handles when selected.

- In plan view, corner boards and quoins display one edit handle and can be moved from one eligible location at a wall corner to another.

Materials Panel

The settings on the MATERIALS panel are available for a wide variety of objects in the program. For information about these settings, see “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Using the Edit Buttons

A selected corner board or quoin can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Deleting Corner Trim

Corner boards and quoins can be selected individually or in groups and deleted using the Delete edit button or the Delete key on the keyboard. They can also be removed using the Delete Objects dialog. See “Deleting Objects” on page 220.

Millwork

A selection of various types of millwork including columns, corbels and finials is available in the Library Browser. See “The Library Browser” on page 691.

Most millwork objects are designed to be placed in a plan as free-standing objects. Some - notably, newels and balusters - can be assigned to objects such as railings and stairs. Other examples of millwork that can be assigned to objects include millwork on window exteriors and pilasters and feet on cabinets. See “Placing Library Objects” on page 704.

Millwork assigned to an object can be replaced from the library in 3D views. See “Replace From Library” on page 706.

Molding Profiles

A molding profile is a representation of a 2D cross section of a particular style of molding created using one or more CAD polylines. A molding profile does not display in 3D on its own; it must be applied to an object like a room, a cabinet, or a molding polyline.
See “Moldings Panel” on page 680 and “Molding Polylines” on page 684.

The library contains a selection of moldings, as well as curbs, gutters, handrails and rafter tails, which function much like molding profiles. You can customize library molding profiles and also create your own custom profiles and add them to the library. See “Adding Library Content” on page 700.

Creating a Molding Profile
You can easily create custom molding profiles using the CAD drawing and edit tools by following a few basic guidelines.

• Draw a molding profile at its actual, unscaled size.
• The profile must be drawn with the proper orientation. The back of most profiles, or the side facing the wall, must be drawn as a vertical edge on the left side of the polyline.
• Similarly, curbs and gutters are drawn with the back of the profile as a vertical edge on the left side of the polyline.
• Open polylines should be used for gutter and rafter tail profiles. Gutter profiles attach to the roof on the left side, and rafter tail profiles should be open on the left side.
• Ridge cap profiles must be closed polylines drawn to match the pitch of the roof planes they will cap.
• Rail, handrail, and railing beam profiles should be drawn with the bottom edge facing downward.

Adding Molding Profiles to the Library
When a CAD polyline meets your needs as a molding profile, select it and click the Add to Library edit button. A molding created in this manner can have more than one material assigned to it.

If you have drawn a molding profile using multiple closed polylines, select them as a group and click the Add to Library as Stacked Molding edit button. Multiple materials can be specified. See “Materials Panel” on page 761.

Molding Specification Dialog
Right-click on a molding profile in the Library Browser and select Open Object from the contextual menu to open the Molding Specification dialog. See “Using the Contextual Menus” on page 693.

On the General panel, specify the Molding Height and Width of the molding profile.

On the Materials panel, specify the material assigned to the molding. By default, the Default Room Moldings material is used. If the selected molding profile was added to the library using the Add to Library as Stacked Molding edit tool, multiple materials can be specified. See “Materials Panel” on page 761.

Place Molding Profile
An existing molding profile can be placed in plan view or a CAD Detail, edited, and added to the library as a new profile.

Right-click on a molding profile in the library and select Place Molding Profile from the contextual menu. Move your pointer into the drawing area and click once to place a closed polyline identical to the selected profile at that location. The polyline can then be edited to suit your needs.

Note: Place Molding Profile cannot be used to apply a molding profile to an object - it is only used to place a profile polyline.
Stacked and Recessed Moldings

There are several ways to create stacked or built up moldings:

- Draw the entire build-up using a single polyline, then select it and click the Add to Library edit button.
- Draw the build-up using multiple polylines, then select them as a group and click the Add to Library as Stacked Molding edit button. A molding created in this manner can have more than one material assigned to it.
- Apply multiple moldings to an object, then specify their horizontal and vertical offsets, making sure they all have the same To Top setting. Finally, group-select the moldings and click the Make Stack button. Only room moldings of the same Type can be stacked in this manner. See "Moldings Panel" on page 680.

Symbol Moldings

Symbol Moldings are 3D symbols that are repeated along a path to form molding. Molding symbols are different from molding profiles because they are replicated 3D symbols instead of extruded 2D shapes.

Creating a Symbol Molding

Begin by opening a new, blank plan and creating a single instance of the molding symbol using the Primitive Tools button. See “Primitive Tools” on page 731. For example, to create the molding shown in the illustration above, make an object that looks like this:

When you are satisfied with its appearance, convert it to a 3D symbol. See “Convert to Symbol” on page 721.

You can also import a 3D symbol from another application. See “Importing 3D Symbols” on page 892.

To import a molding symbol

1. Select File Import 3D Symbol from the menu. See “Import 3D Symbol Dialog” on page 893.
2. In the Import 3D Symbol dialog, specify the symbol as Molding and click the Advanced button.
• If you plan to use the molding symbol more than once, check the box beside Add to Library. See “Add to Library” on page 700.

3. On the 3D panel of the Symbol Specification dialog, rotate the symbol as needed so that it faces you in the preview image.

Symbol moldings work best if you make them symmetrical.

Applying Moldings

Molding profiles and symbols can be applied to a variety of different types of objects in Chief Architect, including rooms, doors, windows, cabinets, trey ceilings, and molding polylines. Moldings are assigned to their containing object in that object’s specification dialog.

A number of other objects, including roof planes, rope lights, railings, stairs, and ramps have features like ridge caps and hand rails that are applied in a similar manner that moldings are applied to other objects.

Replacing an Existing Molding

If a molding profile or symbol has already been applied to an object, it can be replaced by another directly from the library in a 3D view. Select a molding in the library, then click on a molding assigned to an object in the plan. See “Replace From Library” on page 706.

In a 3D view, select a molding profile or symbol from the Library Browser and move your mouse pointer into the view window. When a molding is selected, the pointer displays the Moldings icon. When the mouse pointer is moved over a molding in the view, the Replace From Library icon displays instead. Click on the molding in the view to change its molding profile.

Moldings Panel

The specification dialogs for a variety of objects in the program include a MOLDINGS panel. Select an object or group of similar objects and click the Open Object edit button to open the specification dialog for that selection.

A number of roof attributes are assigned the way moldings are. Rafter tails, ridge caps, gutters, frieze molding, and shadow boards are all created by specifying a profile and extruding it down a predetermined path. As a result, the settings on the RAFTER TAILS, RIDGE CAPS, GUTTER, FRIEZE, and SHADOW BOARDS panels function the same as those on the MOLDINGS panel. See “Build Roof Dialog” on page 586.

The RAILS panel of the Wall, Staircase, Ramp, and Stair Landing Specification dialogs is also similar to the MOLDINGS panel, as is the WALL CAPS panel of the Wall Specification dialog. See “Staircase Specification Dialog” on page 565 and “Wall Specification Dialog” on page 297.
At the top of the dialog, one or more settings may be available.

- Only available for rooms, uncheck **Use Floor Default** to make the settings that follow active. Check this box to use the defaults set in the **Floor Defaults** dialog for the current floor. See “Floor Level Defaults” on page 314.

- If multiple objects with different moldings assigned to them are selected, a **No Change** check box will be available. Uncheck this box to make the settings that follow active but note that only moldings that all selected objects have in common will be retained.

- In the **Trey Ceiling Specification** dialog, specify the **Layer** that any Molding Polylines associated with the trey ceiling are assigned to. See “Layers” on page 142.

The **On Selected Edge** settings are available on the **RIDGE CAPS**, **GUTTERS**, and **SHADOW BOARDS** panels of the **Roof Plane Specification** dialog when an individual roof plane is selected. They determine whether the profile(s) specified on the current panel generate along the selected roof plane edge. See “Roof Plane Specification Dialog” on page 598 and “Selected Edge” on page 168.

- Select **Automatic (On/Off)** to use the default behaviors for ridge caps, which generate on ridges and hips by default; gutters, which generate on eaves by default; and shadow boards, which generate on eaves and/or gables, as specified in the **Build Roof** dialog.

- Select **On** to generate the profile in question on the selected roof plane edge whenever possible.

- Select **Off** to suppress the profile in question on the selected roof plane edge regardless of its location.

The selected object’s **Molding Profiles** and/or symbol molding(s) are listed in a table and can be edited here. Depending on the type of profile
being edited, not all options will be available in the table.

On the RAILS panel of the Staircase, Ramp, and Stair Landing Specification dialogs, the table is divided into three sections: Top Rail, Middle Rail, Bottom Rail. In the Wall Specification dialog, there is a fourth section: Beam.

- Select the name of a molding to edit it or remove it from the object.
- Click in the Width and/or Height column and type to specify the selected molding’s size.
- When a Symbol Molding is selected, click in the Repeat Distance column and type the desired value. See “Symbol Moldings” on page 679.
- Specify the Horizontal Offset, which is how close the molding is to the perimeter of the selected object. Increase this value to create a gap between the selected object and the molding. See “Stacked and Recessed Moldings” on page 678.
- Specify the Vertical Offset of the selected molding, measured relative to the default molding location on the object it is assigned to.
- A check mark in the To Top column means that the Vertical Offset value is measured from the top of the molding. When unchecked, this value is measured from the bottom of the molding. Click to place or remove a check mark.
- Specify the distance that a selected rafter tail profile should Extend past the inside surface of the subfascia. This distance is measured along the top of the rafter tail, so it is greater than the length as measured in plan view.

Depending on the type of object selected, one more more checkboxes will be found under the Molding Profiles table.

- When Retain Aspect Ratio is checked, if you change either the Height or Width, the other value changes to maintain their original ratio. When this is unchecked, the two values can be edited independently. This option also affects the Repeat Distance of a symbol molding, and is not available when Full Wall Width is checked, below.
- Check Auto Offset to have the program apply Horizontal and Vertical Offset values to the selected moldings based on their Widths and Heights.
- On the RAILS panel, check Full Wall Width to make the rail Width equal to the Thickness of the selected railing wall. Not available for stairs or ramps.
- On the WALL CAP panel of the Wall Specification dialog, when Full Wall Width is checked, the cap extends the width of the lower wall. When unchecked, it extends out from the exterior surface of the upper wall.
- Also on the WALL CAP panel, check Split Pony Wall to build the between the upper and lower walls, centered on the lower wall. This becomes checked automatically when and cannot be unchecked when Full Wall Width is checked, above.

The buttons on the right allow you to manage the moldings listed in the table.

- Click the Add New button to open the Select Library Object dialog and add a new molding profile or symbol to the selected object. See “Select Library Object Dialog” on page 705.
- Click the Make Copy button to add a copy of the selected molding profile, symbol, or stacked profile at the bottom of the list.
- Click the Replace button to remove the selected profile, symbol, or stacked profile and replace it with a new profile or symbol from the Library.
- Click the Default button to reset the Default Rail, Ridge Cap, Gutter, or Rope Light profile.
- Click the Delete button to remove the currently selected profile, symbol, or stacked profile from the table.
- Select two or more profiles in the list and click the Make Stack button to group the profiles under a “Stacked Profile” line item. Changes made to a Stacked Profile affect all profiles in the stack. Not available for moldings with different To Top settings or different Types. See “Stacked and Recessed Moldings” on page 678.
- When a Stacked Molding is selected, click the Explode Stack button to separate the stacked profiles so they are no longer associated with one another.
- Click the Move Up or Move Down button to change the order of the line items in the table. This does not change a selected item’s Height, Offset, To Top setting, or Type: only its position in the table.
- Click the Add to Library button to save a copy of the molding as specified here in the User Catalog. See “Adding Library Content” on page 700.
The **Selected Profile Options** only apply to the molding profile or symbol selected above. The options available will vary depending on the type of object that is selected.

- A preview of the molding profile(s) and/or symbol(s) displays here. When multiple moldings of the same Type, To Top setting, or similar Height are specified, they will display together here, even when only one is selected. The selected profile is identified by thicker edge lines than the others. When multiple moldings of different Types, To Top, or Height settings are selected, no preview will display.
- Click the **Rotate Profile** button to rotate the selected profile 90° counterclockwise, or to the left. Not available for stacked moldings or a selected molding symbol.
- When **Count Components in Materials List** is checked, the individual components of stacked profiles are counted separately in the Materials List. When unchecked, they are treated as a single profile. Only available when stacked profiles are specified above. See “Stacked and Recessed Moldings” on page 678.

Rooms:

- Choose the currently selected molding’s **Type** from the drop-down list: Base Molding, Chair Rail, or Crown Molding. If no Type is selected, the molding will not be listed in the Room Finish Schedule. See “Room Moldings” on page 331 and “Schedules and Object Labels” on page 505.

Note: The Default Base Molding is a basic rectangular stock profile rather than a profile from the library.

Molding Polylines:

- When **Extrude Inside Polyline** is checked, the selected molding profile generates inside of the molding polyline. Uncheck this box to generate the profile on the exterior of the polyline instead. Only available for Molding Polylines and 3D Molding Polylines.

Roofs:

- On the **FRIEZE MOLDING and SHADOW BOARDS** panels, select a **Type** from the drop-down list: Eave and Gable, Eave only, and Gable only. See “Roof Returns and Other Details” on page 619.
- On the **RAFTER TAILS** panel, uncheck **Stretch to Fit Rafter** to use the rafter tail profile’s default size or to specify its **Height** and **Width**, below. When this is checked, the profile is sized by the program to match the roof rafters.
- On the **RIDGE CAPS** panel, check **Bend to Roof Pitch** to adjust the shape of the selected ridge cap profile to match the pitch of the roof.

Walls and Railings:

- On the **WALL CAP** panel of the **Wall Specification** dialog, check **Extrude Inside Wall** to position a wall cap on the interior side of a pony wall instead of on the exterior side. See “Lower Pony Wall Caps” on page 270.

Stairs, Ramps, and Landings:

Four additional **Handrail at Wall Options** are available for stairs:

- Specify the **Extend Bottom** value, which is the distance that the bottom of each railing section extends past the bottom riser of its corresponding stair section.
- Specify the **Extend Top** value, which is the distance that the top of each railing section extends past the top riser of its corresponding stair section.
- Check **Add Return at Bottom** to add a return to the wall at the bottom end of all railing sections that are against a wall.
- Check **Add Return at Top** to add a return to the wall at the top end of all railing sections that are against a wall.

By default, the settings on the **RAILS** panel will also affect the appearance of railings on any landings attached to the selected staircase. See “Landings” on page 554.

Many specification and defaults dialogs have previews of the selected object in which the moldings assigned to it can be seen. See “Dialog Preview Panes” on page 32.
Molding Polylines

A molding polyline is a 3D path that either a 2D molding profile is extruded along or a series of molding symbols is repeated along. Molding polylines can be used to create custom room moldings and decorations anywhere in your 3D model.

The Molding Polyline tools are accessed by selecting Build> Trim from the menu.

There are four types of molding polylines:

- **Molding Polylines**
- **Molding Lines**
- **3D Molding Polylines**
- **3D Molding Lines**

To create a molding polyline, first select the desired Molding Polyline tool. The Select Library Object dialog will open. Select a molding profile or symbol from the library, then click and drag to draw the path for the selected molding profile or symbol.

If a molding profile or symbol has been previously selected during the current session in the program, you can begin drawing using this molding without selecting anything from the library.

Molding polylines can also be created using the Make Room Molding Polyline and the Convert Polyline edit tools.

Molding Polyline

Select Build> Trim> Molding Polyline in plan view, a camera view, or overview to create a rectangular molding polyline with a closed shape and a single height off the floor along its entire perimeter.

In plan view, Molding Polylines can also be created by selecting a profile from the Library Browser. Single-click to place a 2’x2’ closed polyline or click and drag to draw a rectangular polyline.

Molding Line

Select Build> Trim> Molding Line in plan view, a camera view, or overview to create a molding line with a single height off the floor along its entire length. Multiple Molding Lines can be connected to form open or closed polylines as long as they share the same height.

3D Molding Polyline

Select Build> Trim> 3D Molding Polyline in floor plan or cross section/elevation view to create a closed molding polyline.

- When drawn in a cross section/elevation view, a 3D Molding Polyline’s top and bottom edges have two different heights. Its sides have different heights at their start and end points.
- If drawn in plan view, a camera view, or an overview, a 3D Molding Polyline has a single height along its perimeter.

In either case, its edges can be edited so that it travels in three dimensions rather than two.

3D Molding Line

Select Build> Trim> 3D Molding Line in floor plan or cross section/elevation view to create a molding line.

- If drawn in a cross section/elevation view, a 3D Molding Line’s start and end points can have two different heights.
- If drawn in plan view, a camera view, or an overview, a 3D Molding Line has a single height along its length.

3D Molding Lines can be connected to form polylines as long as the ends at which two segments connect have identical heights.

Once drawn, a 3D Molding Line can be edited so that it travels in three dimensions.
In the plan view, select a molding profile from the library. The Molding Polyline tool becomes active, allowing you to draw a molding polyline with using the selected profile.

Converting a Room Molding
Select a room and click on the Make Room Molding Polyline edit button. This opens the Make Room Molding Polyline dialog, allowing you to select which type of room molding to convert to a molding polyline. See “Room Polylines” on page 331.

Converting a CAD Polyline
Select a CAD polyline and click the Convert Polyline edit button to convert it into either a Molding or 3D Molding Polyline. See “Convert Polyline” on page 205.

Displaying Molding Polylines
As with other objects, the display of molding polylines in 2D and 3D views is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

There are a number of different types of molding polyline objects. By default:
• Molding polylines are placed on the “Moldings” layer.
• Roof ridge caps, gutters, frieze molding, and shadow boards are placed on the “Roofs, Ridge Caps”, “Roofs, Gutters”, and “Roofs, Trim” layers, respectively.

In plan view, manually drawn Molding and 3D Molding Polylines display as two sets of lines: one representing the molding’s front and one its back. The distance between them is determined by the Width of the molding profile. If a Horizontal offset is specified, that value is added to the distance between the two lines. See “Moldings Panel” on page 680.

Profiles on the Selected Edge
By default, the molding(s) assigned to a molding polyline display along all of its edges in 3D views. If you wish, you can suppress the display of moldings on the Selected Edge by clicking the Remove Molding from Selected Edge edit button or checking No Molding on Selected Edge in the molding polyline’s specification dialog. See “Selected Edge” on page 168.

Suppressed moldings can be restored to the selected edge by clicking the Add Molding to Selected Edge edit button or by unchecking No Molding on Selected Edge

These edit buttons are also available for a selected Gutter, Ridge Cap, or Shadow Board polyline and for Custom Countertops. They are not, however, available for Rope Moldings. See “Roof Returns and Other Details” on page 619, “Countertops” on page 465, and “Rope Lights” on page 493.

Note: 3D Molding Polyline edges that slope rather than having a single height are best edited in a camera or elevation view. See “3D Views” on page 779.

Molding lines and polylines also can be edited in their specification dialogs. See “Molding
Deleting Molding Polylines

Molding polylines can be deleted like other objects using the Delete edit button or the Delete key on your keyboard.

Molding Polyline Specification Dialog

To open the Molding Polyline Specification dialog, select a molding polyline or group of molding polylines and click the Open Object edit button.

General Panel

- Specify the Molding Polyline’s Height, relative to 0.
- Check No Molding on Selected Edge to create blank section in the molding polyline along the selected line segment.

Polyline Panel

The POLYLINE panel states the Length of an open molding polyline, and the Perimeter and Area of a closed molding polyline. See “Polyline Panel” on page 245.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected segment of the molding polyline is a line, as opposed to an arc. For more information, see “Line Style Panel” on page 235.

The SELECTED ARC panel is available when the selected segment of the molding polyline is an arc, as opposed to a line. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Moldings Panel

The MOLDINGS panel can be found in dialogs throughout the program. See “Moldings Panel” on page 680.

One setting on this panel is unique to the Molding Polyline and 3D Molding Polyline Specification dialogs:

- Check Inside to extrude the molding profile on the inside of closed polyline or right side of an open polyline.

- When unchecked, the molding profile extrudes on the outside or left side of the polyline.

Line Style Panel

The LINE STYLE panel can be found in dialogs throughout the program. For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected Molding Polyline in plan.
3D Molding Polyline Specification Dialog

Select a 3D molding polyline and click the **Open Object** edit button to open the **3D Molding Polyline Specification** dialog.

General Panel

- Uncheck **Molding on Selected Edge** to turn off the display of the specified molding on the selected edge of the polyline. See “Selecting Objects” on page 167.
- If the selected object is an automatically generated ridge cap, frieze molding, or shadow boards polyline, this check box’s label will reflect the object type. See “Roof Returns and Other Details” on page 619.

An **Automatically Generated** checkbox will be present if a ridge cap, frieze molding, or shadow boards polyline is selected. This checkbox is for reference only and cannot be edited. See “Roof Returns and Other Details” on page 619.
- When this box is checked, the selected roof trim is updated whenever you rebuild the roof.
- If the selected object is edited, this box will become permanently unchecked. To restore the automatic updating behavior, the frieze, shadow boards, or ridge caps must be deleted and regenerated.

Selected Line Panel

The **SELECTED LINE** panel is available when the selected edge of the 3D Molding Polyline is a line as opposed to an arc. Most of the settings here are the same as those on the **LINE Specification** dialog. See “Line Panel” on page 234.

The **Length/Angle** settings in the **3D Molding Polyline Specification** dialog are unique to this dialog.

- **Length** specifies the 3D length of the selected edge of the 3D Molding Polyline.
• **Angle in XY Plane** specifies the counter-clockwise angle that the selected edge makes with the positive X axis when viewed from above, as in plan view.

• **Angle from XY Plane** specifies the angle that the selected edge makes with the horizontal XY plane when viewed from the side, as in a cross section/elevation view. A positive value means that the line slopes up; a negative value means that it slopes down.

Selected Arc Panel

The SELECTED ARC panel is available when the selected segment of the 3D molding polyline is an arc as opposed to a line.

Other specification dialogs have a SELECTED ARC panel; however, most of the settings work differently for 3D Molding Polylines than they do for other objects in the program.

1. The **Lock** options specify how changing one value affects other values.

 • Select **Start** to keep the start and center of the arc fixed and move the end.

 • Select **End** to keep the end and center of the arc fixed and move the start.

 • Select **Center** to keep the center of the arc fixed and move the start or end.

 • Select **Arc** to keep the arc geometry fixed and translate the arc.

 • Select **Chord** to keep the start and end fixed and change the radius.

[Diagram of 3D Molding Polyline Specification panel with annotations 1-7]
Frieze Moldings

Specify the coordinates of the selected arc’s Start point. Only available when Lock End or Lock Arc is selected.

Specify the coordinates of the selected arc’s End point. Only available when either Lock Start or Lock Arc is selected.

Specify the length and angle of the selected arc’s Chord. Only available when Lock Start or Lock End is selected.

- Specify the Chord Length, which is the 3D distance between arc start and end.
- Specify the Chord Angle: the angle created by the chord and the positive X axis.

The Arc options specify radius, angle and length values of the selected arc:

- Radius - The distance from the arc to the arc center.
- Start Angle - The angle created by a line from the arc center to the start and the positive X axis.
- End Angle - The angle that a line from the center to the end
- Arc Angle - The angle created by a line from the arc center to the start and a line from the center to the end.
- Arc Length - The length of the arc.

Specify the coordinates of the selected arc’s Center point. Only available when Lock Arc is selected.

The items under the Normal heading state the coordinates of the normal of the plane that the arc exists in. The normal is a vector that is parallel to that plane and is expressed as a line between two points: (0,0,0) and the point defined in the dialog.

The arc direction in plan view is counter clockwise if the normal has a positive value on the z axis (0,0,1) and clockwise if the value on the z axis is negative (0,0,-1).

Moldings Panel

The MOLDINGS panel can be found in the specification dialogs for a variety of different objects in the program. See “Moldings Panel” on page 680.

Frieze Moldings

Frieze moldings, also known as frieze boards, are mounted below the eaves of roof planes and can be generated automatically using the Build Roof dialog.

One setting on this panel is unique to the Molding Polyline and 3D Molding Polyline Specification dialogs:

- Check Inside to extrude the profile on the inside or right side of the polyline.
- When unchecked, the profile extrudes on the outside or left side of the polyline.

Line Style Panel

The LINE STYLE panel can be found in dialogs throughout the program. See “Line Style Panel” on page 235.

If an automatic frieze or shadow board polyline is edited, it will no longer be considered Automatic and the Default Layer checkbox on this panel will be unchecked.

Materials Panel

The MATERIALS panel is found in dialogs throughout the program. See “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Creating Frieze Moldings
To create automatic frieze moldings, specify a molding profile on the FRIEZE panel of the Build Roof dialog and then build the roof. See “Frieze Molding” on page 621.

Displaying Frieze Moldings
By default, frieze molding displays in 3D views but not in plan view and its default layer, “Roofs, Trim”, is locked. See “Layer Display Options Dialog” on page 144.

Selecting Frieze Moldings
To select a frieze molding, its layer must first be unlocked and turned on. See “Locking Layers” on page 143. In floor plan or a cross section/elevation view, click on a frieze molding. If the wall behind it is selected, click the Select Next Object edit button or press the Tab key until the frieze molding is selected. When the frieze molding is selected the Status Bar says “3D Molding Polyline.” See “The Status Bar” on page 33.

Editing Frieze Moldings
Like other 3D Molding Polylines, frieze molding can be edited much the way CAD polylines are in floor plan and cross section/elevation views. See “Editing Molding Polylines” on page 685.

Frieze molding can also be edited in the 3D Molding Polyline Specification dialog. See “3D Molding Polyline Specification Dialog” on page 687.

If you edit a frieze molding, it is no longer considered an Automatic frieze and will not be deleted and replaced when the roof is rebuilt. Once Automatic is unchecked, it cannot be checked again. To restore the automatic updating behavior of frieze molding, it must be regenerated.
Chief Architect’s library offers thousands of symbols, materials, and images that can enhance any plan.

New library catalogs and enhancements are made available by Chief Architect on a continuing basis and are available for download for the current program version.

You can also customize items from the library or import new items from outside the program and then save them in the library for future use.

The Library Browser shares its window with the Project Browser, which is discussed separately. See “Project Browser” on page 56.

The Library Browser

The Chief Architect Library Browser allows you to manage the contents of the library as well as add library content to your drawings.

To open the Library Browser:

- Select View> Library Browser.
- Click the Library Browser button.
- Press Ctrl + L on your keyboard.

By default, the Library Browser is docked to the right side of the program window, but can be undocked or docked to another side. See “Docking the Library Browser” on page 694.

The Library Browser has four sections:

- The filter and search options at the top.
- The Directory and Search Results Pane.
- The Selection Pane.
- The Preview Pane.

To adjust the height or width of a section, place the pointer over the split bar you want to move. When the double-headed arrow displays, click and drag.

Chapter Contents

- The Library Browser
- Searching the Library
- Find in Library
- Library Content
- Downloading Library Content
- Importing Library Catalogs
- Adding Library Content
- Organizing the Library
- Filtering the Display of Library Content
- Exporting Library Catalogs
- Placing Library Objects
- Select Library Object Dialog
- Place Library Object Button
- Replace From Library
- Displaying Library Objects
- Editing Library Objects
- Symbol Object Specification Dialogs
- Fixture and Furnishing Schedules
You can work on your drawing with the Library Browser open. To close the Browser, click the Close button or double-click on an object in the Selection Pane.

The library directory is presented in a tree list with five categories: Chief Architect Core Catalogs, Chief Architect Bonus Catalogs, Manufacturer Catalogs, User Catalog and Trash. See “Library Content” on page 696.

Specify what displays in the Directory Pane’s tree list by selecting a filter from the drop-down list. See “Filtering the Display of Library Content” on page 703.

- When “Not Filtered” is selected, all installed library content will display in the tree list.
- “Not Filtered” will be the only available option until you create a custom filter.
- Click the Manage Library Filters button to open the Manage Library Filters dialog. See “Manage Library Filters Dialog” on page 703.

Search the library using keywords and optional search filters. See “Searching the Library” on page 695.

- Begin typing in the text field to search for library items. As you type, search results will display in the Directory Pane.
- Search a specific catalog or folder by right-clicking on it and selecting Search Folder. Multiple items can be searched in this manner.
- Right-click on an item in the Search Results list and select Show in Browser to view the item’s location in the Directory list.

The library Directory and Search Results display here. The basic structure of the directory tree is:

Library items are always placed in alphabetical order within their hierarchy.

The Library Browser includes a Trash bin, where deleted items are moved until you choose to Empty Trash. See “Deleting Library Items” on page 702.

Navigate the Directory Pane using the mouse. Click the gray Expand arrow beside a catalog or folder to display its contents. Once expanded, you can click the black Collapse arrow to close it again. You can also browse the list using the arrow keys on your keyboard.

Click on an item to select it. Preview images display in the Selection and Preview Panes and basic information about it also displays in the program’s Status Bar. See “The Status Bar” on page 33.

The Selection Pane shows a thumbnail image of the item selected in the Directory Pane.
When an item is selected in the Directory Pane, a basic line-based representation of the item displays in the Selection Pane.

- If the selected item is a single object, a preview of that object displays in the Preview Pane. You can move your cursor into the drawing area to place the item. See “Placing Library Objects” on page 704.
- If the selected item is a folder, a thumbnail image displays, representing each item inside. Move your pointer over an item in this pane to see a Tool Tip with the item's name. Click on a folder in the Selection Pane to display its contents here and make it the item selected in the Directory Pane.
- Some folders may have too many items to display useful thumbnails for each; when this is the case, they do not display.

If you have **Scrollable List** checked in the **Preferences** dialog, a scroll bar is present at the bottom of the Selection Pane.

Click the **Show/Hide Selection Pane** button to toggle the Selection Pane on and off.

When an individual item is selected in either the Directory or Selection Pane, an image of it displays in the **Preview Pane**. If the item is designed to be inserted into another object such as a cabinet, that parent object will also display in the preview.

You can click the **Toggle Preview Display** button at the bottom of the browser window to switch between preview images in Standard Render and Vector View styles.

If the selected object is a 3D symbol, you can rotate and zoom in or out on the Preview using the mouse. Two-dimensional objects, such as CAD Blocks or Line Styles cannot be adjusted in this manner in the Preview Pane.

If you have rotated a view in the Preview Pane, you can restore the default angle either by clicking in the Selection Pane or by right-clicking on the Preview Pane and selecting **Reset Preview**.

Click the **Show/Hide Preview Pane** button to toggle the Preview Pane on and off.

The toolbar at the bottom of the browser aids in searching, displaying panes, and managing library content.

Click the **Plant Chooser** button to open the **Plant Chooser** dialog. See “Plant Chooser” dialog” on page 936.

Click the **Get Additional Online Content** button to launch your default web browser to the Chief Architect web site, where additional library content is available for download.

Click the **Show/Hide Selection Pane** button to toggle the Selection Pane on and off.

Click the **Show/Hide Preview Pane** button to toggle the Preview Pane on and off.

Click the **Toggle Preview Display** button to switch between Standard Render and Vector View images of a selected library object in the Preview Pane. See “Rendered and Vector Views” on page 780.

A selected material will display on a shape in the Preview Panel. The initial shape is a Sphere, but you can select a Cube, Teapot, or 2D Plane instead if you prefer. The object shape selection is also shared with the **Define Material** dialog. See “Define Material Dialog” on page 769.

Click the **Preferences** button at the bottom of the Library Browser to open the **Preferences** dialog, where display properties for the Library Browser can be controlled. See “Library Browser Panel” on page 84.

Using the Contextual Menus

A number of important library functions can be accessed using the contextual menus. Right-click on an item in the Library Browser to open a contextual menu displaying options related to that item. See Contextual Menus.
The options in the contextual menu vary depending on the item selected, but may include:

- Search Folder
- Cut/Copy/Paste
- Paste Shortcut
- Locate Shortcut Source
- New
- Rename
- Delete
- Export Library
- Open Object/Open Symbol
- Search Attributes
- Text Macro Management
- Place Molding Profile
- Reset Preview
- Expand All/Collapse All
- Show in Browser

Keyboard Commands

The Library Browser can be navigated using the arrow keys on your keyboard.

- The right and left arrow keys expand and collapse folders.
- The up and down keys change which library object is currently selected.
- Select an item and press F2 to rename it.
- Select an item and press the Delete key to delete it.

If you have **Scrollable List** selected in the Preferences dialog, pressing the Tab key switches focus between the Directory and Selection Panes. Use your mouse to select an object for placement. See “Library Browser Panel” on page 84.

If you have **Tiled To Fit Window** selected instead, pressing the Tab key switches focus between the tree view and the Selection Pane. You can then use the arrow keys to select a library object within the Selection Pane.

Expand/Collapse All

When a library category or folder is selected in the Directory Pane, Expand All and Collapse All are available in the contextual menu, allowing you to expand or contract its contents in the tree view.

Docking the Library Browser

Initially, the Library Browser side window is docked to the right side of the main Chief Architect program window. To undock it, click and drag its title bar towards the center of the program window. Once undocked, it can be moved and redocked in the same manner. See “Side Windows” on page 28.

When moved to the top, bottom, or side of the program window, it automatically docks in a vertical or horizontal orientation, depending on its location. You can prevent the Library Browser from docking when dragged:

- In the Preferences dialog. See “Appearance Panel” on page 80.
- By holding down the Ctrl key while dragging it.

To return the Library Browser to its original position and size, click the Restore Position/Size button in the Preferences dialog.

Closing the Library Browser

The Library Browser can be closed in either of two ways:

- Click the Close button at the top right corner of the browser window.
- Select View> Library Browser.
Searching the Library

The Library Browser filtering options let you focus your searches to meet parameters that you define.

Search filters do not affect the display of items in the Directory Pane tree list. You can filter the display of the tree list separately. See “Filtering the Display of Library Content” on page 703.

To search the Library Browser

1. Select View> Library Browser and click in the Search field at the top of the Library Browser.
2. Begin typing a keyword to search for. As you type, the search results will populate in the Directory Pane below.
3. You can use quotation marks “” to search for an exact word or phrase, but other operations are not supported.
4. You can click the Clear button on the right side of the Search field to remove anything typed in this field.
5. If you move your mouse pointer over the Search field, a Tool Tip will state the number of results of your search.
6. Right-click on an item in the Search Results list and select Show in Browser to view the item’s location in the Directory list.

You can also search the contents of one or more specific catalogs and/or folders. Right-click on a catalog or folder level item or group-select multiple catalogs and/or folders and right-click on them, select Search Folder from the contextual menu, and proceed with step 2, above. See “Shift and Ctrl Select” on page 170.

Substrings are not included. For example, searching for “windows” will not produce “window” as a search result. On the other hand, searching for “window” will produce “windows” as a search result.

To search using custom filters

1. Click the Turn on search filtering options button.
 • Check Keyword to match the entered search keyword with an object’s search attributes.
 • Check Entire Word to match the entire keyword or words with the complete name of the object.
 • Check Folders to include library folders in your search.
 • Check Include Filtered to include all library catalogs not currently displaying in the tree list in your search. See “Filtering the Display of Library Content” on page 703.
2. Click the arrow beside Type, Style, or Manufacturer to expand that category.
 • Check the box beside one or more Type of library item that you want to include in your search.
 • Check the box beside one or more architectural or design Style to include items of that style in your search.
 • Check the box beside one or more Manufacturer to include in your search. Manufacturer catalogs that were imported during the current program session will not be listed here until you exit out of and restart Chief Architect.

3. Type a keyword in the Search field. The results will be filtered to match your selected filtering options.

Searching Filtered Content

When Include Filtered is checked, any items in your search results that are currently filtered out of the tree list cannot be shown in the browser. If you right-click on such an item and select Show in Browser, a warning message will display.

Search Attributes

Objects in the library all have one or more search attributes, which are keywords and architectural styles that can be used to find them in a library search. The Search Attributes dialog lists these attributes for each library object. See “Search Attributes” on page 709.
Find in Library

You can find out whether a selected object is saved in the library and if so, where, using the Find Original in Library edit tool.

The Find Original in Library edit tool also allows you to locate any objects inserted into the selected object as well as any materials or moldings assigned to it. See “Inserted Objects” on page 705.

In addition, this tool provides a means of adding your choice of the object and/or any inserted and assigned objects to the library. See “Add to Library As” on page 700.

Find in Library Dialog

The Find in Library dialog opens when you select one or more objects and click the Find Original in Library edit button. This dialog lists all of the selected objects as well as all objects assigned to and inserted into them.

- Check the box beside a category heading to select all items in that category.

When you click OK, the dialog will close and one of three things will happen:
- If a single line item was selected in the Find in Library dialog was clicked, that item will be selected in the tree list of the Library Browser.
- If the single line item is not found in the library, a message box will inform you of this and give you the option of adding it to the library.
- If multiple line items were selected, the Show in Library Results dialog will open, summarizing the status of each.

Show in Library Results

If multiple line items are selected in the Find in Library dialog, the Show in Library Results dialog will report where, or if, they are found in the library.

Each line item selected in the Find in Library dialog is listed here.
- Click on a line item to select it. Multiple lines can also be selected. See “Shift and Ctrl Select” on page 170.
- Click the Show in Library button to locate and select the selected line item in the tree list of the Library Browser. Not available if the selected item is “Not Found in Library Browser”, or if multiple line items are selected.
- Click the Add to Library button to add the selected line item(s) to the User Catalog in the library. See “Add to Library As” on page 700.

- Click the Done button to close the dialog.

Library Content

The Chief Architect library has five categories: Chief Architect Core Catalogs, Chief Architect Bonus Catalogs, Manufacturer Catalogs, User Catalog and Trash.

Chief Architect Core Catalogs

The Chief Architect Core Catalogs category contains a wide selection of 3D symbols, images, CAD objects, and materials. If you install the program
from USB drive, this library content will also be installed; if you download the software, you will be able to download the Core Catalogs separately, after the program is installed.

When you launch the program for the first time, it will ask if you want to download the Core Catalogs. Click Yes to begin the download. If you click No, you can download at any time by selecting Library> Install Core Content from the menu.

Chief Architect Bonus Catalogs
Chief Architect regularly posts new library catalogs available for download. Select Library> Get Additional Content Online from the menu to access the bonus catalogs and content.

Most Bonus Catalogs can be purchased for a nominal fee, while others are available free of charge. In addition, some Bonus Catalogs are only available to Chief Architect Support and Software Assurance program members. For more information, visit chiefarchitect.com.

Manufacturer Catalogs
A variety of name brand library catalogs is available for download on the Chief Architect web site with content ranging from materials to fixtures to CAD blocks.

Select Library> Get Additional Content Online to access these Manufacturer Catalogs.

As with the Bonus Catalogs, some Manufacturer Catalogs are available free of charge while others can be purchased, and some are available for Support and Software Assurance members only.

The User Catalog
The User Catalog is the location for items that you add to the library either from a drawing or by importing. See “Adding Library Content” on page 700.

You can create and organize custom library folders and imported items such as symbols, images, backdrops, CAD blocks, line styles, and materials. See “Organizing the Library” on page 701.

Copy Item List
Copy Item List is available in the contextual menu when a library category or folder is selected in the Library Browser Directory Pane. Select this option to copy a list of all objects in the selected library item to the system clipboard. You can then paste this list into a text application such as Notepad. See “To Copy, Cut and Paste text” on page 386.

Updating Library Catalogs
The Chief Architect Core Catalogs, Bonus Catalogs, and Manufacturer Catalogs are updated periodically to include new and improved content. You can update your installed catalogs to include the latest content by selecting Library> Update Library Catalogs at any time.

The program will gather information about the content in each of these three categories, and then download and replace any content that is not up to date, and you may see a progress indicator at the bottom of the Library Browser while it is doing so. See “Download Progress” on page 698.

Library Content Location
All library content aside from your User Catalog is stored in the System Library Database Folder. By default, this folder is created in the directory intended for shared application data in your operating system (C:\ProgramData in Windows; /Library/Application Support in macOS).

The Chief Architect User Catalog File, User_Library.calib, is saved in the User Library Folder, which is located in the Chief Architect X12 Data folder by default. See “Chief Architect Data” on page 40.

You can specify a different location for both if you wish in the Preferences dialog. If you choose a removable drive or network location, library slowness may result. See “Folders Panel” on page 88.

If you choose to use a different location for your User Catalog, your existing User Library content as well as your Backdrops, Images, Patterns, and Textures folders will be moved there, as well. It is important that you specify a directory on a hard drive with sufficient space to hold these files.

⚠️ Library catalogs are not designed to be shared between program titles or versions. Items designed for use in Chief Architect X12 are not compatible with earlier program versions.
Backing up Custom Content

The best way to back up your custom library content is to export the items in your User Catalog, as this will ensure that the textures used by custom materials or imported symbols are not lost. See “Backing Up Your Files” on page 45.

Exported libraries use the .calibz file format: a zipped file type that can include textures and images along with other library data.

To back up your custom library content

1. Launch Chief Architect and select View> Library Browser from the menu.
2. Right-click on a folder or item in the User Catalog.
3. Select Export Library from the contextual menu.
4. The Export Library Data dialog is a typical Save dialog. See “Exporting Files” on page 44.
 • Notice that the file type in the Save as type field is “Library File with Textures/Images (*.calibz)”.

Downloading Library Content

The Chief Architect Core Catalogs, Chief Architect Bonus Catalogs, Manufacturer Catalogs are all available for internet download.

Core Catalogs

When you launch Chief Architect for the first time, you will be asked if you want to download the Core Catalogs. Click Yes to begin the download.

If you click No, you can download at any time by selecting Library> Install Core Content from the menu.

Bonus and Manufacturer Catalogs

Bonus and Manufacturer Catalogs can be downloaded from our web site, www.chiefarchitect.com. Select Library> Get Additional Content Online to launch your default internet browser to our Content Resources page.

Download Progress

When library content is downloading, a green progress bar will display at the bottom of the Library Browser. If you choose to download the Core Catalogs while the library is not open, the Browser will open so the progress indicator can display.

Click on the progress bar to display the name of the current file being downloaded, the total amount of data to be downloaded in KB, and the amount downloaded so far.

Pausing and Resuming

Library downloads can only take place while Chief Architect is running. If you close the program while a download is in progress, a dialog will confirm whether you wish to stop the download.

• Click Stop Download and Close Program to stop the download and close the program.

• Click Cancel to leave the program open and continue downloading.

Most catalogs are composed of a single file. If you stop the download midway, none of the downloaded data will be retained.

The Core Catalogs, on the other hand, contain a large volume of data saved in multiple files. If you close the program and stop the Core Catalogs download midway, only data associated with the file currently being downloaded will be lost. You can resume the download beginning with that file at a later time by selecting Library> Install Core Content.

Download Errors

If any problems occur during the library download process, a dialog box will notify you at the end of the download. Click Retry Download to repeat the download and correct any errors or click Cancel to discard the downloaded catalog.
Importing Library Catalogs

Chief Architect library files have two different file extensions: .calib and .calibz. Both files can include any combination of Chief Architect library items; in addition, .calibz files are able to save data associated with textures and images. Both file types can be imported into the Chief Architect library.

There are several ways to import a .calib or .calibz file into the program library:

• Double-click on the file in an operating system window while a plan or layout file is open.
• Drag the file from an operating system window and drop it into the Chief Architect program window.
• Select Library> Import Library from the program menu.

Although multiple versions of Chief Architect can be installed on a computer, the operating system will only associate .calib and .calibz library files with one version. If they are not associated with Chief Architect X12, click the Associate Files with this Program button in the Preferences dialog. See “File Management Panel” on page 86.

To import library files into the library

1. Select Library> Import Library to display the Import Library Data dialog.
2. Browse to the .calib or .calibz file(s) that you want to import and either single or group-select the files so that their names display in the File Name field.
 • To select a group of files, click on the first one, hold down the Shift key, then click on another file. The two files plus all files in between are selected.
 • To select multiple files individually, click on one, hold down the Ctrl key, then click on additional files. Only the files you click on are selected.
 • To select all files in the directory, click on one and press Ctrl + A. Only do this if you wish to import all files in the folder.
3. Click the Open button.
4. A progress bar will display, telling you the progress of each library data file as it is imported.
5. Once imported, each file will be listed in its corresponding library category and will be selected in the Library Browser tree list. See “Library Content” on page 696.

When a .calibz file is imported into the program, any images or textures saved in it will be copied into the Chief Architect X12 Data\Images and Textures folders for backup purposes. The program will only reference these copies if it cannot locate the files in their original locations. See “Chief Architect Data” on page 40.

Library Catalog Migration

If you have library catalogs from Chief Architect X5 through X11 installed on your computer, the initial startup of Chief Architect X12 will give you the opportunity to migrate that content into the Chief Architect X12 Library. See “Migrating Content and Settings” on page 186.

Legacy Library Conversion

You can also import legacy .calib and .calibz files created in Chief Architect X4, X3, or X2 for use in version X12 at any time. See “Exporting Library Catalogs” on page 704.

To convert legacy library files

1. Select Library> Convert Legacy (.alb) Library Files.
2. In the Select a Legacy Library File Folder dialog, select one or more .alb files that you want to bring in to Chief Architect X12.
3. The selected files’ names will display in the File name: field.
4. Click the Open button to import these prior version third party .alb files into the User Catalog.
5. Organize the imported content to suit your needs. See “Organizing the Library” on page 701.

Note: Library files cannot be imported if no plan or layout file is open, or when a Materials List or Ray Trace view window is active.

Note: Library content exported from Chief Architect X3 will not include catalog names. Any subscribed content from version X3 that has not been downloaded will not be included, either.

In addition, legacy .alb files created in Chief Architect X1 and prior can be converted for use in version X12.

To convert legacy library files

1. Select Library> Convert Legacy (.alb) Library Files.
2. In the Select a Legacy Library File Folder dialog, select one or more .alb files that you want to bring in to Chief Architect X12.
3. The selected files’ names will display in the File name: field.
4. Click the Open button to import these prior version third party .alb files into the User Catalog.
5. Organize the imported content to suit your needs. See “Organizing the Library” on page 701.
Third Party Library Content

There are a variety of third party sources for 3D symbols, textures and other items that may be of use in Chief Architect. Some sources even provide this content in .alb file format, which was the library file format used by Chief Architect versions 8.0 through X1. These third party libraries can be converted for use in Chief Architect X12 as described above.

Adding Library Content

In addition to downloading Chief Architect Content and importing entire catalogs into the library, you can also add a variety of individual objects to the library.

Add to Library

Nearly any object imported into a plan, converted into a symbol, or placed from the Library Browser can be added to the User Catalog in the library.

- Check Add to Library in the Import 3D Symbol dialog. See “Importing 3D Symbols” on page 892.
- Check Add to Library in the Convert to Symbol dialog. See “Convert to Symbol” on page 721.
- Select an object in your plan and click the Add to Library edit button.

A few objects cannot be added to the library: notably imported pictures, metafiles, and PDF files. With the exception of closed polylines, which are added to the library as Molding Profiles, CAD objects cannot be added to the library either. These objects can be added, though, if they are part of a CAD block. See “CAD Blocks” on page 251.

Any object created using a drawing tool in Chief Architect will automatically be added to the User Catalog using the name of that tool, whereas a symbol will automatically use the Symbol Name. See “Native Objects vs Symbols” on page 708.

Once added to the library, objects in the User Catalog can be renamed. See “Renaming Library Items” on page 701.

Add to Library As

Some objects have library items assigned to or inserted into them. Cabinets, for example, have door panels inserted into them and materials assigned to them. See “Placing Library Objects” on page 704.

You can choose to add the containing object to the library, the inserted or assigned items, or any combination of the two using the Add to Library As edit tool.

To use Add to Library As

1. Select an object that has another item inserted into it and click the Add to Library As edit button.
2. In the Add to Library As dialog, check the box beside each line item that you would like to add to the User Catalog.

- The top line item is the selected object while those that follow are components of that object.
- Highlighted items are categories that may have multiple components beneath them. Check the box beside a category to add all of its components to the library.
- The line items under each category are components which can be added to the library by checking their boxes individually.
- Check Save Objects in Subfolders to create a new folder in the User Catalog in which the selected line items are saved. If the line items are associated with multiple parent objects, a folder is created for each parent and placed in an “Exported Objects” folder in the User Catalog.
Using the Contextual Menu

A variety of new content can be added to the User Catalog by right-clicking on it or on a folder within it and selecting **New** from the contextual menu:

- Backdrops - See “3D Backdrops” on page 868.
- Fill Styles - See “Fill Styles” on page 155.
- Style Palettes - See “Style Palettes” on page 217.
- Images - See “Images” on page 854.
- Line Styles - See “Line Style Specification Dialog” on page 159.
- 3D Symbols - See “Importing 3D Symbols” on page 892.

See also “Using the Contextual Menus” on page 693.

Organizing the Library

Library folders and objects can be copied, pasted, moved, and deleted: allowing you to organize your User Catalog to best suit your work style and needs.

Adding New Folders

New folders can be added to the User Catalog or to any folder located within it. To add a new folder, right-click on User Catalog or one of its sub-folders and select **New > Folder** from the contextual menu.

The new folder is created inside the library item you right-clicked on and is initially named “Untitled”. Type a short, descriptive name and press Enter.

Selecting Library Items

To select a library object, folder, or category, simply click on it. You can also multiple-select library items:

- To select a group of items, click on the first one, hold down the Shift key, then click on another file. The two files plus all files in between are selected.
- To select multiple items individually, click on one, hold down the Ctrl key, then click on additional files. Only the files you click on are selected.

When an item is selected, preview images display in the Selection and Preview Panes and basic information about it also displays in the program’s Status Bar. See “The Status Bar” on page 33.

A selected library item can be modified in a number of ways to help meet your organizational needs. When multiple items are selected, these options may be limited depending on the specific selection set.

Renaming Library Items

Only folders and objects in the User Catalog can be renamed. There are several ways to do this from the tree list:

- Right-click on the item, select **Rename** from the contextual menu, and type a new name.
- Click once on the item, press F2 on your keyboard and type a new name.
- Click once on the item, pause for a moment, then click a second time and type a new name.

Library names are case-sensitive and can contain up to 63 characters. While you can have more than one library item that uses the same name, it is best to use short, descriptive and unique names.

Moving Library Items

Folders and objects in the User Catalog can be moved to new locations within the User Catalog. Folders and library objects are always organized alphabetically within each hierarchy.

To move one or more items to a different location, select it in the tree list, then click and drag it to the new location in the list. Directories and folders able to accept new content highlight as your mouse pointer moves over them. Release the mouse button to relocate the selected library item in the highlighted location.

You can also cut one or more library items from one location and paste them in another. When an item is
cut, it is removed from its current location and saved to the system clipboard. To cut an item:

- Right-click on it and select **Cut** from the contextual menu.
- Click on the library item and press Ctrl + X on your keyboard.

To **Paste** the item, click on a library catalog or folder in the Library Browser tree view and either:

- Right-click on the new location and select **Paste** from the contextual menu.
- Press Ctrl + V on your keyboard.

Copying Library Items

All library folders and library objects can be copied and pasted to new locations in the User Catalog.

There are two ways to copy one or more library items to the system clipboard:

- Right-click on it and select **Copy** from the contextual menu.
- Click on the library item and press Ctrl + C on your keyboard.

To **Paste** the item, click on a library catalog or folder in the Library Browser tree view and either:

- Right-click on the new location and select **Paste** from the contextual menu.
- Press Ctrl + V on your keyboard.

When a library item is copied and pasted, the new item that results is independent of the original item. If you make changes to it, the original item is unaffected. Similarly, changes to the original item do not affect the copy.

Library Shortcuts

In addition to copying and pasting to create new, independent library items, you can copy and paste to create Library Shortcuts. Library Shortcuts are not independent items - they are linked to the original item and are affected if changes are made to the original.

Library Shortcuts are advantageous because you can place a given library item in multiple locations to suit your organizational style without increasing the size of the library database and without having to maintain multiple copies of the same item.

To create a Library Shortcut, copy a library item to the system clipboard. Then, right-click on the location where you would like to create a copy and select **Paste Shortcut** from the contextual menu. Library Shortcuts use the same name as their source item but use the Library Shortcut icon.

To locate a Library Shortcut's source item, right-click on it in the tree list and select **Locate Shortcut Source**.

If you move or delete an item from the library, any shortcuts to it will not be updated or removed. If you try to use a “hanging” shortcut, a message about its status will display in the library preview panes.

Deleting Library Items

The five installed library categories: Chief Architect Core Catalogs, Chief Architect Bonus Catalogs, Manufacturer Catalogs, User Catalog, and Trash cannot be deleted.

Catalog level folders in all categories can be deleted; however, individual subfolders and objects can only be deleted out of the User Catalog.

Items in the library that are eligible for deletion can be deleted in either of two ways:

- Right-click on it and choose **Delete** from the contextual menu.
- Select it and press the **Delete** key on your keyboard.

When items from the User Catalog are deleted, they are moved to the Library Browser Trash. Items in the Trash can be retrieved by clicking and dragging them into any location in the User Catalog.

To empty the Trash, right-click on it and select **Empty Trash** from the contextual menu.

Depending on how much content is in the Trash, emptying it can be time consuming. You can click the **Cancel** button to end the process if you wish.

> The Empty Trash command is both immediate and permanent. It cannot be undone, so use care when using it. You should back up all your library files regularly. See “Backing up Custom Content” on page 698.
Filtering the Display of Library Content

Depending on how much library content you have imported or customized, the tree list in the Directory Pane can be very large. You can control what content displays in the list using Library Filters.

Library Filters do not remove content from the library database. They do, however, affect the library Search: unless you check Include Filtered in the advanced Search options, library content that is not displaying is not included in your searches.

You can also set up filters for your library Search results, but these two types of filters are unrelated. See “To search using custom filters” on page 695.

Library filters can be created, edited, and deleted in the Manage Library Filters dialog. Click the Manage Library Filters button at the top of the Library Browser to open this dialog or select Library> Manage Library Filters from the menu.

Manage Library Filters Dialog

A list of available library filters displays here. Click on a name in the list to select it. The Selected Filter is highlighted and can be edited using the options to the right.

Click the New button to create a new filter or click the Delete button to remove the Selected Filter from the list.

Select the Active Filter from the drop-down list. This is the filter in use in the Library Browser when the Manage Library Filters dialog is closed.

Specify the Name of the Selected Filter.

Any filters that you create will be in the Active Filter drop-down list at the top of the Library Browser. Select a filter from the list to display content in the library tree list according to its settings. See “The Library Browser” on page 691.

A list of all Chief Architect Core, Chief Architect Bonus and Manufacturer Catalogs installed in your library display here.

- Check the box beside a library catalog’s name to prevent it from displaying in the Library Browser Directory Pane tree list.
- Click the Select All button below either list to prevent all catalogs in that list from displaying in the Directory Pane tree list.
- Click the Clear All button below either list to include all catalogs in that list in the Directory Pane tree list.
Exporting Library Catalogs

Exporting library files allows you to:
• Back up your custom library content.
• Transfer library content between computers.
• Share custom library content with colleagues.

Exporting is often preferable to simply copying library files because it allows you to include images and textures in the exported library.

To export content from the library

1. Locate an object, folder, or catalog that you want to export, right click on it, and select Export Library.
2. In the Export Library Data dialog.
 • Choose the appropriate Save in: location for your exported library file.
 • Type a short, descriptive name for your library file in the File Name field.
 • Click the Save as type: drop down list and select whether or not you want the library to include Textures/Images.
 • Click Save.
3. Your exported library file can now be copied to a network location or storage device in an operating system window.

Any Shortcuts present in a catalog will be converted to regular library objects when exported. See “Library Shortcuts” on page 702.

Placing Library Objects

Library objects are subject to placement restrictions based upon typical real-life placement. Most library objects require sufficient free space at the location where they are placed, for example, and some library objects have additional requirements.

Library windows and doors, for example, must be placed in a wall just like standard windows and doors, and some fixtures are designed to be placed in cabinets.

Library symbols have placement restrictions that are determined when the symbol is created but can be changed later. See “Native Objects vs Symbols” on page 708 and “Symbol Specification Dialog” on page 713.

If a warning message displays when placing a library object or symbol, it will indicate where the object can be placed.

There are three main categories of items available in the Library Browser:
• Stand-alone objects that can be placed directly into a plan. Examples include cabinet modules, furnishings and images.
• 3D objects designed to be inserted into another 3D object. Examples include cabinet fixtures, windows and doors. Some items, such as cabinet doors and fixtures and fence panels, can be inserted into another object or placed as stand-alone objects.
• Materials, line styles and molding profiles, which cannot stand alone and must be assigned or applied to another object.

Stand-Alone Objects

Most library categories contain objects that can be selected in the Library Browser and placed directly in a 2D or 3D view.
• Most stand-alone objects are designed to rest on the floor or terrain.
• Some objects will rest on top of a cabinet, shelf, furniture or roof plane object if one is located at the point where they are first placed.
• A few objects, notably some light fixtures, will mount on the bottom of a wall cabinet or on the ceiling.
• In addition, some objects will attach to a wall if one is nearby.

To place a stand alone library object

1. Click on an object in the tree view or Selection Pane of the Library Browser to select it for placement. See “The Library Browser” on page 691.
2. Move your mouse pointer into the view area and notice that it displays an icon indicating the type of object selected instead of an arrow.
Select Library Object Dialog

3. Click to place the selected object at that location.
4. Continue clicking to place as many instances of
the selected object as needed. When you are fin-
ished, click the Select Objects button.

Once a stand-alone object has been placed, it can be
edited in a variety of ways. See “Editing Library
Objects” on page 708.

Inserted Objects

Some objects cannot stand alone and must be placed
into other objects in a plan. For example, doors and
windows must be inserted into a wall, while some
appliances and plumbing fixtures are designed be
placed inside a base cabinet. See “Doors” on page
403, “Windows” on page 427 and “Cabinets” on
page 459.

With the exceptions of doors, windows, and
skylights, an inserted library object can only display
in a 2D or 3D view if the object that contains it is set
to display. This is the case even if the inserted
object’s layer is turned on. See “Displaying Library
Objects” on page 707.

To insert a library object
1. Click on an item in the tree view or Selection
Pane of the Library Browser to select it for
placement. See “The Library Browser” on page
691.
2. Move your pointer into the drawing area.
3. Click on the object into which you wish to insert
the selected library item. If the selected library
item is designed to be inserted into that type of
object, it will be placed into it.

4. Continue clicking on other objects to place as
many instances of the selected item as needed.
When you are finished, click the Select Objects
button.

When an object has been inserted into another object,
it can be replaced directly from the library. See
“Replace From Library” on page 706.

If you try to insert an object into another object that
is on a locked layer, nothing will be created. See
“Object Creation and Layers” on page 136.

Assigned Items

Some library items, such as fill styles, moldings and
materials, are not objects in themselves but can be
applied to objects in a variety of ways.

• Using the specification dialog of the containing
object. See “Select Library Object Dialog” on
page 705.
• By selecting the item in the library and then
clicking on the containing object.
• Materials and fill styles can be assigned to
objects directly from the library in 3D views by
selecting the library item and then clicking on an
object. See “Eyedropper and Painter Tools” on
page 215.
• An entire collection of properties can be applied
to multiple objects by selecting a Style Palette in
the library and then clicking on an eligible object.
See “Style Palettes” on page 217.
• Moldings and Line Styles can also be added to a
plan by selecting the desired library item, then
clicking and dragging a line in the drawing area.
The result is either a Molding Line or CAD Line,
depending on the selected library item. See
“Molding Polylines” on page 684.

Select Library Object Dialog

The Select Library Object dialog is a modal version
of the Library Browser that is accessible from object
specification dialogs. See “Specification Dialogs” on
page 32.

This dialog also opens when you select the Fill Style
Painter tool. See “Painter Tools” on page 216.

The Select Library Object dialog only displays
categories of items that are related to the selected
object or tool. For example, if this dialog is accessed
from the GENERAL panel of the Door Specification
dialog, only door symbols will be listed:
The Select Library Object dialog is similar to the Library Materials panel of the Select Material dialog. See “Select Material Dialog” on page 762.

Place Library Object Button

The Place Library Object button can be added to your toolbar and used for quick access and placement of frequently used library items.

If the Place Library Object button has not yet been assigned a library object, click it once to open the Library Object Button Specification dialog.

Double-click a Place Library Object button that has been assigned a library object to open the Library Object Button Specification dialog.

1. Click the Library button to open the Select Library Object dialog and assign a library object to the button. If a library object has already been assigned, click this button to assign a new library object. See “Select Library Object Dialog” on page 705.

2. When a library object has been selected, type a Button Name in the text field.

3. When a library object has been selected, assign a Button Icon. Choose from two automatically generated button icons or click Browse to browse your computer for a different icon.

Up to 100 Place Library Object buttons can be added to the same toolbar, each assigned a different object.

The library object assigned to the Place Library Object button is actually saved with that particular button. If you move or delete the library item from the library, the button will continue to function.

Replace From Library

There are two different ways to replace an object in a plan with another object from the library.

In 3D views, an inserted object or a molding profile can be replaced by a different item from the library with a single click. See “Inserted Objects” on page 705.

To replace an inserted object

1. Open the Library Browser, and browse to an object of a type similar to the one you wish to replace.

2. Select the object and move the mouse pointer into the 3D view window.

3. The Replace from Library icon will display near the mouse pointer when it passes over an object that can be replaced by the selection from the library.

4. Click once to replace the object in the plan with the selected object from the library.

Some types of inserted objects - notably, doors and cabinet doors and drawers - can also be replaced in this manner in plan view. The Replace from Library icon does not display in plan view, however.
Displaying Library Objects

The display options available for library objects depend on the type of object in question, as well as the view.

If the display of an object is turned off in a 2D or 3D view, any objects inserted into it will not display in that view, either - even if the inserted object’s layer is turned on. The exception to this rule is doors and windows, which can display in 3D views when their containing wall does not. See “Inserted Objects” on page 705.

In Plan View

All library objects except materials, doors and drawers applied to cabinets, and backdrops can display in plan view. Library objects are represented in plan view by 2D CAD blocks that resemble the size and shape of the object when viewed from above. To learn how to specify the symbol that represents an object, see “2D Block Panel” on page 716.

As with other architectural objects, the display of library objects is controlled by layer in the Layer Display Options dialog. Each library category has its own layer. See “Layer Display Options Dialog” on page 144.

Like other objects, each library symbol is placed in a Drawing Group that affects whether it displays in front of or behind other objects. You can modify a selected symbol’s place in the drawing order by clicking the View Drawing Group Edit Tools edit button. See “Drawing Group Edit Tools” on page 153.

Object Labels

Free-standing library objects, including Architectural Blocks can display labels in plan and cross section/elevation views when the appropriate layer is set to display in the Layer Display Options dialog. Fixture labels, for example, are located on the “Fixtures, Labels” layer. See “Object Labels” on page 515.

Object labels have their own edit handles and can be moved and rotated when the object is selected. Library object labels use the Text Style assigned to their layer. See “Text Styles” on page 398.
You can specify a custom label for many library objects in its specification dialog. See “Symbol Object Specification Dialogs” on page 710.

In 3D Views

All library objects except CAD blocks can display in 3D views.

By default, images rotate to face the camera in 3D views. For information about turning off image rotation, see “Image Specification Dialog” on page 856.

Doors, windows and cabinets from the library may also display opening indicators in Vector Views when the “Opening Indicators” layer is turned on. See “Layer Attributes” on page 142.

In the Materials List

Most library objects are counted in the Materials List, as is any information added on the Components panel of their specification dialog. See “Components Panel” on page 959.

Note: Although the size and materials of many library objects can be edited, these changes are not reflected in the Materials List. See “Materials Lists” on page 943.

Editing Library Objects

Library objects can be customized to suit your design needs. There are three approaches to doing so:

- Select an object in the User Catalog, edit it using any of the options in its contextual menu, and your changes will be reflected when you next place this library object in a drawing.
- Place an object in a drawing and then edit it using the various edit tools available for it. This will not affect the original object still saved in the library.
- Place an object in a drawing, edit it using the available edit tools, and then add it back to the library for future use. This will not replace the original object still saved in the library. See “Add to Library” on page 700.

Library objects placed in a drawing can be selected individually or as a group, like other objects in Chief Architect. See “Selecting Objects” on page 167.

Once selected, a library object can be edited in a variety of ways using dimensions, the edit handles, the edit toolbar buttons and its specification dialog. See “Symbol Object Specification Dialogs” on page 710.

Native Objects vs Symbols

In Chief Architect, objects created using the program’s standard tools, such as the **Door Tools** and **Cabinet Tools**, are referred to as native objects.

On the other hand, objects placed from the library, such as fixtures and furnishings, are symbols. Symbols are typically more limited than native objects in how they can be edited.

In addition to the symbols available in the library, you can import additional symbols into the program from 3D **.dxf, .dwg, .obj, .3ds, .skp, or .dae** files. See “Importing 3D Symbols” on page 892.

Any changes made to objects like fixtures and furniture will not be reflected in their Materials List Description, although they may be seen in other columns, such as Size. See “Materials Lists” on page 943.

You can change a symbol’s name, which is used in its Materials List Description, in the **Symbol Specification** dialog. You can also change the names of its components. See “3D Panel” on page 713 and “Materials Panel” on page 761.

Remove Manufacturer Lock

Manufacturer symbols are limited in the ways that they can be edited. After such a symbol is placed in a plan, select it and click the **Remove Manufacturer Lock** edit button to remove the manufacturer data so that it can be edited like other symbols.

Using Edit Handles

Most free-standing library symbols are box-based objects and can be edited as such once placed in a drawing. See “Editing Box-Based Objects” on page 184. Depending on the type of view and the surface selected, the edit handles a symbol displays will vary.

When a typical symbol is selected in plan view or on the top surface in a 3D view, up to ten edit handles...
display. They are the Move handle at the center, the Rotate handle just outside the front indicator (a V) and a Resize handle on each edge and at each corner.

When a symbol is selected on a side in a cross section/elevation or 3D view, it displays six edit handles: the Move handle, a Rotate handle, and a Resize handle on each edge. See “Selected Side” on page 169 and “Rotating Symbols” on page 724.

When a free-standing symbol is selected on its side and rotated, you will be prompted to choose whether to update its plan view symbol to reflect its new orientation, as viewed from above. See “In Plan View” on page 707.

Symbols cannot be concentrically resized, even when the Concentric edit behavior is enabled. See “Defaults, Preferences, and Edit Behaviors” on page 163.

The labels of library objects, when displayed, have a separate Move edit handle that displays when the object is selected. See “Object Labels” on page 515.

Fixtures and furniture placed in a plan are subject to bumping/pushing behavior when moved. See “Bumping/Pushing” on page 192.

In the Specification Dialog

The specification dialog for an individual symbol, Callout, Marker, Note, Elevation Point, image, or plant image in the User Catalog can be edited from the Library Browser Directory Pane. Right-click on the item and select Open Object from the contextual menu. See “Specification Dialogs” on page 32.

Individual or multiple group-selected materials can be edited by right-clicking and selecting Open Object as well. See “Define Material Dialog” on page 769.

To open the Symbol Specification dialog, click on a symbol name in the tree view of the Library Browser and select Library> Open. See “Symbol Specification Dialog” on page 713.

Deleting Built-in Fixtures and Appliances

A fixture installed into the front of a cabinet becomes a cabinet face item, like a door or drawer. It can be resized or deleted like other face items in the Cabinet Specification dialog. See “Front/Sides/Back Panel” on page 478.

Components

Many architectural objects have a COMPONENTS panel in their specification dialog that lets you control how that object displays in the Materials List. See “Components Panel” on page 959.

Changes made to the components of an object saved in the library do not affect instances of that object already placed in a plan: they are only applied to instances of the object placed in the future.

Terrain objects, CAD blocks, moldings, images, backdrops, and materials do not display in the Materials List.

Search Attributes

The Search Attributes dialog lists the keywords and styles associated with a selected library object. Keywords and styles can be used to locate the object when performing a library search. See “The Library Browser” on page 691.

To open the Search Attributes dialog, right-click on an item in the User Catalog and select Search Attributes from the contextual menu. See “Using the Contextual Menus” on page 693.

Any searchable Keywords associated with the object display in the list. Click in the list box and type in any additional keywords that you would like to use. Each keyword should be on its own line in the list.

Check the box beside any Styles that you want to associate with the object.
Symbol Object Specification Dialogs

The **Fixture, Furniture, Geometric Shape, Hardware, Millwork Sprinkler, and Plant Specification** dialogs all feature the same options. The actual name of the dialog is determined by the type of object that is currently selected.

For example, selecting a library object placed from the Interiors Core Catalog and clicking the Open Object edit button opens the **Furniture Specification** dialog.

You can also open the specification dialog for the fixture(s), furniture(s), or plant(s) associated with a schedule row. See “Open Row Object(s)” on page 508.

Many library symbol objects can also be edited in the **Symbol Specification** dialog. See “Symbol Specification Dialog” on page 713.

General Panel

1. The **Name** of the selected symbol object displays here.

2. **Size/Position** -

 - Specify the **Width**, **Height**, and **Depth** of the object.

 Note: Some very thin custom symbols may have a Width, Height, or Depth value of 0. In these cases, the 0 value cannot be edited.

 - Check **Retain Aspect Ratio** to maintain the ratio between the object’s Height, Width, and Depth when it is resized in the specification dialog.

 Does not affect the behavior of the object’s edit handles.

 - Click **Reset Size** to reset the symbol’s original, unmodified size. The symbol’s elevation is not affected by this option.

 - Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.

 - Specify the height to **Top**, measured from the selected Elevation Reference to the top of the object.

 - Specify the height to **Bottom**, measured from the selected Elevation Reference to the bottom of the object.
The Sprinkler Settings are only available if the selected object is a sprinkler. See “Sprinkler Tools” on page 941.

- Specify the Spray Angle, which is the angle within which the sprinkler sprays. An angle of 360° forms a complete circle.
- Specify the Spray Radius, which is the distance from the sprinkler head that the spray reaches.

Options -

Check Reverse Symbol to reverse the object’s appearance, so that features on its left are positioned on its right, and vice versa. This turns a right-hand refrigerator, for example, into a left-hand refrigerator. This option has no effect on objects that are symmetrical.

- Check Include in Schedule to include the selected symbol(s) in the schedule associated with that type of object. Not available for all object types. See “The Schedule Tools” on page 506.
- Check Flush Mounted to specify that the selected object follow the pitch of either the ceiling or roof. Only available when “From Ceiling” or “From Roof” is selected as the Elevation Reference, above.

If the selected object has a Copyright, information about it displays here.

A preview of the selected library object displays here and updates with changes. If the selected symbol is inserted into another object, such as an appliance in a cabinet, the parent object will also display. See “Dialog Preview Panes” on page 32.

Layer Panel

The LAYER panel is found in the specification dialogs for many different objects. For more information, see “Layer Panel” on page 149.

Fill Style Panel

The FILL STYLE panel is available when the selected object is a sprinkler and controls how the area within its spray radius displays in plan view. It is similar to the FILL STYLE panel found in many dialogs. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the MATERIALS panel affect the appearance of the selected object in 3D views. See “Materials Panel” on page 761.

Label Panel

A variety of library objects can display labels in plan view and cross section/elevation views. Labels use the Text Style assigned to the layer they are on.

For information about the settings on this tab, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected object is included in. Not available in the Sprinkler Specification dialog. See “Schedule Panel” on page 519.

Manufacturer Panel

The MANUFACTURER panel provides contact information for the selected object’s manufacturer. Only available for symbols from Manufacturer library catalogs. See “Manufacturer Catalogs” on page 697.

Fixture and Furnishing Schedules

The Fixture and Furnishing Schedule tools allow you to produce customizable fixture and furnishing schedules as well as fixture and furnishing labels that display schedule numbers. See “The Schedule Tools” on page 506.
Schedules can be customized for specific purposes: for example, to create appliance, plumbing, or HVAC schedules. See “Working with Multiple Schedules” on page 511.

The fixtures or furnishings located in an individual room can be listed in their own schedule. See “Create Schedule from Room” on page 506.
Chief Architect provides a complete set of architectural tools for highly customized design, as well as the vast selection of objects in the Library Browser that can be used to add more detail to a plan.

In addition, if you don’t find precisely what you need, you can either import symbols from third party sources or create your own symbols in Chief Architect. See “Importing 3D Symbols” on page 892.

Custom symbols can also be edited and added to the library. See “The Library” on page 691.

Chapter Contents
• Symbol Specification Dialog
• Get Last Symbol
• Convert to Symbol
• Editing Custom Symbols

Symbol Specification Dialog

The Symbol Specification dialog allows you to specify the attributes of a symbol before it is imported, as well as to edit existing symbols in either a plan or the Library Browser.

This dialog can be accessed in several ways:

• Select a symbol and click the Open Symbol edit button. Only the selected symbol is affected by any changes that you make: other instances of the symbol are not affected, nor is the symbol saved in the library. Legacy cabinet symbols do not have this edit tool.

• Right-click on a symbol in the library and select Edit> Open Symbol. Editing a symbol in the library changes does not affect any instances of the symbol already placed in a plan. Legacy cabinet symbols cannot be edited in this manner. See “In the Specification Dialog” on page 709.

• Check Show Advanced Options in the Import 3D Symbol dialog. Editing a symbol as it is imported determines the initial attributes that it will have once brought into a plan or saved in the library. See “Importing 3D Symbols” on page 892.

• Check Show Advanced Options in the Convert to Symbol dialog. See “Convert to Symbol” on page 721.

3D Panel

The options on the 3D panel primarily affect the symbol’s appearance in 3D views.
Specify how the symbol’s **Name** should appear in its object specification dialog, its label, in the Materials List, and in schedules. See “Materials Lists” on page 943.

- Enter a **Symbol Name**. When imported into the program, a 3D symbol is given the same name as its file name. Not available when multiple symbols are selected. See “Importing 3D Symbols” on page 892.

- Select a **Display Size** format from the drop-down list to append the name of the symbol with size information.

3D Geometry -

- The pathname of the file being imported displays here for reference. If multiple symbols are being imported, only one file displays. If the symbol is not in the process of being imported, “Embedded Geometry” displays instead.

- Click the **Replace Geometry** button to choose a file to associate with the selected symbol. Not available when a symbol is being imported or converted.

- Select the **Drawing Unit** that was used to create the symbol. If any units other than inches or mm are selected, the program will convert the data into units appropriate for Chief Architect. Only available when a symbol is being imported. To apply a change to this setting, you must also click the Browse button and reload the symbol data from the original file.

 Note: SKP files are always imported using inches, regardless of the default units used in the plan file.

- Click the **Use Imported Origin Offset** button to use the symbol origin saved in the file being imported rather than use an origin based on the symbol’s type. Only available when a symbol is being imported. See “Symbol Origin” on page 721.

Specify the **Origin Offset**, which affects how the selected symbol is positioned when placed in a Chief Architect plan. Specifying a particular origin is helpful if the selected symbol will be inserted into another object, such as a sink to be placed in a cabinet. See “Symbol Origin” on page 721.
• Leave these values at 0 to use Chief Architect’s default origin for the symbol. For most symbols, this is the appropriate option.

• Enter new values to manually adjust the origin. The values in the X, Y, and Z fields represent the offset of the symbol’s origin point from the default Chief Architect origin. This option is appropriate for symbols that will be placed within other objects.

4 **Rotation** - These settings allow you to rotate the selected symbol(s) about the X, Y, and Z axes. Note that rotating a symbol will affect the location of its top, bottom, front, and/or back - and thus the location of its default origin. It may affect the size of the bounding box, as well; however, it does not affect the bounding box’s orientation. See “Bounding Boxes” on page 722.

• Select the X, Y, or Z Axis.

• Specify the Angle to rotate the symbol in the text field. 90° is set by default.

• Click the Rotate + or Rotate - button to rotate the object around the selected axis in a clockwise or counterclockwise direction, respectively.

5 Specify how the selected symbol’s 3D Faces are generated.

• The Number Of Faces that a selected symbol has displays here for reference. When multiple symbols are being imported, nothing displays. Although there is no limit to the number of faces, large numbers can increase rendering time significantly.

• Specify the Smoothing Angle, which determines whether two adjacent surfaces are shown with a smooth or sharp angle between them in rendered views. If the angle between two surface normals is less than this angle, normal averaging is used to give the effect of a curved surface. This value also affects the generation of automatic edge lines.

A good example is a hexagonal cylinder. The angle between adjacent surfaces is 360/8, or 45°. If you want it to look cylindrical, set the Surface Smoothing Angle to something greater than 45°. If you want to make the cylinder look hexagonal, set it to less than 45°.

• **Automatic Edge Lines** is checked by default so the program can choose an appropriate Smoothing Angle for legacy symbols migrated into version X12. It applies specifically to legacy symbols as they are brought into the program and in most cases, should remain checked.

• **Reverse Surface Direction** will be either checked or unchecked by the program automatically, depending on where the selected symbol was created: it is checked for symbols created in the program or imported from an .skp file, and typically unchecked for symbols imported from other file types.

In most cases, this setting should not be changed; however, if you export a symbol and encounter problems with its surfaces, changing this setting may help.

Note that Chief Architect imports the front side of faces in .skp files; however, it does not support faces with different textures on the front and back and will import the back side as a separate face.

• Check **Draw Self Intersection Lines** to display lines where parts of the selected symbol are drawn in such a manner that they occupy the same 3D space as other parts of the same symbol. In most cases, this box should be unchecked; and if the selected symbol does not have self intersection lines, it will not be available.

• Check **Cull Layered Transparent Surfaces** to if you need to troubleshoot the appearance of a transparent symbol. Generally, this box should be left unchecked.

• When a symbol is being imported, check **Use Imported UV Map** to preserve the UV map that was created for it. When unchecked, the symbol’s textures are mapped using a modified version of its UV map that assumes square shaped texture images. When the symbol uses a “decal sheet” style texture or one that is not square in shape, this box should be checked.

6 A preview of the symbol’s appearance displays here and updates as changes are made to the settings in this dialog. When multiple symbols are selected, the most recently selected symbol displays. See “Dialog Preview Panes” on page 32.

• Click the **Show Origin** button to display the location of the selected symbol’s origin in the preview. Not available if Show Plan View is selected. See “Symbol Origin” on page 721.
The 2D BLOCK panel allows you to select a 2D CAD block to represent the selected symbol in floor plan view. See “CAD Blocks” on page 251.

This panel is not available for Doors, Doorways, or Cabinet Doors, nor is it available when multiple symbols are being imported.

Selected CAD Block -

- The CAD block associated with the selected symbol is selected in the list of Available CAD Blocks and displays in the preview.
- The CAD block name of an imported symbol will be based on the symbol’s original file name. See “Importing 3D Symbols” on page 892.
- You can select a different CAD block from the list if you wish.
- Check Auto Generate to create a new CAD block to represent the selected symbol any time the symbol is rotated in a way that affects the appearance of its overhead projection.
- Click the Generate Block button to automatically generate a CAD block based on an overhead projection of the selected symbol and add it to the list.
- Enter a Rotation Angle to rotate the 2D CAD block from its original angle of 0°. The orientation of the 2D CAD block in floor plan view does not affect the symbol’s orientation in 3D views.
- Check Fill to specify a fill color in selected symbol’s CAD block and enable the settings that follow. In order to apply the specified fill, you may need to click the Generate Block button, above.

If changes are made to an existing symbol in a plan or the Library Browser, you may also want to generate a new 2D Block to represent it in floor plan view.

If you do not see a CAD block in this list that suits your needs, you can create your own. See “Custom 2D Symbols” on page 252.
• Click the **Color** bar to select a fill color for the 2D block. See “Color Chooser/Select Color Dialog” on page 160.

• Use the **Transparency** slider bar or text field to control how transparent the fill color is.

• Check **Use Original Plan Colors** to make the symbol’s fill color white.

A preview of the selected CAD Block displays here when Show Plan View is selected. See “Dialog Preview Panes” on page 32.

Options Panel

The settings on the OPTIONS panel affect how a symbol behaves and can be placed.

The options that display in this window vary, depending on the selected symbol’s category.

1. The **Special Placement** options add placement restrictions and abilities to the selected symbol. When none of these is selected, the symbol will sit on the floor or terrain. None is not an option for Electrical symbols. Once placed, its height can be adjusted in its specification dialog. See “Placing Library Objects” on page 704.

2. The **Schedules** options are available for interior and exterior fixture symbols and allow you to include the selected symbol in specific types of schedules. See “Working with Multiple Schedules” on page 511.

3. **Requirements** - Specify whether the selected fixture symbol requires Natural Gas, Water/Drain, Standard Voltage, or High Voltage.

4. Additional **Options** specify the selected symbol’s purpose.

 • Select a symbol **Type** from the drop-down list. The selection will vary depending on the symbol’s Category.

 • A variety of check boxes may be available, depending on the selected symbol’s Category and Type.

5. A preview of the selected symbol displays on the left. See “Dialog Preview Panes” on page 32.
Materials Panel

The MATERIALS panel allows you to assign materials to the symbol’s components and is similar to the Materials panel in many specification dialogs. See “Materials Panel” on page 761.

If the selected symbol is in the process of being imported, bear in mind that .dxf/.dwg files do not include material information, so the symbol’s components will not have materials assigned to them. See “3D Symbols and Materials” on page 894.

Sizing Panel

The settings on the SIZING panel allow you to control the size of a symbol’s bounding box and how the symbol behaves when resized.

A symbol’s actual size cannot be changed in the Symbol Specification dialog. See “Resizing Objects” on page 199.

1 Bounding Box Dimensions - Specify the Width, Depth and Height of the selected symbol’s bounding box, measured from the symbol’s origin with 1/16” (1 mm) accuracy. Not available when multiple symbols are selected.

When a symbol is first created, its bounding box is the same size as the actual 3D object. See “Bounding Boxes” on page 722.

2 Stretch Planes define where a symbol stretches when resized. If no stretch planes are used, the symbol resizes uniformly. See “Stretch Planes and Zones” on page 723.

• Width planes are oriented vertically and run from the back of the symbol to its front, or along the symbol’s X axis.
• Depth planes are oriented vertically and run from one side of the symbol to the other, or along the symbol’s Y axis.
• Height planes are oriented horizontally, or along the symbol’s Z axis.

3 Uniform Stretch Zones define an area between two planes that stretches uniformly when the object is resized, leaving the area outside of the zone unaffected.

Note: Stretch Planes and Stretch Zones do not affect a symbol’s 2D CAD block, which always resizes in a uniform manner. If you resize a symbol using custom Stretch Planes and Zones, consider generating a new CAD Block. See “2D Block Panel” on page 716.

4 A preview of the selected symbol displays on the left. See “Dialog Preview Panes” on page 32.

• Click the Select Stretch Plane Item button, then click on a stretch plane in the preview to
select it. A selected Stretch plane can be moved using its edit handle. Only available when Show Stretch Planes is also toggled on.

- Click the Show Origin button to toggle the display of blue, red, and green lines showing the directions of the symbol’s X, Y, and Z axes and its origin. See “Symbol Origin” on page 721.

- Click the Show Stretch Planes button to toggle the display of any stretch planes that the symbol may have. Stretch planes only display when the SIZING panel is active.

- Click the Show Bounding Box button to toggle the display of the symbol’s bounding box. This setting off by default but is retained during the current program session.

Opening Panel

The settings on the OPENING panel define the selected Window or Doorway symbol’s rough opening when placed in a wall.

The OPENING panel is only available for Windows and Doorways.

Plan View Panel

The PLAN VIEW panel controls the appearance of Window and Doorway symbols in floor plan view.

The PLAN VIEW panel is only available for Windows and Doorways.

1 An editable diagram of the symbol’s wall opening displays here.

Edit the symbol’s opening size and shape by clicking on a dimension number and typing the desired value. To update the preview, press the Tab key.

If the Window or Doorway has an angled or arched top, click the Opening Sections drop-down and choose the section diagram that most closely resembles the rough opening shape that you want. You can then edit the section as needed.

2 The size and shape of a symbol’s opening is independent of the symbol’s size. Make sure that the two are compatible.

The size and shape of a symbol’s opening is independent of the symbol’s size. Make sure that the two are compatible.
An editable diagram of the symbol’s representation in floor plan view displays here. The settings here also affect how many units the symbol contains as well as their size in both 2D and 3D views.

- To change the size of the symbol’s units in floor plan view, click on a dimension number and type the desired value. Press the Tab key to update the diagram.
- To change a unit in the preview from a window to a door swing, click on the unit in the diagram.

Plant Information Panel

This panel is available when the Symbol Specification dialog is opened for a plant. The options are the same as the Plant Information panel of the Plant Symbol Specification dialog. See “Plant Information Panel” on page 939.

Plant Description Panel

This panel is available when the Symbol Specification dialog is opened for a plant. The options are the same as the Plant Description panel of the Plant Symbol Specification dialog. See “Plant Description Panel” on page 940.

Get Last Symbol

If you import or convert a symbol that cannot be placed in the current view or must be contained by another object that is not present in the view, you can quickly select it for placement once the needed conditions are met using the Get Last Symbol command.

Open a view in which the symbol can be placed or create an object to place the symbol into, then select Tools> Symbol> Get Last Symbol to retrieve the last symbol created and click in your plan to place the symbol.
Most objects in Chief Architect can be converted into symbols. To do this, select one or more architectural objects in floor plan, camera, or cross section/elevation view and click the Convert to Symbol edit button. See “Architectural vs CAD Objects” on page 129.

You can create custom symbols in Chief Architect using any combination of architectural objects. Particularly if you are designing a custom object using generic objects like Primitives, it is helpful to begin by opening a new, blank plan. Then, place any combination of architectural objects to produce a model of what you would like your custom symbol to look like.

When the objects are configured as desired, select them and then use the Convert Selected to Symbol edit tool to create a single symbol that is assigned to a category that reflects how the object will be used. For example, if you design a cabinet door, select Cabinet Door/Drawer as the symbol’s category so that the resulting symbol can be assigned to a cabinet.

When you want to convert a large number of objects into a single symbol, it may be easier to do so in a 3D view.

To convert a 3D model to a symbol
1. Create a camera view or overview in which the only objects displaying are those that you wish to convert to a single symbol.
2. Select Tools> Symbol> Convert to Symbol.
3. The Convert to Symbol dialog displays:

 • Type a short, descriptive Symbol Name. The Symbol Category will populate this field unless a custom name is specified.
 • Choose a Symbol Category from the drop-down list. When you select a category, the Symbol Name will automatically update to use that category.
 • Check Add To Library if you would like the symbol to be added to the library. See “Add to Library” on page 700.
 • Check Show Advanced Options to open the Symbol Specification dialog when you click OK, where you have more extensive control over the symbol’s settings. See “Symbol Specification Dialog” on page 713.
4. Click OK to close the dialog and convert your custom object to a symbol.

Editing Custom Symbols

Custom symbols can be selected and edited much like other objects in the program. A symbol’s category determines exactly what editing options are available; however, most symbols can be edited using the edit handles, edit toolbar and specification dialog. See “Editing Objects” on page 163.

Symbols have some additional options that allow you to control how the symbol behaves when it is placed, selected, moved and resized.

Symbol Origin

All symbols have an origin point, which determines how the object is positioned when it is placed in a plan. The origin point also determines the location of a symbol’s bounding box and 2D block.
The location of a symbol’s origin point is typically on its back surface, at the bottom center; however, this may vary, depending on the symbol’s category. You can see the location of a selected symbol’s origin in preview pane of the Symbol Specification dialog. See “3D Panel” on page 713.

You can offset a symbol from its origin point. This can make it easy to insert the object inside of another object, but does not affect the location of the bounding box or the 2D block that displays in plan view.

To create an insertable symbol

1. Make a note of the symbol’s actual size on the General panel of its specification dialog.
2. Click the Open Symbol edit button to open the Symbol Specification dialog.
3. On the 3D panel, check Specify Origin.
4. Adjust the X, Y and/or Z values as needed:
 • To insert the back of the symbol into the side of another object at a particular distance, specify that distance in the Y field as a positive value.
 • To insert the bottom of the symbol into the top of another object, specify the distance that it should be dropped as a negative value in the Z field.

Bounding Boxes

An object’s bounding box determines the amount of space it requires in 3D and thus how close it can be moved to other objects before it bumps into them.

The bounding box also defines the selectable area around a symbol: when you click within an object’s bounding box, it will become selected. Similarly, the bounding box affects whether an object is included in a selection marquee. See “Selecting Objects” on page 167.

When a symbol is selected, its edit handles display around the perimeter of its bounding box. See “Edit Handles” on page 27.

You can create setback space for a symbol by increasing its bounding box size on the Sizing panel of the Symbol Specification dialog. See “Sizing
To create setback space for a symbol

1. Make a note of the symbol’s actual size on the GENERAL panel of its specification dialog.
2. Click the Open Symbol edit button to open the Symbol Specification dialog.
3. On the SIZING panel, increase the Width, Depth and/or Height values by the amount of the desired setback space.
 - The bounding box Width is always centered on the symbol’s origin point.
 - The Depth is measured from the symbol’s origin point towards its front.
 - The Height is measured from the symbol’s origin point towards its top.

You can also allow a symbol to set into another object by reducing its bounding box size. Unlike the symbol itself, the bounding box and 2D block cannot be offset from the origin.

Stretch Planes and Zones

Stretch Planes and Stretch Zones define where a symbol stretches when resized.

If a symbol has no Stretch Planes or Zones, its surfaces will all resize uniformly; if, on the other hand, a Stretch Plane or Zone is defined, the object will resize only within the plane or zone. Any portions of the symbol located outside of the plane or zone will not resize at all.

- A Stretch Plane is a two dimensional plane within a symbol which increases or decreases in thickness as the symbol is resized.
- A Stretch Zone defines an area between two Stretch Planes that resizes uniformly, leaving the area outside unaffected.

Stretch Plane coordinates are relative to the symbol’s origin point. For many object types, the origin is located at the bottom center of its back surface.

To define a Width stretch plane

1. Open a symbol’s Symbol Specification dialog using any of the available methods. See “Symbol Specification Dialog” on page 713.
2. On the SIZING panel, under the Stretch Planes heading, check the box beside 1 to the left of the Width column. The field to its right becomes active.
3. The new plane has an initial value of 0.
 - Leave it at 0” to run the plane through the object’s default origin point.
 - Specify a negative number to define a plane to the left of the origin.
 - Specify a positive number to define a plane to the right of the origin.

To define a Depth or Height stretch plane

1. On the SIZING panel of the Symbol Specification dialog, under the Stretch Planes heading, check the box beside 1 to the left either the Depth or Height column. The field to its right becomes active.
2. The new plane has an initial value of 0.
 - To define a Height stretch plane, specify a positive number between 0 and the overall height of the symbol.
 - To define a Depth stretch plane, specify a negative number.
3. Click OK. When the symbol’s depth or height is changed, only the cross section defined by the Stretch Plane will be affected.

A symbol can have up to three Stretch Planes in each direction, for a total of nine.

To define two stretch planes

1. Open a symbol’s Symbol Specification dialog.
2. On the SIZING panel, check the boxes beside 1 and 2 to the left of a column under Stretch Planes. The fields to their right becomes active.

3. Specify the desired values to define each Stretch Plane within the symbol.

4. Click OK. When the symbol is resized, the two cross sections defined by the Stretch Plane will be affected.

![Location and effect of two Width stretch planes](image)

To define a stretch zone

1. Open a symbol’s Symbol Specification dialog.
2. On the SIZING panel, under the Stretch Planes heading, check the boxes beside 1 and 2 to the left of a column under Stretch Planes. The fields to their right becomes active.
3. Specify values for both planes.
4. Check the box beside the corresponding option in the Stretch Zones section of the panel.
5. Click OK. When the symbol is resized, only the area within the Stretch Zone will be affected.

Rotating Symbols

Symbol objects can be rotated in all three dimensions in the Symbol Specification dialog. Free-standing symbols can also be rotated in 3D views using the Rotate edit handle: select the symbol on different surfaces to rotate it along its different axes. See “Selected Side” on page 169.

In either case, the symbol’s bounding box will not rotate with the symbol’s geometry. Instead, it will resize as needed to contain the symbol’s surfaces and its sides will remain orthogonal to the X, Y, and Z axes in the drawing space. See “3D Drafting” on page 25.

Similarly, the symbol origin will not rotate with the symbol geometry. Instead, its position on the bounding box will remain constant and its position relative to the symbol’s surfaces will change.

In contrast, stretch zones and planes do rotate with the symbol’s geometry, so if a symbol is rotated and then resized, it will stretch appropriately rather than become misshapen.

When a symbol is rotated in 3D, its 2D representation in plan view may need to change. The first time you rotate a symbol, the program will ask if you want the 2D plan view symbol to be regenerated to reflect its new orientation. If you click Yes, it will be automatically regenerated every time you rotate it. You can enable or disable Auto Generate in the Symbol Specification dialog. See “2D Block Panel” on page 716.

Edit Wall Cutout Polyline

The Edit Wall Cutout Polyline edit tool is available in camera views when a selected symbol has Inserts into Wall checked in the Symbol Specification dialog. See “Options Panel” on page 717.

Click this button to enable edit handles on the symbol’s wall cutout polyline so that its shape can be edited. See “Editing Closed Polyline-Based Objects” on page 180.

To restore the original shape of the cutout polyline, click the Reset Wall Cutout Polyline edit button while the cutout polyline is active for editing.
An architectural block is a collection of individual 3D objects that are grouped together so that they can be placed and moved as a single object. Although blocked together, these objects retain many of their own attributes, such as materials.

Architectural blocks can also be exploded so that the individual sub-objects become independent of one another.

Architectural vs CAD Blocks

Just as there are two types of objects in Chief Architect, architectural and CAD, there are two types of blocks. See “Architectural vs CAD Objects” on page 129.

Architectural objects such as cabinets and fixtures can be included in architectural blocks, while CAD objects such as lines, arcs, text and dimensions can be included in CAD blocks. See “CAD Blocks” on page 251.

Creating Architectural Blocks

To create an architectural block, group-select multiple architectural objects, then click the Make Architectural Block edit button. Architectural blocks can be created in any view. See “Architectural vs CAD Objects” on page 129.

The following is a list of objects that can be included in architectural blocks:

- Cabinets (Base, Wall, Full Height)
- Custom Countertops and Counter Holes
- Soffits, Shelves, Partitions
- Fixture and Furniture symbols
- Hardware symbols
- Millwork symbols
- Geometric Shapes
• Electrical objects
• Images
• Slabs and Foundation Slabs
• Primitives and Polyline Solids
• Molding Polylines
• Roads, Driveways, Sidewalks
• Terrain Features and Terrain Modifiers
• Distribution Paths and Regions that have architectural objects as their distributed object.

Once blocked, the set of blocked objects is contained in a bounding box, indicating that they are now an architectural block.

Displaying Architectural Blocks

As with individual objects, the display of architectural blocks is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

- If an architectural block is composed of objects that are on the same layer, the block will be placed on that layer, as well.
- If an architectural block is composed of objects on different layers, the block will be placed on the “Architectural Blocks” layer.
- Once created, an architectural block can be placed on any layer you wish.

In Plan View

The sub-objects of a block can use the layer attributes assigned to their current layer or the layer attributes assigned to the block. See “General Panel” on page 727.

You can control the appearance of the bounding box by changing the display properties of the architectural block’s layer or you can turn off its display in the Architectural Block Specification dialog. See “General Panel” on page 727.

Like other objects, an architectural block is placed in a Drawing Group that affects whether it displays in front of or behind other objects. You can modify a selected architectural block’s place in the drawing order by clicking the View Drawing Group Edit Tools edit button. See “Drawing Group Edit Tools” on page 153.

Architectural Block Labels

Architectural blocks can display labels for both the block and any component objects that have labels in plan and cross section/elevation views. Labels for architectural blocks are placed on the “Architectural Blocks, Labels” layer and use the Text Style assigned to that layer. See “Object Labels” on page 515.

You can turn off the display of component labels either by layer or by checking Treat as One Object in the Architectural Block Specification dialog. See “General Panel” on page 727.

The label for an architectural block can be generated automatically, user-specified, or suppressed. See “Architectural Block Specification Dialog” on page 727.

In Materials Lists and Schedules

The display of an architectural block in materials lists and schedules can be turned off completely. The block can appear as a single unit or its sub-objects and components can be listed separately. See “Materials Lists” on page 943 and “Schedules and Object Labels” on page 505.

Editing Architectural Blocks

Architectural blocks can be selected and edited in 2D and 3D views. See “Selecting Objects” on page 167.

Note: Moving an architectural block in 3D view regenerates the view. If the architectural block contains terrain objects, the terrain is rebuilt.

Once selected, an architectural block can be edited using its edit handles, edit toolbar buttons, and specification dialog. See “Architectural Block Specification Dialog” on page 727.

Using the Edit Handles

A selected architectural block displays a Move handle and a Rotate handle. If the block has a label, it also has its own Move and Rotate handles.

Architectural blocks cannot be resized, but the individual objects in the block can be.
In the Specification Dialog
Architectural blocks can be edited in their specification dialog.

Using the Edit Tools
A selected architectural block or blocks can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Editing Sub-Objects
The individual objects included in an architectural block can also be selected and edited. See “To select a sub-object” on page 729.

Explode Architectural Block
You can break an architectural block to make its objects independent. Select the architectural block and click the **Explode Architectural Block** edit button.

Adding Architectural Blocks to the Library
You can create your own architectural blocks and save them in the library. See “Add to Library” on page 700.

Architectural blocks, their component objects, as well as inserted symbols or assigned attributes like materials or moldings associated with those component objects can be added to the library using the **Add to Library As** edit tool. See “Add to Library As” on page 700.

Architectural Block Specification Dialog
The **Architectural Block Specification** dialog controls the way architectural blocks display in plan view, in schedules, and in materials lists.

Select one or more architectural blocks and click the **Open Object** edit button to open this dialog.

General Panel

1. The **Display Options** control the appearance of the selected architectural block in plan view. See “Displaying Architectural Blocks” on page 726.
 - Check **Display Bounding Box** to show the bounding box of the objects in the architectural block.
 - Uncheck **Display Sub-Objects** to suppress the display of the sub-objects and display only the bounding box. If Display Bounding Box is unchecked, it will become checked.
 - Check **Display Sub-Objects Using Block Layer** to apply the display properties of the architectural block’s layer to its sub-objects. When this box is

Note: If you open a plan created in the Premier version of Chief Architect and an architectural block includes an object that you cannot create in your version of the software, you cannot unblock it or edit its components.
unchecked, sub-objects use the display properties set for their layers.

- Check **Display Sub-Objects Using Block Draw Order** to display all component objects of the selected block using the block’s drawing order. When unchecked, each component displays according to its individual drawing order. See “Drawing Groups” on page 153.

The **Schedule and Materials List** settings control how the selected architectural block appears in schedules and the materials list.

- Check **Treat as One Object** to treat the architectural block as a single unit in materials lists and schedules.

Specify the selected architectural block’s **Size/Position** relative to the floor or terrain. Not available if the selected block includes any objects that do not have these settings in their specification dialogs.

- Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.
- Specify the height **to Top**, measured from the selected Elevation Reference to the top of the architectural block.
- Specify the height **to Bottom**, measured from the selected Elevation Reference to the bottom of the architectural block.

Architectural Blocks, Sub-Objects, and Components

An architectural block is composed of a group of sub-objects that have been blocked together. For example, a kitchen island architectural block may consist of cabinets, appliances, a custom countertop, and other accessories.

Each of the sub-objects in an architectural block may contain additional parts called **components**. The cabinets in a kitchen island, for example, may contain handles, hinges, and drawer glide.

Architectural blocks can be treated as a single unit in materials lists and schedules, ignoring sub-objects and their components. See “General Panel” on page 727.
To select a sub-object

1. Click the Select Objects button, then click on the sub-object that you would like to edit.
2. With the architectural block selected, click the Select Next Object edit button or press the Tab key.
 The selection switches to the individual object and it can be edited using its edit handles, edit toolbar and specification dialog.

The options for editing a sub-object may be more restricted than if the object were independent. If more extensive editing is required, the architectural block must be exploded.

Components

You can view and modify the components of an architectural block or group of blocks in the Architectural Block Specification dialog. The COMPONENTS panel lists all the sub-objects that comprise an architectural block, as well as the components that make up each sub-object. See “Components Panel” on page 959.
Chapter 30:

Other Objects

Chief Architect has additional objects that can be used to customize your design.

Chapter Contents

• Primitive Tools
• Polyline Solids
• Creating Primitives
• Editing Primitives
• Solid Tools
• Creating Complex Structures with Primitives
• Polyline Solid Specification Dialog
• 3D Box Specification Dialog
• Sphere Specification Dialog
• Cylinder Specification Dialog
• Cone Specification Dialog
• Pyramid Specification Dialog
• General Shapes
• Soffits
• Special Applications for Soffits
• Soffit Specification Dialog
• Floor and Wall Material Regions
• Material Region Specification Dialog
• Material Layers Definition Dialogs
• Distributed Objects
• Distribution Region/Path Specification Dialogs

Primitive Tools

The Primitive Tools allow you to create basic solid geometric shapes, which can be combined to create a wide variety of custom solid objects. Select Build> Primitive to display the Primitive Tools.

With the exception of Faces, objects made with the Primitive Tools are included in materials list calculations. For best results, a Volume type material should be used. See “Define Material Dialog” on page 769.

Polyline Solid

Select the Polyline Solid tool, then click and drag to draw a rectangular polyline solid. Despite their name, polyline solids are not true solids; however, they can be converted into solids. See “Polyline Solids” on page 732.
Box
Select the **Box** tool, then click and drag to draw a solid 3D box.

Sphere
Select the **Sphere** tool, then click and drag to draw a solid 3D sphere.

Cylinder
Select the **Cylinder** tool, then click and drag to draw a solid 3D cylinder.

Cone
Select the **Cone** tool, then click and drag to draw a solid 3D cone.

Pyramid
Select the **Pyramid** tool, then click and drag to draw a solid 3D pyramid.

Face
Select the **Face** tool, then click and drag to draw the edges of a two-dimensional surface. Faces are two-sided, can display in 3D views and be revolved or extruded to create custom Solid objects. See “Face Objects” on page 733.

Polyline Solids
Polyline Solids are polyline shaped 3D objects with a specified thickness. They can be oriented either horizontally or vertically and are useful for creating custom details anywhere in your 3D model.

Creating Polyline Solids
A horizontal Polyline Solid can be created in plan view or any 3D view by selecting **Build> Primitive> Polyline Solid**, then either clicking or clicking and dragging to draw a rectangle. See “Rectangular Polyline” on page 246.

A vertical Polyline Solid can be created in a cross section/elevation view in the same manner as in plan view. The Polyline Solid is placed in front of any objects visible in the view. If no objects are behind it, the Polyline Solid is placed one foot in front of the camera.

Once created, Polyline Solid shapes can be edited the way other closed polyline-based objects are. See “Editing Closed Polyline-Based Objects” on page 180.

Holes in Polyline Solids
You can create a hole in a selected Polyline Solid by clicking the **Create Hole** edit button, then clicking and dragging to draw a rectangular hole in the selected object.

You can also create a hole in a Polyline Solid by drawing one Polyline Solid entirely inside of another. Select the smaller of the two and check **Hole in Polyline Solid** in its specification dialog.

Both the larger and smaller Polyline Solid must be drawn in the same type of view in order for the smaller one to become a hole. See “Polyline Holes” on page 184.

Converting CAD Polylines
A closed CAD polyline can be converted into a Polyline Solid in floor plan and cross section/elevation views using the **Convert Polyline** edit button. See “Convert Polyline” on page 205.

Creating Primitives
Primitive solids are drawn similar to the way CAD boxes are. Depending on the view in which they are created, however, the method may differ somewhat.

In Plan View
In plan view, Primitives are drawn much the way closed CAD polylines are. Select a tool, then click and drag to define an area.
• To create 3D Box
, click and drag to define the width and depth of the box’s base. Its initial height is 1”.

• To create a Sphere
, Cylinder
, Cone
, or Pyramid
, click and drag to define the radius.

• As it is drawn, the height of a Cylinder
, Cone
 or Pyramid
 is equal to its radius. Initially, the bottom surface of boxes, cylinders and cones, and the center point of spheres, are all set at 0” on the Z axis. See “Entering Coordinates” on page 135.

In 3D Views

In 3D views, the height of boxes, pyramids, cylinders and cones can be defined as they are drawn.

• To create 3D Box
, Cylinder
 or Cone
, click and drag to define the width and depth of the box’s base. Release the mouse button, then drag upward or downward to define its height.

• Drag upward to set the height of the bottom surface at 0”, or drag downward to set the top surface at 0”.

• To create a Sphere
 or Pyramid
, click and drag in any direction to define its radius.

In Cross Section/Elevation Views

With the exception of Polyline Solids
 and Faces
, primitives cannot be created in cross section/ elevation views. See “Polyline Solids” on page 732.

Convert to Solid

Click the Convert To Solid edit button to convert the selected polyline solid or slab into a solid so that it can be used with other solids to create complex structures.

Face Objects

Regardless of the view, primitive faces are drawn the way line-based objects are when the Alternate Alt edit behavior is active. See “Alternate” on page 164.

To draw a Face

1. Select Build> Primitive> Face
, then click, drag and release the mouse button to draw the first edge.

2. Click to define the endpoints of additional edges. A Face must have at least three edges.

3. To finish drawing, click at the original starting point. This is easiest to do when Endpoint
 snapping is enabled. See “Object Snaps” on page 131.

Once drawn, Faces can be revolved or extruded to create Solid objects. See “Extrude Object” on page 734.

Editing Primitives

Primitives can be selected individually and as a group and edited using the edit handles, the edit toolbar, dimensions, and their respective specification dialogs.

Using the Edit Handles

The edit handles that are available on a selected Primitive depend on its object type. In plan view:

• Polyline Solids and 3D Boxes are selected on their top edges and edited like closed polylines. If one of these objects has been rotated in 3D, more than one top edge may be visible; however, only one of these edges will be editable. See “Editing Closed Polyline-Based Objects” on page 180.

• Faces only have one edge, which is edited like other closed polylines.

• Pyramids have a more limited set of edit handles and can be moved, resized, and rotated.

• Spheres, cylinders, and cones are more limited still and can be moved and resized only.

In 3D views:

• Faces, as well as each edge of a Polyline Solid or 3D Box can be selected and edited like a closed polyline.

• Pyramids, cylinders, and cones can be moved, resized, and rotated. The axis of rotation will vary depending on where you click to select the object.
• Spheres can be moved and resized only.

In 3D views, most Primitives have a different set of edit handles for each selected edge, allowing you to rotate them in along more than one axis. These edit handles correspond to the object's Rotation settings in its specification dialog. To rotate a Primitive, it is often easiest to use its edit handles in a 3D view to orient it approximately the way you want it, then use the Rotation settings in its specification dialog to fine-tune its angles.

Using the Edit Tools

A selected Primitive can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Using Dimensions

Like various other objects, Primitives can be moved using dimensions. Polyline Solids, 3D Boxes, and Pyramids can also be resized using dimensions. See “Moving Objects Using Dimensions” on page 365.

Solid Tools

Select a Polyline Solid and click the Solid Tools edit button to access these tools, which allow you to edit the selected object like other Primitive objects to produce unique shapes.

Explode Shape

The Explode Shape edit tool allows you to explode a selected Polyline Solid or Primitive object into a collection of faces. See “Face Objects” on page 733.

Convert to Solid

Click the Convert to Solid edit button to convert the selected Polyline Solid into a Primitive object. This allows you to combine it with one or more Primitive objects to create a more complex shape using the Solid Union, Intersection, and Subtraction edit tools.

This edit tool is also available for a selected Custom Countertop or Slab.

Solid Union, Intersection, and Subtraction

New solid objects can be created based on existing solid objects using the Solid Union, Solid Intersection and Solid Subtraction edit tools. These tools are similar to edit tools that are available for closed 2D CAD polylines and some closed-polyline based architectural objects. See “Union, Intersection, and Subtraction” on page 213.

Solid Feature

The Solid Feature edit tool allows you to either create a hole in the selected object or, in 3D views, add an extrusion that extends out of the object.

Extrude Object

The Extrude Object edit tool allows you to produce a Solid object by extruding a selected Face or other solid object in any direction. See “3D Drafting” on page 25.

To use Extrude Object

1. Select a Face object and click the Extrude Object edit button.

2. In the Extrude Object dialog, specify the Extrusion Delta, which is the direction and distance that the object is extruded.

 • Specify the distances that the object should extrude in the directions of each of the three axes.

3. Click OK.
Revolve Object

The **Revolve Object** edit tool allows you to produce a Solid object by extruding a selected Face object around an axis or point that you specify.

To use Revolve Object

1. Select a **Face** object and click the **Revolve Object** edit button.
2. In the **Revolve Object** dialog, specify the **Axis of Rotation**, which determines the direction that the object will rotate. The Axis of Rotation is a line that is perpendicular to the direction in which the object will rotate.
 - Select **X-Axis** to revolve the object around a line that runs parallel to the X Axis in the current plan. The object will revolve in the Y and Z axes.
 - Select **Y-Axis** to revolve the object around a line that runs parallel to the Y Axis in the current plan. The object will revolve in the X and Z axes.
 - Select **Z-Axis** to revolve the object around a line that runs parallel to the Z Axis in the current plan. The object will revolve in the X and Y axes.
 - Select **User Defined** to define the axis around which the object will revolve.
3. When User Defined is selected, the **X**, **Y** and **Z** **Direction** fields become active. Type a length value in each field to specify the direction of a custom Axis of Rotation. All three values cannot be 0. No specific unit is used: instead, the ratio between these numbers is used to define an axis of rotation.
4. Specify the **Rotate About Point**, which is the point around which the object will rotate.
5. Specify the **Angle of Rotation**, which is how far around the axis of rotation that the object will rotate. A value of 180° will rotate the object half-way around the axis, while 360° will rotate it in a complete circle.
6. Click OK.

Creating Complex Structures with Primitives

Objects created using the Primitive Tools can be manipulated and combined to produce complex structures. Use the **Union**, **Intersection** and **Subtract** edit tools to create unique 3D shapes and combine shapes into **Architectural Blocks** or use them to create a custom symbol. See “Architectural Blocks” on page 725 and “Solid Union, Intersection, and Subtraction” on page 734.

A simple fireplace, for example, can be created by arranging 3D **Boxes**.

Decorative stone columns can be modeled using 3D **Boxes** and the **Union**, and **Subtract** edit tools.
A custom chimney can be designed using 3D Boxes and Cylinders and the Union, Subtract edit tools.

A detailed model truck can be created using 3D Boxes and Cylinders and the Union, Intersection, and Subtract edit tools.

When a primitive has been manipulated using the Union, Intersection, and Subtract edit tools, it is no longer a primitive that can be resized or reshaped using the edit handles or specification dialog. Instead, it is considered a solid. See “Shape Specification Dialog” on page 743.

Structures created using the Primitive Tools can be converted to symbols. See “Convert to Symbol” on page 721.

Polyline Solid Specification Dialog

To open the Polyline Solid Specification dialog, click on a polyline to select it, then click the Open Object edit button.
General Panel

• Check Hole in Polyline Solid to convert the polyline solid into a hole in a surrounding polyline solid.

• Specify the Thickness of the polyline solid. Increasing the thickness will cause the polyline solid to grow upward (horizontal) or toward the elevation/cross section camera (vertical).

The settings that follow are only available for polyline solids drawn in plan view.

• Select the Elevation Reference, which is where the Floor to Top and Floor to Bottom are measured from. The selection here will influence the labels of these two settings, below.

• Specify the polyline solid Top height, which is measured from the Elevation Reference selected above. The label for this setting will vary depending on which Elevation Reference is selected.

• Specify the polyline solid’s Bottom height, which is the height of its bottom surface, measured from the Elevation Reference.

Polyline Panel

The POLYLINE panel states the length of the polyline solid’s Perimeter, its enclosed Area, and its Volume. See “Polyline Panel” on page 245.

If the selected polyline solid has any Holes in it, they will be subtracted from the Area and Volume values. See “Holes in Polyline Solids” on page 732.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Label Panel

Polyline Solid labels display in floor plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for Polyline Solids is blank, but you can specify a custom label.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
3D Box Specification Dialog

Select a 3D box and click the Open Object edit button to open the 3D Box Specification dialog.

When you first draw a 3D box, the origin of the box is the point where you start drawing it; the width of the box is the X axis dimension.

1. Specify the Origin of the selected box in relation to the origin point of your plan. See “Entering Coordinates” on page 135.
 - Enter the X, Y, and Z Position coordinates of the box’s origin.

2. The Dimensions settings control the size of the selected box.
 - Specify the Width, Height, and Depth.

3. The Rotation settings allow you to rotate the selected box about the X, Y, and Z axes. See “3D Drafting” on page 25.
 - Select the X, Y, or Z Axis as the axis around which the box will rotate.
 - Specify the Angle to rotate the box in the text field. The default value is 90°.
 - Click the Rotate + button to rotate the box around the selected axis in a clockwise direction.
 - Click the Rotate - button to rotate the box around the selected axis in a counterclockwise direction.

4. A preview of the 3D box displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Shape Panel

For information about the settings on this panel, see “Shape Panel” on page 743.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Sphere Specification Dialog

Select a sphere and click the Open Object edit button to open the Sphere Specification dialog.

1. Specify the Center Point of the selected sphere in relation to the origin point of your plan. See “Entering Coordinates” on page 135.
 - Enter the X, Y, and Z Position coordinates of the sphere’s center point.

2. Size - Specify the Radius of the selected sphere.

3. A preview of the sphere displays on the right side of the dialog box. See “Dialog Preview Panels” on page 32.

Shape Panel

For information about the settings on this panel, see “Shape Panel” on page 743.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Materials Panel

For information about the settings on this panel, see “Materials” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
Cylinder Specification Dialog

Select a cylinder and click the **Open Object** edit button to open the **Cylinder Specification** dialog.

1. Specify the **Center Point** of the selected cylinder’s base in relation to the origin point of your plan. See “Entering Coordinates” on page 135.
 - Enter the **X**, **Y**, and **Z Position** coordinates of the cylinder’s center point.

2. **Size** - Specify the **Radius** and **Height** of the selected cylinder.

3. The **Rotation** settings allow you to rotate the selected cylinder about the X, Y, and Z axes. See “3D Drafting” on page 25.
 - Select the **X**, **Y**, or **Z Axis** as the axis around which the cylinder will rotate.
 - Specify the **Angle** to rotate the cylinder in the text field. The default value is 90°.
 - Click the **Rotate +** button to rotate the cylinder around the selected axis in a clockwise direction.
 - Click the **Rotate -** button to rotate the cylinder around the selected axis in a counterclockwise direction.

4. A preview of the cylinder displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

 Shape Panel

 For information about the settings on this panel, see “Shape Panel” on page 743.

 Line Style Panel

 For information about the settings on this panel, see “Line Style Panel” on page 235.

 Materials Panel

 For information about the settings on this panel, see “Materials Panel” on page 761.

 Components Panel

 The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Cone Specification Dialog

Select a cone and click the **Open Object** edit button to open the **Cone Specification** dialog.
Specify the **Base Center Point** of the selected cone in relation to the origin point of your plan. See “Entering Coordinates” on page 135.

- Enter the **X, Y, and Z Position** coordinates of the center point of the cone’s base.

Size - Specify the **Radius** and **Height** of the selected cone.

The **Rotation** settings allow you to rotate the selected cone about the X, Y, and Z axes. See “3D Drafting” on page 25.

- Select the **X, Y, or Z Axis** as the axis around which the cone will rotate.
- Specify the **Angle** to rotate the cone in the text field. The default value is 90°.
- Click the **Rotate +** button to rotate the cone around the selected axis in a clockwise direction.
- Click the **Rotate -** button to rotate the cone around the selected axis in a counterclockwise direction.

A preview of the cone displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Shape Panel

For information about the settings on this panel, see “Shape Panel” on page 743.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Pyramid Specification Dialog

Select a pyramid and click the **Open Object** edit button to open the **Pyramid Specification** dialog.
Specify the **Base Center Point** of the selected pyramid in relation to the origin point of your plan. See “Entering Coordinates” on page 135.

- Enter the **X**, **Y**, and **Z Position** coordinates of the center point of the pyramid’s base.

Specify the **Height** of the selected pyramid.

- Specify the height of the **Apex**, measured from the base to the peak.
- Check **Truncated** to cut off the top of the pyramid and create a flat top.
- Specify the **Height** of a truncated pyramid, measured from the base to the flat truncated top.

The **Rotation** settings allow you to rotate the selected pyramid about the X, Y, and Z axes. See “3D Drafting” on page 25.

- Select the **X**, **Y**, or **Z Axis** as the axis around which the pyramid will rotate.
- Specify the **Angle** to rotate the pyramid in the text field. The default value is 90°.
- Click the **Rotate +** button to rotate the pyramid around the selected axis in a clockwise direction.
- Click the **Rotate -** button to rotate the pyramid around the selected axis in a counterclockwise direction.

Specify the selected pyramid’s **Base Shape**.

- Specify what you would like the pyramid’s size to be **Defined By**:
 - **Side Length** to enable the Side Length field to the right and specify the length of each side of the pyramid’s base.
 - **Radius to Corner** to define the distance from the center point of the pyramid’s base to any of its corners.
 - **Radius to Side** to define the distance from the center point of the pyramid’s base to the midpoint of any of its edges.
 - Specify the **Number of Sides** that the selected pyramid has. The default value is 4.
 - Specify the **Side Length**, which is the corner to corner length of one each side of the pyramid’s base. Only available when **Define Polyline by Side Length** is selected to the left.
 - Specify the **Radius** of the pyramid’s base, as measured from its center point to a corner or to the midpoint of a side. Only available when **Define Polygon by Radius to Corner** or **Radius to Side** is selected.

A preview of the pyramid displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Shape Panel

For information about the settings on this panel, see “Shape Panel” on page 743.
Shape Specification Dialog

Select a Face, a solid created using the Union, Intersection, and Subtract edit tools, or a solid created by converting a slab or polyline solid and click the Open Object edit button to open the Shape Specification dialog.

Shape Panel

The 3D Surface Quality settings control how any curved surfaces on the selected object are rendered in 3D views.

- Check Automatic to have the program define the Maximum Deflection, which is the amount each flat, triangular surface used to represent a curved surface in 3D can deviate from the true curvature of the object. For more information about triangles, see “Edge Smoothing” on page 817.
- Specify the Maximum Deflection in plan inches (mm). This value is the maximum distance that a point on a triangle can be from the true location of the curved surface. Lower values produce more triangles and a smoother appearance in 3D views.

A preview of the shape displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Materials Panel

For information about the settings on this panel, see “Materials Panel” on page 761.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
General Shapes

Items in the Chief Architect Core Catalogs > Shapes library catalog allow you to create a variety of custom objects using basic geometric shapes. These shapes can be used individually or combined to create a wide variety of custom objects.

General Shape objects are placed and edited much like other library objects. See “Editing Box-Based Objects” on page 184.

Soffits

Soffits typically fill the space between the tops of wall cabinets and the ceiling, but they are very versatile and can be used to create almost any other object that can be modeled as a 3D box. Select Build > Cabinet > Soffit to activate this tool.

Soffit Defaults

The default settings for soffits are set in the Soffit Defaults dialog. The settings in this dialog are similar to those in the Soffit Specification dialog. See “Soffit Specification Dialog” on page 746.

When a soffit is created, it is placed on the “Cabinets, Soffits” layer. See “Layer Attributes” on page 142.

For best results when placing soffits above wall cabinets:

- The default soffit should be the same width as and 1" (20mm) deeper than the default wall cabinet. See “Cabinet Defaults” on page 459.
- The default soffit Floor to Bottom value should equal the sum of the default wall cabinet’s Floor to Bottom value plus its Height. See “General Panel” on page 746.
- The default soffit Height should be equal to or greater than the space between the ceiling and the top of the wall cabinets.

Special Applications for Soffits

Nearly any object with straight, flat sides can be represented by one or more Soffits. They can be resized to as small as 1/16" (1mm) per side, or as large as 250 feet (48m).

Soffits can have materials applied to them to represent simple mirrors, posts, chimneys and so on. Following are some additional examples.

Polyline Solids can be used to create irregular or curved shapes. See “Polyline Solids” on page 732.

Roof Beams and Coffered Ceilings

Sloped soffits can be used to represent beams or rafters that follow the pitch of the roof in rooms with cathedral ceilings. See “Sloped Soffits” on page 748.
Soffits can also be used to create coffered ceilings. They will display any moldings assigned to the room it is in that are at its height. In addition, you can assign moldings directly to a soffit in its specification dialog. See “Moldings Panel” on page 747.

Accent Tiles

A material such as ceramic tile can be assigned to one or more soffits applied to the walls above tubs or in showers.

Masonry Veneer

As an alternative to a pony wall, you can use a soffit to create a brick or stone veneer over part of a wall. Specify a soffit depth equal to the masonry material to be used.

Soffits automatically stop at the floor platform when moved downward or at the ceiling platform when moved upward - even when the soffit is not located in a room. To move or resize a soffit through a floor or ceiling platform, select it and hold the Ctrl key down while dragging its edit handles. See “Unrestricted Movement” on page 193.

Calculating Materials on Soffits

By default, soffit materials are not calculated in the Materials List. In order for a soffit’s material to be counted, it must be edited so that it is not using the default material. See “Material Defaults” on page 758.

The number of bricks, tiles, shingles, shakes or other materials applied to a soffit is calculated using the following rules:

- If the soffit depth is less than the larger of 4 inches (10 mm) or 1 ½ times the material thickness, then only the front area of the soffit is used. Thus if a soffit is 48”x48”x4” thick, and the Dark Red brick material is used (3”x 8” with 3/8” mortar joint) the front of the soffit is 48”x48”=2304 square inches. Including the mortar joint, each brick requires 3 3/8” x 8 3/8” = 28.26 square inches. 2304 sq. in. divided by 28.26 sq. in. per brick gives 81.5 bricks.

- If the soffit depth is greater than both 4 inches (10 mm) and 1 ½ times the material thickness, then the surface areas of the soffit back, sides and top are used in addition to the front, if these surfaces are not attached to a wall or other soffit. However, only those portions of the sides, top and bot-
tom remaining after subtracting twice the material thickness are used. So, for Dark Red brick, which has a depth of 4”, the sides, top and bottom surface areas cannot contribute to the brick count unless the soffit depth is greater than 8 inches.

- If surface materials such as brick are applied to a large soffit, the soffit center is assumed to be hollow, with only a single layer of the material applied to each applicable face.

- For shingles and shakes, the overlap amount should be subtracted from the height, as opposed to brick or tile, where the joint width is added to the size.

- For materials in the area category, the soffit area calculation above is used, with the material thickness treated as zero.

- For materials in the volume, concrete or earth categories, the true volume of the soffit is used.

Soffit Specification Dialog

To open the **Soffit Specification** dialog, select the soffit and click the **Open Object** edit button or double-click on a soffit using the **Soffit** tool.

The settings in this dialog are similar to those in the **Soffit Defaults** dialog, but affect only the selected object(s).

General Panel

1. Define the **Size** and **Position** of the selected soffit relative to the floor or terrain.
 - Specify the **Width** of the soffit.
 - Define the vertical **Height** of the soffit.
 - Define the **Depth**, which is the distance between the front and the back of the soffit. When selected in plan view, the front of a soffit has a “V,” and the back of the soffit has a triangular rotation handle.
 - If the selected soffit is a corner soffit, the **Width** controls its left side width, and **Depth** controls its right side width.
 - Specify the distance from **Floor to Top** of the soffit.

2. Specify the distance from **Floor to Bottom** of the soffit.

3. When the selected soffit is outside a room, its Floor to Bottom height is measured relative to the terrain. Check **Auto Adjust Height** to maintain the same distance above the terrain if the soffit is moved to a location with different terrain height. Uncheck this to maintain the same absolute height regardless of the terrain below. When **Auto Adjust Height** is checked, the Floor to Bottom value may automatically adjust if the soffit is moved.

4. Check **Use Floor Finish** to measure the Floor to Bottom distance from the surface of the floor finish. When unchecked, this height is measured
from the subfloor. Only available when Auto Adjust Height is checked.

- Check **Sloped Soffit** to slope the soffit vertically from the back up towards the front. This may become checked automatically if you check Place Under Ceiling or Place Under Roof, below. When you specify a soffit as sloped, the available options on this panel change. See “Sloped Soffits” on page 748, below.

- The **Height at Back Face** and **Front Face** settings become enabled when Sloped Soffit is checked. See “Sloped Soffits” on page 748.

Options -

- Check **Place Under Ceiling** to adjust the soffit’s height so its top contacts the ceiling above. If the soffit is below a sloped ceiling plane, Sloped Soffit will become checked and the Height at Back and Front Face will adjust to match the pitch. Not available in the Soffit Defaults dialog, or if the soffit is not below a ceiling.

- Check **Place Under Roof** to adjust the soffit’s height so its top contacts the bottom of the roof above. Provided that the roof above does not have a pitch of 0, Sloped Soffit will become checked and the Height at Back and Front Face will adjust to match the pitch. Not available in the Soffit Defaults dialog, or if there is no roof above the soffit.

- Check **Ignore Room Moldings** to prevent the selected soffit from displaying moldings assigned to the room that it is placed in. See “Special Applications for Soffits” on page 744.

- Check **Include in Schedule** to include the selected soffit in a Cabinet Schedule. See “Cabinet Schedules” on page 489.

A preview of the soffit displays on the right side of the dialog box. See “Dialog Preview Panes” on page 32.

Moldings Panel

The settings on the MOLDINGS panel allow you to assign one or more horizontal moldings around the selected soffit.

For information about the settings on this panel, see “Moldings Panel” on page 680.

Layer Panel

For information about the settings on this panel, see “Layer Panel” on page 149.

Fill Style Pane

The settings on the FILL STYLE panel affect the selected soffit’s appearance in plan view. For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

Materials Panel

Soffits are not calculated in the Materials List unless a non-default material is specified. See “Calculating Materials on Soffits” on page 745.

For information about the settings on this panel, see “Materials Panel” on page 761.

Label Panel

Soffit labels display in plan view when the “Cabinets, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for Soffits is blank, but you can specify a custom label. See “Cabinet Labels” on page 468.

For more information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in schedules and the materials list. For more information, see “Object Information Panel” on page 519.

Schedule Panel

The settings on the SCHEDULE panel determine which schedule categories the selected soffit is included in. See “Schedule Panel” on page 519.
Sloped Soffits

When a soffit is specified as sloped, the available options on the GENERAL panel of the Soffit Specification dialog change.

- **Width** is measured left to right across the soffit, parallel to the front of the soffit.
- **Thickness** is the top-to-bottom height of the front and back faces of the soffit.
- **Horizontal Length** is measured from back to front in plan view. When a soffit is sloped, this measurement is not the actual length of the soffit’s bottom or top edge. It cannot, for example, be used to determine the length of a sloped beam.

Both the front and back heights of a sloped soffit must be defined. Checking Place Under Ceiling or Place Under Roof will automatically adjust these values to match the slope of the ceiling or roof plane above.

- **Height at Back Face** is measured from the finished floor to the lowest point at the back of the soffit.
- **Height at Front Face** is measured from the finished floor to the underside of the soffit at the upper end.

Floor and Wall Material Regions

Floor and Wall Material Regions allow you to create areas within a wall or floor that use different materials than the parent object. There are three types of Material Regions:

- Floor Material Regions
- Wall Material Regions
- Custom Backsplashes

Material Regions are CAD-based objects composed of one or more layers. The thickness of these layers and their materials can be set in the **Material Region Specification** dialog. See “Material Region Specification Dialog” on page 749.

By default, Material Regions use the materials specified in the **Floor** and **Wall Material Region Defaults** dialogs. See “Default Settings” on page 65.
Like most other architectural objects, a Material Region can be added to the library. Its material layers and the information in its specification dialog are saved; however, the shape of its polyline is not. See “Add to Library” on page 700.

Material Regions can span multiple parent objects; however, for best results the parent objects should have structural, or Main, layer surfaces that are in alignment.

Floor Material Regions

To create a Floor Material Region, select **Build> Floor> Material Region**. Floor Material Regions must be drawn within a room area and are always drawn in plan view. If you create one by clicking once, it will fill the extents of the room.

Floor Material Regions set to cut the finish layers of their parent object will replace the layers of that floor’s Finish Definition with its own layers. See “Floor and Ceiling Platform Definitions” on page 325.

Wall Material Regions

To create a Wall Material Region, select **Build> Wall> Material Region**. Wall Material Regions are drawn on the vertical surface of a wall and are always drawn in camera or elevation views. If you create one by clicking once, it will cut around doors, windows, and fireplaces but will otherwise fill the entire surface of the parent wall.

Wall Material Regions set to cut the finish layers of their parent object will replace the layers of the wall between itself and the wall’s Main Layer with its own layers. See “Wall Type Definitions” on page 292.

Custom Backsplashes

To create a Custom Backsplash, select **Build> Cabinet> Custom Backsplash**. Custom Backsplashes are drawn on the vertical surface of a wall and are always drawn in camera or elevation views. If you create one by clicking once, it will behave the way a Wall Material Region would, provided that no cabinets or appliances are positioned against the wall.

The initial attributes of Custom Backsplashes are set in the **Custom Backsplash Defaults** dialog. See “Cabinet Defaults” on page 459.

If any cabinets and/or appliances are present, a Custom Backsplash will:

- Seek to fill the area between any base cabinets or floor appliances against that wall surface and any wall cabinets and/or windows above them.
- If nothing is above any base cabinets, it will fill the area between the cabinets and the ceiling; if nothing is below any wall cabinets, it will fill the area between the cabinets and the floor.
- Replace the backsplash associated with any base or wall cabinets.

Like Wall Material Regions, Custom Backsplashes set to cut the finish layers of their parent object will replace the layers of the wall between itself and the wall’s Main Layer with its own layers.

Material Region Specification Dialog

Select a Material Region or a Custom Backsplash and click the **Open Object** edit button to open the **Material Region or Custom Backsplash Specification** dialog.

The settings in these two dialogs are also found in the **Material Region Defaults** dialogs, and most of its panels are also found in the specification dialogs for a variety of other CAD-based objects.
Material Layers Panel

The total thickness of the Material Layers displays here for reference.

Click the Edit button to open the Material Layers Definition dialog. See “Material Layers Definition Dialogs” on page 750.

Uncheck Cut Finish Layers of Parent Object to fix the selected Material Region to the surface of its parent floor platform or wall. When checked, it cuts into the finish layers of the polyline’s parent object and replaces those layers with its own within its perimeter.

Polyline Panel

The POLYLINE panel indicates the length of the region’s Perimeter and its enclosed Area. See “Polyline Panel” on page 245.

If the selected region has any Holes in it, they will be subtracted from the Area and Volume values. See “Polyline Holes” on page 184.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

Material Layers Definition Dialogs

The Material Layers Definition dialogs allow you to define the layers that make up wall, floor, ceiling, slab, and roof assemblies. The names of these dialogs vary and are determined by the type of object or component being edited. They include:

- Backsplash Layers Definition Dialog
- Ceiling Structure Definition
- Ceiling Finish Definition
- Floor Structure Definition
- Floor Finish Definition
- Roof Surface Definition
- Roof Structure Definition
- Roof Ceiling Finish Definition

See “Floor and Wall Material Regions” on page 748, “Floor and Ceiling Platforms” on page 325, and “Roof Planes” on page 591.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The Fill Style panel is only available for Floor Material Regions. For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

Label Panel

Material Region labels display in floor plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer. The Automatic Label for Material Regions is blank, but you can specify a custom label.

For information about the settings on this panel, see “Label Panel” on page 516.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.
The selected assembly’s **Layers** are listed here. Layers are numbered and listed from the top of the structure to its bottom. To select a layer for editing, click in its row.

- Click in the **Pattern** or **Texture** column to open the **Select Material** dialog and choose a material for the selected layer. See “Select Material Dialog” on page 762.
- Click in the **Fill** column to open the **Layer Fill Style** dialog and define a fill style for the selected layer. This fill style is applied when the **Auto Detail** tool is used in a cross section view. See “Fill Styles” on page 155.
- Click in the **Thickness** column to type the selected layer’s thickness or depth. Very thin layers can be created, but for best results avoid using a thickness of 0. For very small values, it can be helpful to temporarily change the dialog number format: click the Number Style button.
- The **Total** thickness of the assembly displays to the right as a reference.
- Select a **Structure Type** from the drop-down list. Only available when the selected material is a Framing type. See “Framing Materials and Types” on page 647.
- A check mark in the **Ins** column means that the selected layer will Auto Detail as Insulation in cross section views. Click to add or remove a check mark. See “Auto Detail” on page 789.

The buttons to the right of the table allow you to reorganize the assembly’s layers.

- Click the **Insert Above** button to create a new layer directly above the currently selected layer in the assembly.
- Click the **Insert Below** button to create a new layer directly below the currently selected layer in the assembly.
- Click the **Move Up** button to swap the selected layer’s position with that of the layer above it. Not available for the top-most layer of the assembly.
- Click the **Move Down** button to swap the selected layer’s position with that of the layer below it. Not available for the bottom-most layer of the assembly.
- Click **Delete** to remove the selected layer.

Specify the selected floor or ceiling assembly’s **Energy Values**. This information is used when exporting to REScheck. See “Export to REScheck” on page 897.

- Specify the structure’s **Cavity R-Value**, which is the R-value of its cavity insulator: most commonly, the insulation between wood or metal joists.
- Specify the **Continuous R-Value**, which is the R-value of continuous insulators such as rigid foam sheets.

A preview of the selected assembly displays here. See “Dialog Preview Panes” on page 32.

- By default, a gap is shown between each of the assembly layers. Click the **Explode Layers** button to remove or restore these gaps.
Distributed Objects

The Distributed Object tools allow you to place multiple copies of an object in an evenly spaced array, either within a region or along a path. Select Build > Distributed Object to access these tools.

To create distributed objects

1. Select Build > Distributed Object and choose the desired Distributed Object tool.
2. Distribution regions are drawn like other closed polyline and spline-based objects.
 - Click once to place a region with endpoints that form a 10’ (4 m) square.
 - Click and drag from end to end to draw a region sized as needed.
3. Distribution paths are drawn like other open polyline and spline-based objects.
 - Click and drag from end to end to draw one or more connected lines or spline segments.
4. Select the region and click the Open Object edit button.
5. In the Distribution Region Specification dialog:
 - Select the object to be distributed within the region.
 - Specify the distributed objects’ spacing, orientation and positioning.
 - Click OK to close the dialog.

Once created, Distribution Regions and Paths can be edited into nearly any shape you require. See “Editing Closed Polyline-Based Objects” on page 180 and “Editing Spline-Based Objects” on page 186.

Explode Distributed Objects

Objects grouped in a Distribution Region or Path cannot be individually selected. You can, however, click the Explode Distributed Object edit button to separate a region or path into its individual components. Once exploded, a Distribution Region or Path cannot be regrouped.

Distribution Region/Path Specification Dialogs

Select a Distribution Region or Path and click the Open Object edit button to open the Distribution Region or Distribution Path Specification dialog.

The settings in these two dialogs are similar and most panels are also found in the specification dialogs for a variety of other CAD-based objects.
Distributed Object Panel - Distribution Region

1. Specify the **Current Object** assigned to the selected region. When an objects is assigned, its name and a preview of a single instance of it display here.
 - Click the **Select** button to choose an object from the library. See “Select Library Object Dialog” on page 705.
 - Click the **Delete** button to unassign the Current Object from the selected region.
 - Click the **Edit** button to open the Current Object’s specification dialog. Changes made here affect all objects generated within the region. See “Specification Dialogs” on page 32.

2. **Display Options** -
 - Check **Show Objects** to display the distributed objects in plan view.
 - Check **Show Region** to display the distribution region outline in plan view.

3. **Object Spacing** - Specify how the objects in the region are spaced.
 - Specify the **Distance** between the objects in the region, as measured from their center points.
 - Objects in the region can be randomly offset from their default positions if you wish. Specify their **Maximum Offset**, measured from their center points. Not available when Evenly Scattered is selected, below.
 - Select **Standard Grid** to position the objects in rows and columns based on the standard X/Y grid in the program. This grid is affected by **Rotate Plan View**. See “Rotate Plan View” on page 121.
 - Select **Alternate Grid** to position the objects in rows and columns based on the shape of the region.
 - Select **Evenly Scattered** to distribute the objects evenly but not on a grid layout.

4. **Object Orientation** - Specify how or if the objects in the region are rotated. These settings do not affect the region itself or its edges.
 - Specify the **Angle** that the distributed objects should be placed at.
 - Select **Absolute Angle** to rotate the objects relative to an imaginary horizontal line drawn in the
positive X direction from the origin. See “3D Drafting” on page 25.

- Select **Relative Angle** to rotate the objects relative to the angle of the region’s first edge or, if that edge is curved, to the angle of its chord. The first edge is typically located at the top of the region when it is first created; however, this can change as the region is edited.
- Select **Random Angle** to rotate the objects in the region at a variety of random angles.

Object Positioning - Specify the positioning of the distributed objects relative to a point of origin within the region.

- Specify the **X Offset**, the horizontal distance in plan view from the region’s specified point of origin.
- Specify the **Y Offset**, the vertical distance in plan view from the region’s specified point of origin.

- Select **Offset From Polyline Start** to measure the offset from the region’s start point. This start point is typically located at the top left of the region when it is first created; however, this can change as the region is edited.
- Select **Offset From Polyline Center** to measure the offset from the region’s center point.

Check **Object Scaling** to specify a range of size variation of the objects in the region.

- Specify the **Minimum Scale**, which is the smallest resize of the objects allowed.
- Specify the **Maximum Scale**, which is the largest resize of the objects allowed.

A preview of the region displays on the right side of the dialog box. If no object has been assigned to the selected region, Plan View will be the default preview type. See “Dialog Preview Panes” on page 32.

Distributed Object Panel - Distribution Path

1. **Current Object** - Specify the object assigned to the selected path. When an object is assigned, its name and a preview of a single instance of it display here.
• Click the Select button to choose an object from the library. See “Select Library Object Dialog” on page 705.

• Click the Delete button to unassign the Current Object from the selected path.

• Click the Edit button to open the Current Object’s specification dialog. Changes made here affect all objects distributed along the path. See “Specification Dialogs” on page 32.

Display Options -

• Check Show Objects to display the distributed objects in plan view.

• Check Show Path to display the distribution path in plan view.

Object Spacing - Specify how the objects along the path are spaced.

• Select Distance Between Object Centers, then specify the distance between all object centers. If the path is resized, the total number of objects may change.

• Specify the Minimum Distance between object centers.

• Specify the Maximum Distance between object centers.

• Select Number of Evenly Distributed Objects, then specify the number of objects. If the path is resized, the spacing between objects may change.

Object Orientation - Specify how or if the objects on the path are rotated.

• Specify the Angle that the distributed objects should be placed at.

• Select Absolute Angle to rotate the objects to the specified Angle as measured from an imaginary horizontal line drawn from the origin towards the right.

• Select Relative Angle to rotate each object relative to the edge of the polyline or spline that it is located on.

• Select Random Angle to rotate the objects in the region at a variety of random angles.

Object Positioning - Specify the positioning of the distributed objects relative to the path itself.

• Specify the Minimum Side Offset, which is the smallest distance objects can be offset from the path.

• Specify the Maximum Side Offset, which is the largest distance objects can be offset from the path.

The Side Offset Options control which side or sides of the path objects offset to.

• Select One Sided to offset objects on the left side of the path, as viewed from its starting point.

• Select Alternate Sides to position objects on alternating sides of the path, creating a stepped pattern.

• Select Random Sides to position objects on both sides in a random pattern.

• Specify the Start Offset, the distance that the first object on the path is offset from the path’s starting point.

Object Scaling - Specify a range of size variation of the objects along the path.

• Specify the Minimum Scale, which is the smallest resize of the objects allowed.

• Specify the Maximum Scale, which is the largest resize of the objects allowed.

A preview of the path displays on the right side of the dialog box. If no object has been assigned to the selected path, Plan View will be the default preview type. See “Dialog Preview Panes” on page 32.

Polyline Panel

The POLYLINE panel states the length of the region’s Perimeter and its enclosed Area. See “Polyline Panel” on page 245.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is spline-based. See “Splines” on page 249.

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

Selected Line Panel

The SELECTED LINE panel is available when the selected edge of the region or path is a line as opposed to an arc. See “Selected Edge” on page 168.
Moving the Start of a line segment moves the end of the previous connected line, if there is one. Similarly, moving the End of a line segment moves the start of the next connected line, if there is one.

The settings this panel are found in a variety of specification dialogs throughout the program. See “Line Panel” on page 234.

Selected Arc Panel

The SELECTED ARC panel is available when the selected edge of the region or path is an arc as opposed to a line. See “Change Line/Arc” on page 201.

The settings on this panel are found in a variety of specification dialogs throughout the program. See “Arc Panel” on page 241.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Fill Style Panel

The FILL STYLE panel is only available for a selected Distribution Path if it forms a closed shape.

For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

Arrow Panel

The ARROW panel is only available for Distribution Paths that do not form a closed shape. For information about the settings on this panel, see “Arrow Panel” on page 236.

Label Panel

Distribution Path labels display in floor plan and cross section/elevation views when the “Polylines 3D, Labels” layer is turned on and use the Text Style assigned to that layer.

For more information, see “Label Panel” on page 516.
Chapter 31: Materials

The objects used in Chief Architect have a variety of 3D properties. These objects - walls, windows, doors, cabinets, roof planes, lot perimeters, etc. - can have materials assigned to them so that they look realistic in 3D views. These materials can also be used to generate materials lists that can help with cost estimations.

Designing with objects that look correct in 3D and calculate properly in the Materials List requires that you use realistic material definitions and apply them appropriately to objects in your plan.

Chief Architect comes with many materials that are ready for use. From siding, roofing, flooring, masonry, tile, and paneling, to road surfaces, grass, water, and wood materials, Chief Architect has materials for every application, inside and out. If you cannot find a material that suits your needs, you can customize the materials provided or create your own.

Learning how to create, manage, apply, and edit materials saves time and adds that professional touch to your designs.

Redefining only the visual properties of a material may create unexpected results. For example, changing the image of a brick material to represent siding does not cause the material to be considered as siding during material calculations.

Chapter Contents

- About Materials
- Material Defaults
- Material Painter Tools
- Materials Panel
- Select Material Dialog
- Viewing Materials
- Editing Materials
- Creating Materials
- Mapping Patterns and Textures
- Materials and the Materials List
- Managing Plan Materials
- Define Material Dialog
- Pattern from Texture Dialog
About Materials

The materials that are assigned to objects in Chief Architect perform two important roles:

• They determine what the surfaces of objects look like in 3D views.
• They influence how objects are calculated in the Materials List. See “Materials Lists” on page 943.

Materials are stored in the Library Browser and can be applied to objects in either of two ways:

• Using the Material Painter.
• In an object’s specification dialog. See “Materials Panel” on page 761.

Patterns and Textures

In Chief Architect, materials have two attributes that determine what they look like in 3D views: Textures and Patterns.

• Textures are created using special image files that tile seamlessly when applied to surfaces and are visible in ray trace views and most Rendering Techniques. See “In Rendered Views” on page 792.
• Patterns are composed of CAD lines and are seen in Technical Illustration, Line Drawing, and Vector Views. See “Rendering Techniques” on page 828.

Often, the texture and pattern for a given material are both set up to represent the characteristics of the material in the real world and have similar sizing and angles. When customizing such a material, check Keep Pattern/Texture in Sync before making changes to maintain this consistency. See “Define Material Dialog” on page 769.

Material Maps

Material maps are specially produced image files that can add realism to a material’s appearance in rendered and ray trace views by making it appear contoured instead of flat, or rough instead of smooth or glossy.

Materials seen in the Standard, Physically Based, Duotone, Painting, and Watercolor Rendering Techniques may be affected by these material maps:

• Bump maps add the appearance of height differences to a material - for example, on bricks, stone, or textiles. In a bump map, dark areas of the image correspond to low points in the bump map, and light areas correspond to high points.
• Normal maps assign three dimensional data to the material on a surface, allowing lighting effects to be created - for example, along mortar or grout lines. In normal maps, multiple colors are used to indicate surface direction.
• Occlusion maps indicate which parts of a texture receive more ambient light and which parts receive less. In occlusion maps, light areas receive more ambient light while dark areas receive less.
• Roughness maps define areas of varying roughness or glossiness that affect how light reflects off those areas. Roughness maps are greyscale where white is very rough, black very smooth.
• Metal maps define areas within a single texture that are metallic. Metal maps are greyscale images in which black is not metallic but every other shade is.

All of these map types can be assigned to a material in the Define Material dialog. See “Texture Panel” on page 771 and “Properties Panel” on page 774.

Materials List Calculation Methods

Every material can be assigned a Calculation method which defines how the material is calculated in the Materials List: for example, by piece, area, volume and so on. See “Materials and the Materials List” on page 766.

Material Defaults

Most objects in the program have defaults dialogs which allow you to set up a variety of attributes, including materials, before the objects are created. These defaults dialogs are accessed by selecting Edit> Default Settings. See “Preferences and Default Settings” on page 65.

The Material Defaults dialog serves two purposes. It allows you to:

• Set the default materials for objects that do not have a defaults dialog: for example, fireplaces and furnishings from the library.
• Set the initial materials that can then populate a variety of defaults dialogs. Door, Window, and Cabinet Defaults are examples of defaults dialogs that can draw their material assignments from the Material Defaults dialog.

Material defaults are dynamic, which means that if you change a particular default material, all objects that are set to use that default will automatically update to use the new material. See “Dynamic Defaults” on page 67.

Because material defaults are dynamic, you can use the Material Defaults dialog to apply a material to multiple objects that share similar components. For example:

• The “Room Moldings” Material Default applies to the base, crown, and chair rail moldings that can be assigned to rooms, as well as to interior door and window casing. If you change this Material Default, all of these objects in the plan can be affected.

• The “Cabinet”, “Cabinet Door/Drawer”, “Countertop”, and “Hardware” Material Defaults can be used in your Cabinet Defaults dialogs to ensure that all cabinets use the same materials. See “Dynamic Cabinet Defaults” on page 460.

Material Painter Tools

In a 3D view, select 3D> Material Painter to access the Material Painter Tools, which are used to apply materials to object surfaces.

The Material Painter tools are not available in Glass House views. See “Glass House” on page 829.

If you use the Material Painter to change a room’s floor or ceiling finish material, it will add that material to the room’s Floor or Ceiling Finish Definition. Changes to a Deck room’s planking or framing will affect its floor structure definition. See “Floor and Ceiling Platform Definitions” on page 325.

Material Painter

The Material Painter tool allows you to apply a selected material to other objects in 3D views. It can be activated in several ways:

• Select 3D> Material Painter> Material Painter.

• Select a material in the Library Browser while a 3D view is active.

• The Material Painter also becomes active when the Material Eyedropper is used.

The Material Painter is similar to the other Painter tools but has some additional considerations. See “Painter Tools” on page 216.

To use the Material Painter tool

1. In a 3D view, select 3D> Material Painter> Material Painter.

2. Choose a material from the Select Material dialog. See “Select Material Dialog” on page 762.

• Check Use Default Material at the bottom left of the LIBRARY MATERIALS panel or select
“Use Default” from the top of the list on the PLAN MATERIALS panel to apply the default material to any object that has a defaults dialog. See “Material Defaults” on page 758.

3. Select one of the Material Painter Modes from the edit toolbar.

4. If you selected a solid color material, choose whether to use the Blend Colors with Materials option and click the edit button to turn this feature on or off.
 - The mouse pointer displays a paint roller icon when Blend Colors With Textures is active.
 - The mouse pointer displays a spray can icon when the Material Painter is active and Blend Colors With Textures is not.

5. Note that the name of the material being painted displays on the left side of the Status Bar at the bottom of the program window. See “The Status Bar” on page 33.
 - Move your pointer over a surface in the 3D view. The Status Bar now states both the material being painted and the current material on the target surface.

6. Click on a surface to apply the selected material to that surface. The material is applied to surfaces in the model based on the active Material Painter Mode.

7. If either the Component or Object Mode is active, you can continue to click on surfaces to apply the selected material. When you are finished, select a different tool.

Material Eyedropper

The Material Eyedropper tool allows you to load the material assigned to an existing object into the Material Painter and apply that material to other objects and is similar to other Eyedropper tools. See “Eyedropper Tools” on page 215.

Blend Colors With Materials

The Blend Colors With Materials option allows you to apply a solid color to a surface displaying a texture or pattern and blend the two.

Blend Colors With Materials works in all five Material Painter Modes. See “Blending Materials” on page 764.

Material Painter Modes

There are five Material Painter Modes, each specifying how broadly or narrowly the selected material will be applied to surfaces in your plan. They are similar to other Painter Modes in the program, but rather than modify instances of an object type, the Material Painter Modes replace instances of a material based on the selected scope. See “Painter Modes” on page 216.

- Material Painter Component Mode is unique to the Material Painter Tools. It is the default mode and applies the selected material to a single component on the target object. For most object types, using this tool is the same as opening an object’s specification dialog and changing the material of one of its components on the MATERIALS panel. See “Materials Panel” on page 761.

- Material Painter Object Mode replaces all instances of a material on the target object.

- Material Painter Room Mode replaces all instances of a material in the current room.

- Material Painter Floor Mode replaces all instances of a material on the current floor.

- Material Painter Plan Mode replaces all instances of a material in the entire plan.

Material Painter and Walls

Painting walls is an obvious use for the Material Painter; however, it is important to note that the Material Painter Modes affect walls and rooms somewhat differently than they do other objects: particularly if a wall defines multiple rooms on the side that is being painted.

- Component and Object Modes only paint the section of the wall that defines the room located where you click to apply a new material. Sections of the same wall that define other rooms are unaffected.

- Room Mode applies the material to all walls and solid railings that define the room where you click provided that they have the same original
surface material as the one being painted. Any other objects in the room with that original material are also affected, but railings are not unless they are specified as Solid.

- **Floor** and **Plan Modes** apply the material to all walls, all railings, and any other objects with the same original surface material as the one being painted: either on the current floor, or throughout the plan.

Materials Panel

The specification dialogs for most objects include a **MATERIALS panel**. Select an object or a group of similar objects and click the **Open Object** edit button to open the specification dialog for that selection.

On the **MATERIALS panel**, you can specify material assignments for the components that make up that object. When a new material is assigned, the appearance of the preview image on the right side of the dialog updates.

If the selected object is using a material that is missing its texture, a **Caution** symbol will display next to the Materials panel name in the list on the left side of the object’s specification dialog. See “Referenced Files” on page 52.

![Base Cabinet Specification](image)

1. The table on the left side of the panel lists the components of the selected object that can be assigned unique materials, along with the names of those materials and whether or not the default materials are used. Some objects may have only one component while more complex objects may have many. As changes are made to the selected object, components may be added to or removed from this table.

 - Click on a Component in the table to select it. Multiple line items can be added to the selection set by holding down the Shift or Ctrl key. See “Shift and Ctrl Select” on page 170.

 - The selected component’s Material is stated in the list, to the right of the component name. If the component is using the default material, the name will be preceded by the word “Default:”. If it is using a Material Default, it will be preceded by the word “Default” followed by the name of an object type. See “Material Defaults” on page 758.

 - If the selected component belongs to a symbol object from the library, you can click on it a second time to rename it. See “Native Objects vs Symbols” on page 708.

Note: If the selected object is a wall or a room modified using the Material Painter, a component's Material may be described as “No Change”. See “Material Painter and Walls” on page 760.

2. The two boxes to the right of the table display previews of the color, pattern, and texture of the material assigned to the selected component. If “No Texture” displays in the preview window, the...
material has no texture assigned to it; if a Caution symbol and the words, “Texture Missing” display, the texture file could not be found on the system.

- Click Select Material to open the Select Material dialog. Choose a material and click OK to assign that material to the selected component. See “Select Material Dialog” on page 762.

A preview of the selected object displays on the right side of the panel. To view material textures, select Standard as the View Type; to view material patterns, select Vector View. See “Dialog Preview Panes” on page 32.

Select Material Dialog

The Select Material dialog allows you to select a material to apply to one or more objects and is opened by clicking the Select Material button on the MATERIALS panel of most specification dialogs or by using the Material Painter. See “Materials Panel” on page 761 and “Material Painter Tools” on page 759.

Depending on how it is accessed, the Select Material dialog will have either two or three panels:

- The Library Materials Panel allows you to select materials from the Library Browser.
- The Plan Materials Panel panel lets you to select materials from the Plan Materials dialog.
- The Material Defaults Panel lets you associate an object component with a Material Defaults category rather than a specific material and is only available when the component of a library symbol is selected on the MATERIALS panel of the object’s specification dialog.

Library Materials Panel

The LIBRARY MATERIALS panel is a modal version of the Library Browser that lists only materials. See “The Library Browser” on page 691.

Most of the settings on this panel are also found in the Select Library Object dialog. See “Select Library Object Dialog” on page 705.

The LIBRARY MATERIALS panel has most of the functionality that the Library Browser has, including the search, search filtering options, and preview options.

- To locate a material, either search using keywords or browse the tree list. See “Searching the Library” on page 695.
- To apply a material to an object, either click on the material and click OK or double-click on the item in the Selection Pane.
- Click the Add New Material button to open the Define Material dialog and create a new material saved in the user Catalog. See “Define Material Dialog” on page 769.
• Check **Use default material** to apply the default material to the selected object, if one exists. See “Material Defaults” on page 758.

• A preview of the selected material displays on the right. See “Dialog Preview Panes” on page 32.

The OK button is only active when a library item is selected. If a library folder or catalog is selected, the OK button cannot be clicked.

Plan Materials Panel

The **Plan Materials** panel is similar to the **Plan Materials** dialog and lets you select from a list of materials already present in the plan as well as manage that list. See “Plan Materials Dialog” on page 768.

Editing Materials

Much like objects, materials in Chief Architect can be edited so that they better suit your design needs. There are two approaches to material editing:

• Select a material in an unlocked library in the Library Browser, edit it, and your changes will be used when you next use the material in any plan. Changes made in this manner do not affect materials already in use in a plan.

• Apply a material to an object in a plan and then edit that applied material using either the **Plan Materials** dialog or **Adjust Material Definition** tool. Changes made in this way will affect any instances of that material in the current plan only.

Editing the material applied to an object is not the same as applying a different material to that object. See “Material Painter Tools” on page 759.

Library Browser

Right-click on a material in an unlocked library and select **Open Object** from the contextual menu to open the **Define Material** dialog for that material. See “Define Material Dialog” on page 769.

Plan Materials

Select **3D> Materials> Plan Materials** to open the **Plan Materials** dialog for the current plan. Select a material and click the **Edit, Copy, or New** button to open the **Define Materials** dialog. You can add a newly defined material to the library from the **Plan Materials** dialog by selecting it and clicking the **Add to Library** button. See “Plan Materials Dialog” on page 768.

Adjust Material Definition

The **Adjust Material Definition** tool is useful for changing plan materials directly from a 3D view.

Select **3D> Materials> Adjust Material Definition** and then click any surface in a 3D view to modify the material currently assigned to that surface in the **Define Material** dialog. See “Define Material Dialog” on page 769.
Changing a material definition with this tool affects all objects in the current plan that are using that material but does not affect any materials saved in the library or materials used in other plans. See “Adding Library Content” on page 700.

Creating Materials

Chief Architect provides a wide variety of materials - including numerous name brand material catalogs - that are ready to download and use. If you cannot find a suitable material, you can edit an existing material or create a new one. See “Editing Materials” on page 763.

In the Plan Materials Dialog

There are two ways to create a new material in the Plan Materials dialog. See “Plan Materials Dialog” on page 768.

• Click the New button to create a new material for use in the current plan file.
• Select a material and click the Copy button to make a new material based on the original, which can then be edited and used in the current plan.

To make a plan material available for use in other plans, select it and click the Add to Library button. See “Adding Library Content” on page 700.

In the Library Browser

Materials can be created in the Library Browser, making them available for use in any plan. See “Adding Library Content” on page 700.

In the directory pane of the Library Browser, right-click on an unlocked folder and select New> Material from the contextual menu. See “Using the Contextual Menus” on page 693.

The Define Material dialog opens, allowing you to specify the new material’s attributes. See “Define Material Dialog” on page 769.

Using Paste Image

A new material can be created by copying an image that will serve as its texture to the system clipboard, then navigating to a Chief Architect window and selecting Edit> Paste> Paste from the menu. See “Paste” on page 137.

From a Screen Capture

You can use the Screen Capture tools to create a texture based on a screen capture from any application and use it to create a new material in the User Catalog in the library. See “Creating Screen Captures” on page 867.

By default, materials created from a screen capture will be set to Stretch to Fit. If you would like the texture to tile instead, uncheck this box. See “Stretch to Fit” on page 766.

Blending Materials

In 3D views, you can create a new material by blending a solid color such as a paint color with a textured and/or patterned material. Select 3D> Material Painter> Blend Colors With Materials to toggle this feature on or off. See “Blend Colors With Materials” on page 760.

The result is a new material that is saved in the current plan. It can be found in the Plan Materials dialog, edited as needed, and added to the library if desired. See “Plan Materials Dialog” on page 768.

Materials created using the Blend Colors With Materials tool are given the name of the patterned/textured material with the extension “--PAINTED:” followed by the name of the solid color material.

Texture File Management

In order to display a material’s texture and material maps, Chief Architect needs to be able to locate the image files associated with them on your computer. See “Referenced Files” on page 52.

If a texture or material map referenced by a newly created material is not located in either the Chief Architect X12 Data folder or the installation folder for the program’s library textures, a copy of the file will be made in Chief Architect X12 Data\Textures\Material Data and the material will reference that copy. See “Chief Architect Data” on page 40.
Convert Textures to Materials

An entire folder of textures can be converted into a library of materials. Select 3D> Materials> Convert Textures to Materials and then browse to a folder of textures on your computer. The converted library folder assumes the same file structure as the original folder.

Materials created using this tool do not refer to texture files copied into the Data folder like individually-created materials.

Create Plan Materials Library

Select 3D> Materials> Create Plan Materials Library to create a library of materials based on the materials used in the current plan. This is useful for converting material template plans, a common way to store material definitions in prior versions of Chief Architect, into a materials library. This command creates a new library in the Materials category using the same name as the plan. Adding materials to the library individually allows you to store the material within the existing directory structure.

Mapping Patterns and Textures

Materials have two attributes that determine what they look like in 3D views: patterns and textures. See “About Materials” on page 758.

Both patterns and textures have points of origin, which determine where the pattern or texture begins on an X/Y axis. By default, this origin is 0,0; however, you can specify a different origin for each in the Define Material dialog. See “Define Material Dialog” on page 769.

You can also specify whether a material’s pattern and texture origins are set globally or independently for each object. By default, this mapping is per object; check Global Symbol Mapping on either the TEXTURE or PATTERN panel of the Define Material dialog to map all instances of the material throughout the plan from the same origins.

If a material has any material maps assigned to it, they use the same Offset settings as the texture. See “Material Maps” on page 758.

If a material is set to map globally, it may not look right on some surfaces in 3D views. If this is the case and you do not wish to map the material independently on each object, you can create a copy of the material for each surface that requires modification and specify its texture’s origin.

The fill styles of CAD objects are similar to material patterns and can also be mapped on an individual object basis. See “Fill Style Specification Dialog” on page 155.

Determining the Origin

Before a new origin can be specified, the display of coordinates in the Status Bar should be enabled. See “The Status Bar” on page 33.
To determine origin coordinates on the horizontal plane, place your cursor over the origin location in floor plan view. When the pointer is in the position you want to establish as the material origin, take note of the coordinates that display in the Status Bar.

To determine origin coordinates on the vertical plane, place your cursor over the origin location in a cross section/elevation view.

Once you have taken note of the new origin coordinates, enter them on either the PATTERN or TEXTURE panel of the Define Material dialog. See “Define Material Dialog” on page 769.

A texture or pattern origin is a property of the material rather than of the object that the material is assigned to. When an object is moved, the pattern or texture maintains its absolute position and may not look right. It is a good idea to assign pattern or texture origins only after the position of the object has been finalized.

Stretch to Fit

Some special textures, often used for artwork, do not tile. Instead, these textures resize to stretch across any surfaces that they are applied to. Materials that behave this way are specified as Stretch to Fit in the Define Material dialog.

To display an artwork texture, first place a wall or desk frame in your plan. A selection of both are available in the library. See “Placing Library Objects” on page 704.

Next, simply apply a material specified as Stretch to Fit to the center portion of the frame. See “Material Painter Tools” on page 759.

For more information about creating and using custom materials, see “Materials Tutorial” on page 491 of the Tutorial Guide.

Materials and the Materials List

When applied to structural components like slabs or wall, floor and ceiling, or roof layers, materials perform two important roles. They determine:

- How or whether certain features generate in the model.
- How or whether those components are calculated in the materials list.

These considerations are controlled by each material’s Structure Type and its Calculation Method, both of which are specified in the Define Material dialog. See “Materials List Panel” on page
Material Structure Types

The Material Structure Type controls how or whether certain structural features generate in the model.

- The Air Gap type is useful in layered material assemblies: for example, to produce an air gap in a masonry wall. Regardless of their pattern or texture specifications, Air Gap materials do not have a 3D presence at all and are not calculated in the Materials List. See “Material Layers Definition Dialogs” on page 750 and “Wall Type Definitions Dialog” on page 294.

- The Concrete type must be assigned to a wall type in order to cut a brick ledge into it. This type is also required to produce rebar, steel mesh, and pour number calculations in the Materials List. It is recommended for concrete walls, footings, monolithic slabs, and Slab Footings. See “Foundations” on page 521 and “Brick Ledges” on page 269.

- The Framing type is necessary in order to generate framing in wall, floor and ceiling platform, and roof plane assemblies. See “Framing Types” on page 627.

- The Masonry type must be assigned to the exterior layer of a wall type in order to generate a brick ledge in the wall below.

- The Steel Framing type is necessary in order to generate C-channel wall studs. Both Steel Framing and Framing types produce Lumber type framing in floor and ceiling platforms and roof plane assemblies.

- The Other type is useful for other structural applications such as sheathing and siding.

Calculation Methods

A material’s Calculation method controls how it is counted in the Materials List when it is applied to structural components like wall, floor, ceiling, or roof layers; slabs; or to generic objects like Primitive objects.

For Primitives as well as Soffits, Area, Count and Linear calculations are made for all sides of the object. The Depth of materials calculated by Count is used, but thickness is otherwise not noted.

- Area calculates the total area of a material in structural layers, and Primitives in square feet (m).
- Count calculates a piece count based the material’s Width, Height, and Depth.
- Linear calculates the total length of strips required to cover the area in feet (m).
- Volume calculates the total volume of a material in structural layers, and Primitives in cubic yards (m)
- None prevents the material from being calculated in the materials list at all. Provided that the material is not an Air Gap, it may still display in 3D views.

- Framing calculates materials using the selected Structural Member Reporting method. It is only available when the Framing Structural Type is selected. See “Structural Member Reporting” on page 945.

Once a Materials List has been created, the unit of measurement can be changed. See “Changing Count Units” on page 951.

Representing Overlap

Any material using the Count or Linear Calculation method can be set up to account for material overlap in the Define Material dialog. To do this:

- On the Pattern panel, set up the material’s pattern so that it accurately represents the size and shape of the exposed portion of an individual piece or strip.

- On the Texture panel, set the Scale to represent the appearance of the exposed material in rendered 3D views.

- On the Materials List panel, specify the full size of the actual material, including the overlapped portion.

If a material is set up to represent overlapping pieces, it is important that you not click the Update from Pattern button. See “Materials List Panel” on page 776.
Managing Plan Materials

The **Plan Materials** dialog allows you to manage the materials used in the current plan. Select **3D > Materials > Plan Materials** to open this dialog. You can also access its settings in the **Select Material** dialog. See “Select Material Dialog” on page 762.

When a material is applied to an object in a plan, a copy of that material is created and saved with the plan. If you use the **Define Materials** dialog to modify that material, your changes affect it wherever it is found throughout that plan. All objects in that plan that use that material are affected, but objects placed in other plans are not.

All materials that come with Chief Architect are stored in the Library Browser. You can create your own materials and save them there, as well. See “Creating Materials” on page 764.

Plan Materials Dialog

1. A scrollable, alphabetical list of the materials saved in the current plan displays here. Click on the name of a material to select it. Select multiple materials by holding down the Shift or Ctrl key.
 - If there is a check mark in the **In Use** column, the material is used by one or more objects in your plan or is defined as a default material for one or more objects in your plan.
 - If the **In Use** column is empty, the material was used at one time but is no longer assigned to any objects or used as a default.

2. The buttons on the right allow you to modify the selected material and manage the items in the list.
 - Click **Edit** to open the **Define Material** dialog for the selected material. See “Define Material Dialog” on page 769.
 - Click **New** to open the **Define Material** dialog to create a new material.
 - Click **Copy** to create a copy of the selected material and open the **Define Material** dialog where you can make changes to the copied material.
 - Click **Purge** to remove all unused materials from the plan.
 - Click **Delete** to remove the selected material from the plan. If the material is used in the model, you cannot delete it.
 - Click the **Merge** button to merge multiple selected materials into one. The material that is listed first is retained and all other materials in the selection set are deleted. Any instances of the deleted materials in the plan are replaced by the first material. Only available when multiple materials are selected.
 - Click **Add to Library** to add the selected material to the Library Browser, making it available for use in other plans. See “Adding Library Content” on page 700.
 - Click the **Replace** button to replace the selected material with a new one from the library. Materials assigned to objects as well as those set in
object defaults dialogs are affected. See “Select Library Object Dialog” on page 705.

A preview of the material applied to an object displays here. If multiple materials are selected at once, the first one in the list will display. Various options allow you to view different aspects of the material’s attributes:

- Display the material in Physically Based or Standard rendering, Vector View, or in a Ray Trace view.
- Zoom and orbit the object in the view.
- Toggle Color on or off.
- Click the Restore Original View button to reset the material preview to its original perspective.

Select an object shape: Cube, Sphere, Teapot, or Plane.

The Rendering Technique and object shape selections in this dialog’s preview are shared with the Define Material dialog. Unlike other dialog previews, these are retained when you close the dialog. The object shape selection is also shared with the Library Browser. See “Dialog Preview Panes” on page 32 and “The Library Browser” on page 691.

You can create a folder containing all of the current plan’s Plan Materials in the Library Browser User Catalog. See “Create Plan Materials Library” on page 765.

Define Material Dialog

The Define Material dialog allows you to adjust how materials look in 3D views as well as how they are calculated in the Materials List.

This dialog can be accessed in a number of ways:

- Use the Adjust Material Definition tool. See “Adjust Material Definition” on page 763.
- Select a material from the Plan Materials dialog and click Edit, New, or Copy. See “Managing Plan Materials” on page 768.
- Right-click on one or more materials in the Library Browser User Catalog and select Open Object from the contextual menu. When multiple materials are selected, some settings will not be available. See “Using the Contextual Menus” on page 693.
- You can also right-click on the User Catalog and select New> Material.

If you select a manufacturer’s material, some options in the Define Material dialog may not be available and the panels may vary.

If you access the Define Material dialog through a menu or specification dialog, any changes you make will affect that material wherever it is found in the current plan. Other objects in that plan using that material will also be affected, but objects outside the current plan will not.

The Rendering Technique and object shape selections in this dialog’s preview are shared with the Plan Materials dialog and, unlike other dialog previews, are remembered during the current program session. See “Dialog Preview Panes” on page 32.

Pattern Panel

Patterns are used to represent materials in Technical Illustration, Line Drawing, and Vector Views. See “Patterns and Textures” on page 758.
The Material Name displays here. You can type a different name if you wish. Renaming the material does not create a new material: it redefines the existing material. See “Creating Materials” on page 764.

- Check Keep Pattern/Texture in Sync to maintain consistent Scale and Offset and Angle settings for both the selected material’s pattern and its texture if any of these settings are modified.

Specify the Colors used to represent the material’s pattern in Vector Views. Click either color box to open the Select Color dialog and select a color. See “Color Chooser/Select Color Dialog” on page 160.

- The Material Color displays in Vector Views and is also used in Rendering Techniques that use textures when Toggle Textures is off, or if a material has no texture specified. See “In Vector Views” on page 792.

This color also affects Transparent materials in rendered and ray trace views: choose white for a fully transparent material or black for one that is completely opaque. See “Properties Panel” on page 774.

- The pattern Line Color displays in Vector Views only.

- Specify the Shading Contrast, which is the amount of contrast between surfaces at different angles to each other in Vector Views. See “Vector View” on page 829.

The following shows a curved wall with three different Shading Contrasts (created in a separate graphics program). Notice how the lowest contrast at the top appears almost flat.
Define Material Dialog

Specify the characteristics of the selected material’s Pattern. When “No Pattern” is selected as the Pattern Type, the Scale, Offset and Angle settings are disabled.

- Select a Pattern Type from the drop-down list. Select “Library” or click the Library button to select a pattern from the library. When a pattern is selected from the library, its name will display in the list. See “Select Library Object Dialog” on page 705.
- Click the Pattern from Texture button to create a custom pattern based on the material’s texture. When a pattern is created using this option, the name of the material’s texture file will display in the Type drop-down list. Only available if the material has a texture assigned to it. See “Pattern from Texture Dialog” on page 777.

Scale -

- Specify the Width of the selected pattern. For Concrete and Sand materials, instead adjust the overall pattern Spacing. Not available if Pattern from Texture has been used.
- Specify the selected pattern’s Height. Only available for Brick, Tile, Shingles, and U’s patterns.
- Specify the pattern’s Scale. If the pattern appears black in the square preview pane, this value should be increased. Only available for imported patterns and some patterns from the library.

Offset and Angle -

- Specify the Horizontal and Vertical Offsets, if needed, so the pattern displays correctly on surfaces. See “Mapping Patterns and Textures” on page 765.
- Specify the Angle, measured counterclockwise, in degrees.
- Check Global Symbol Mapping to map the pattern and texture using the same origin on all objects. When unchecked, the origin is defined individually for each object.
- Specify the Line Weight, which is the thickness of the pattern lines.

If the selected pattern has a Copyright, information about it displays here.

Texture Panel

In most Rendering Techniques as well as in ray trace views, materials are represented by textures and other material maps. See “Material Maps” on page 758 and “Rendering Techniques” on page 828.
Transparency information may be contained on the alpha channel of a texture; if so, it is used in rendered and ray trace views.

If a texture or material map referenced by a newly created material is not located in either the Chief Architect X12 Data folder or the installation folder for the program’s library textures, a copy of the file will be made in Chief Architect X12 Data\Textures\Material Data and the material will reference that copy. See “Chief Architect Data” on page 40.

The **Material Name** displays here. You can type a different name if you wish. Renaming the material does not create a new material: it redefines the existing material.

- Check **Keep Pattern/Texture in Sync** to maintain consistent Scale and Offset and Angle settings for both the selected material’s pattern and its texture if any of these settings are modified.

Texture Source - Displays the path and file name of the selected texture.

- Click the **Browse** button to browse to a texture file saved on your computer. Supported file formats are .jpg, .bmp, .png, .gif, and .tif. See “Creating Materials” on page 764.

- You can also type or paste the full path name of a texture in the text field. To remove the file, click the **Remove** button.

- Textures saved in .zip files can also be used. See “To use an image saved in a .zip file” on page 774, below.

Specify the **Scale** of the selected material’s texture and/or material maps.

- Adjust the **X Scale** and **Y Scale**, or height and width, of the selected texture.

If a rendered surface is larger than the area described by the Scale, the surface has “tiles” of the texture image. If it is smaller, only a portion of the texture is shown.
• Check **Stretch to Fit** to stretch the texture image to cover each surface it is applied to. Stretch to Fit is typically used for artwork or photography in a frame.

Note: Changing the scale or selecting Stretch to Fit can cause textures to appear distorted if applied to a surface with a different aspect ratio than the original texture image.

• Check **Retain Aspect Ratio** to maintain the ratio between the texture image’s height and width and prevent distortion when either its X or Y Scale value is adjusted.

4 Specify the **Offset and Angle** of the material’s texture and/or material maps. See “Material Maps” on page 758 and “Mapping Patterns and Textures” on page 765.

• Specify the **X and Y Positions** of the texture’s origin, if needed, to adjust its layout on surfaces.

• Specify the **Angle** of the texture on the surfaces of objects, in degrees.

• Check **Global Symbol Mapping** to map the texture and pattern using the same origin on all objects. When unchecked, the origin is defined individually for each object.

• Specify the characteristics of the **Material Color**. This can also be set on the PATTERN panel.

5 Check **Blend with Texture** to apply the Material Color over the material’s texture.

When a new material is created using the **Blend Colors With Materials** tool, the resulting material has this box checked. See “Blend Colors With Materials” on page 760.

• Click the **Color** button to specify the Material Color.

• Click the **Set Material Color Using Texture** button to use the predominant color of the material’s texture. See “Patterns and Textures” on page 758.

6 A **Bump Map** is an image file that makes a material look rough or textured. See “Material Maps” on page 758.

• The full path name of the selected bump map image **File** displays here. To remove the file, click the **Remove** button.

• Click the **Browse** button to browse to a bump map image file saved on your computer. Bump maps saved in .zip files can also be used. See To use an image saved in a .zip file, below.

• The **Scale** setting allows you to specify how drastic the effect of the bump map is. The default value is 0.01, but larger or smaller values may give better results, depending on the bump map. Values can be typed to 0.001 accuracy.

• Check **Invert** to correspond light areas in the image with low points in the bump map and dark areas with high points. When unchecked, the opposite occurs.

7 A **Normal Map** is an image file that makes a material appear to have depth.

• The full path name of the selected normal map image **File** displays here. To remove the file, click the **Remove** button.

• Click the **Browse** button to browse to a normal map image file saved on your computer. Normal maps saved in .zip files can also be used. See To use an image saved in a .zip file, below.

8 An **Ambient Occlusion Map** is an image file that affects how much ambient light each part of the material receives.

• The full path name of the selected ambient occlusion map image **File** displays here. To remove the file, click the **Remove** button.

• Click the **Browse** button to browse to a file saved on your computer. Ambient occlusion maps saved in .zip files can also be used. See To use an image saved in a .zip file, below.

9 A preview of the material’s texture displays in the square pane. It updates as you change the material definition.

10 A preview of the material applied to an object displays here and updates as changes are made to the material definition. Various options allow you to view different aspects of the material’s attributes:

• Display the material in Physically Based or Standard rendering, Vector View, or in a Ray Trace view.

• Zoom and orbit the object in the view.

• Toggle Color on or off.

• Click the **Restore Original View** button to reset the material preview to its original perspective.

• Select an object shape: Cube, Sphere, Teapot, or Plane.
To use an image saved in a .zip file

1. Type or copy the full path name of the .zip file in the text field.

2. Directly after the path name, type #zip:, followed immediately by the name of the bump map file including its file extension.

Properties Panel

The PROPERTIES panel controls how the material appears in most rendered 3D views and in ray trace views.

A material’s rendered appearance is also affected by the Render settings in the Preferences dialog and the lights that have been placed in the model. See “Light Types” on page 819.

For special lighting effects on an object, use at least one point or spotlight.

If a Roughness or Metal Map file referenced by a newly created material is not located in either the Chief Architect X12 Data folder or the installation folder for the program’s library textures, a copy of the file will be made in Chief Architect X12 Data\Textures\Material Data and the material will reference that copy. See “Chief Architect Data” on page 40.

The Material Name displays here. You can type a different name if you wish. Renaming the material does not create a new material: it redefines the existing material.

Select a Material Class from the drop-down list. Each material class has its own set of visual characteristics.

- **General Material** - Most materials fall into this category, which gives you control over a number of properties.
- **Reflective** - Similar to General Materials, Reflective materials are reflective rather than specular.
- **Plastic** materials are limited in that they are not specular, emissive, transparent, or reflective.
- **Shiny Metal** is also limited for a specific purpose and are not diffuse, emissive, or transparent. When ray traced, they do not use the material’s texture.
- **Predefined Metal** use scientifically measured physical properties of a selection of real-world metals. Predefined metals do not use the material’s pattern or texture when ray traced, and their editing options are limited to Roughness and metal type.
- **Polished** materials represent surfaces with multiple layers, such as those that are glazed, varnished, or buffed. They are not emissive, transparent, or reflective, but are specular and have additional control over Roughness.
• **Mirror** materials are limited to a specific purpose. They are not diffusive, specular, rough, emissive, or transparent and do not use the material’s texture when ray traced. When Reflections are enabled in a camera view, flat surfaces with a Mirror material display reflections. See “Reflections” on page 816.

• **Translucent** - Similar to General Materials, Translucent materials are not emissive or reflective. Contrary to the name, Translucent materials are not transparent, either. They do have a Translucency setting, but it only applies to light coming directly from a light fixture and only takes effect in ray trace views. Ambient light or reflected light cannot pass through Translucent materials so objects cannot be seen through Translucent materials at all - even in ray trace views.

• **Transparent** is another material class limited for a specific purpose. Transparent materials are not diffusive, specular, rough, or emissive, but do allow you to specify how light bends when passing through the material.

• **Matte** materials are also limited for a specific purpose. They are not specular, emissive, transparent, or reflective.

Adjust the settings associated with the selected Material Class using the slide bar or by entering a value in the text box to specify the appearance of the material in 3D views in which textures are used.

• Check **Metallic** to give the material the appearance of metal in Physically Based renderings and in ray trace views. Only available for General materials.

• **Diffuse** controls the degree to which the material’s main color contributes to its appearance. Not available for Metal, Mirror, or Transparent materials, or when Metallic is checked.

• **Specular** controls how bright the material appears when illuminated by a point or spot light. It simulates the reflection of light off a surface. Not available for Reflective, Predefined Metal, Mirror, or Transparent materials.

• **Roughness** controls how shiny a material is when illuminated by a point or spot light. A material with a low Roughness value has a bright, round spot of light when rendered with a point or spot light shining on it. Not available for Polished, Mirror, or Transparent materials, or when a Roughness Map is specified, below.

• **Transparency** controls how opaque or transparent a material is. Most materials are opaque while some materials, such as glass, are partially transparent. In some situations, materials with transparency can slow down rendering speed. Only available for General, Translucent, and Transparent materials, this option is not available when Metallic is checked.

![For maximum Transparency, specify the Material Color as white on the General panel of the dialog. A black material will be opaque regardless of its transparency setting. For a completely transparent material, select the General Material class and set the Transparency to 100%.

• **Emissive** controls how bright a material appears independent of the lighting in the scene. It can be used to simulate surfaces that are glowing with their own light, such as the glass on a light fixture. Choose a level of brightness from the drop-down list and customize it using the spin control arrows or text field. Only available for General materials, this option is not available when Metallic is checked.

• **Reflection** controls how reflective a material appears in ray trace views. See “Ray Trace Views” on page 839. For Mirror and Shiny Metal materials, click the **Color** button to specify the color of light reflecting off the material. For most material classes, Reflection is best seen at glancing angles to the surface. For reflectivity from all angles, use a Mirror material. Not available for General, Matte, Plastic, Polished, or Predefined Metal materials.

• **Translucency** controls the degree to which light coming directly from a light fixture shines through the material. Only available for Translucent materials, this setting only affect ray traced views.

• Select a **Metal** from the drop-down list. Only available for Predefined Metals.

• **Brushed Metal** creates a brushed appearance for Predefined Metal materials. Polished and Brushed Predefined Metals can have different amounts of roughness running in different directions on a given surface. These surfaces look different depending on the viewing angle.

• **U Roughness** produces reflective highlights oriented horizontally. Only available for Polished materials and Brushed Predefined Metal materials.
• **V Roughness** produces reflective highlights oriented vertically. Only available for Polished materials and Brushed Predefined Metal materials.

• **Index of Refraction** controls how much light bends when it passes through the material. A value of 1 is the lowest possible value and produces no light bending. Only available for Transparent materials.

• A **Roughness Map** defines areas of varying roughness and glossiness. Not available for Mirror or Transparent materials. See “Material Maps” on page 758.

• The full path name of the selected roughness map image **File** displays here. To remove the file, click the **Remove** button.

• Click the **Browse** button to select a file saved on your computer. Roughness maps saved in **.zip** files can be used. See “To use an image saved in a .zip file” on page 774.

• A **Metal Map** defines areas within a texture that are metallic. Only available for General materials.

• The full path name of the selected metal map image **File** displays here. To remove the file, click the **Remove** button.

• Click the **Browse** button to select a file saved on your computer. Metal maps saved in **.zip** files can be used. See “To use an image saved in a .zip file” on page 774.

• A preview of the material applied to an object displays here and updates as changes are made to the material definition. Various options allow you to view different aspects of the material’s attributes:

• Display the material in Physically Based rendering, Standard rendering, Vector View, or in a ray trace view.

• Zoom and orbit the object in the view.

• Toggle **Color** on or off.

• Click the **Restore Original View** button to reset the material preview to its original perspective.

• Select an object shape: Cube, Sphere, Teapot, or Plane.

• Select a **Ray Trace Configuration** from the drop-down list to use in the preview. Only available when Ray Trace is the selected preview view type.

Materials List Panel

The settings on the MATERIALS LIST panel control whether certain structural components are generated in the model as well as how the selected material is counted in the Materials List. See “Materials and the Materials List” on page 766.

1. The **Material Name** displays here. You can type a different name if you wish. Renaming the material does not create a new material: it redefines the existing material.

2. **Specifications** -

• Select a **Material Structure Type** from the drop-down list. The selected Type defines how - or
whether the material is calculated in the Materials List. See “Material Structure Types” on page 767.

- Select a Materials List Calculation method. When “Air Gap” is the selected Structure Type, the only available Calculation Method will be “None; when “Framing” is the selected Type, only “Framing” will be available. See “Calculation Methods” on page 767.

The settings that are available below depend on which Calculation method is selected.

- Specify the material’s Width. This value is available for Count and Linear Calculation methods.
- Specify the material’s Height. Only available for the Count Calculation method.
- Click the Update from Pattern button to make the Width and Height values here match those set on the PATTERN panel. Only available when Count or Linear is selected as the Calculation method.
- Specify the material’s Depth. Only available for the Count Calculation method, this value is only used for Materials List calculations when the material is applied to a Soffit or Primitive object. This value may also be used if the Material Painter is used to create a floor or ceiling finish. See “Floor and Ceiling Finishes and the Material Painter” on page 325.

The Spacing OC and Thickness settings are only available when “Framing” is the selected Structure Type and only affect wall framing. See “Wall Framing” on page 626.

- Specify the material’s Spacing OC.
- Specify the material’s Thickness. This value is only used if Use Wall Framing Materials is checked in the Build Framing dialog. See “Wall Panel” on page 634.

Manufacturer Panel

If the selected material is from a Manufacturer library catalog, the Define Material dialog will have a fifth panel: the MANUFACTURER panel, which lists contact information. See “Manufacturer Catalogs” on page 697.

Pattern from Texture Dialog

Click the Pattern from Texture button in the Define Material dialog to create a custom pattern based on the material’s texture. This dialog also opens if you click on the name of a custom pattern in the Type drop-down list. See “Pattern Panel” on page 769.
The **Simple** option is selected by default. Use the **Threshold** slider bar or text field to control the strength of edge lines in the pattern output. A low value produces many pattern lines while a high value produces few.

Select **Advanced** to enable additional controls for generating edge lines in the pattern.

- Use the **Low** and **High Threshold** slider bars and/or text fields to control the strength of edge lines in the pattern output. Low values produce many pattern lines while high values produce few.
- Click the **Auto Compute Thresholds** button to reset the Threshold values automatically generated for the current material texture.
- When **Use Threshold Factor** is checked, the High Threshold setting will be greater than the Low Threshold setting by the Threshold Factor value and the two values will be tied together. Uncheck this box to edit the two values separately.
- Specify the **Threshold Factor**, between 1 and 10. Not available when Use Threshold Value is unchecked.
- Select a **Filter Size** from the drop-down list. A smaller size generates fewer lines while a larger size generates more.

A preview of the material texture displays in the **Original Image** pane for reference.

A preview of the pattern displays in the **Output Image** pane. As changes are made to the settings on the left, this preview will update.
Little preparation is needed to create a 3D view of a model: simply click a button to create an overview or click and drag to create a camera or cross section/elevation view.

To improve the quality of the rendering and create a custom look, you can adjust lighting and edit the materials used in the plan. You can create Final and Ray Trace views that are even more realistic. See “3D Rendering” on page 815.

Many objects can be placed and edited in 3D views, and any camera view or overview can be saved or even used to record a walkthrough. See “Pictures, Images, and Walkthroughs” on page 853.

OpenGL and Hardware

Chief Architect features an easy to use rendering engine that makes use of OpenGL rendering technology, which has good hardware support on most video cards.

To take full advantage of these rendering capabilities of Chief Architect, a graphics card or chipset that supports OpenGL 3.3 on Windows or 4.1 on Mac is required. For more information, visit chiefarchitect.com.

If you plan to run Virtual Reality, make sure to verify the system requirements for your VR headset. See “Virtual Reality” on page 802.
Types of 3D Views

There are three categories of 3D views in Chief Architect: camera views, overviews and cross section/elevation views. Each of these view types can be generated using a variety of Rendering Techniques. See “Rendering Techniques” on page 828.

Every 3D view is also either orthographic or perspective in nature. Cross section/elevation views are always orthographic while camera views are always perspective. You can choose to generate overviews as either orthographic or perspective.

Perspective and Orthographic Views

Perspective views have a focal, or vanishing, point. Surface edges and lines that would be parallel in real life appear to converge towards that focal point, and objects closer to the camera appear larger while objects farther from the camera appear smaller.

Orthographic views do not have a focal or vanishing point. Parallel surface edges and pattern lines appear parallel in these views and objects appear to be the same size regardless of their distance from the camera.

Perspective Overview Orthographic Overview

Rendered and Vector Views

3D views can be generated using a variety of different Rendering Techniques. See “Rendering Techniques” on page 828.

Most rendered views represent materials using textures. Surface edge lines are generally not drawn and lighting is often modeled, creating results that range from a photorealistic appearance to artistic painting styles. Standard rendered views can also be Ray Traced for additional realism. See “Ray Tracing” on page 839.

Vector Views are non-photorealistic views in which objects are drawn using surface edge lines, or vectors. Limited lighting and shadows can be calculated and materials are represented using pattern lines and solid colors. Vector Views are ideal for layout drawings and high resolution printing. See “Vector View” on page 829.

Defaults and 3D Preferences

There are a number of defaults and preference settings that allow you to control the initial characteristics of 3D views.

Camera positioning, field of view and related initial settings for camera views are specified in the Camera Defaults dialogs. See “Camera Defaults Dialogs” on page 781.

The settings in the 3D View Defaults dialog control a variety of functions that affect views created by all 3D View tools. See “3D View Defaults Dialog” on page 782.

The default characteristics of the Generic Sun light source can be specified in the Generic Sun Defaults dialog. See “Adjust Sunlight Dialog” on page 827.

Which objects display in a 3D view and which do not is controlled in the Layer Display Options dialog. You can specify which layer set is initially used when a view is created by each of the 3D View tools. See “Layer Set Defaults” on page 148.

3D views can be generated using any of the Rendering Techniques. See “Rendering Techniques” on page 828.
The initial settings for each Rendering Technique can be set in the **Rendering Techniques Defaults** dialog. See “Rendering Technique Options” on page 831.

The **Render** panel of the **Preferences** dialog has settings that affect 3D views. See “Render Panel” on page 102.

Camera Defaults Dialogs

There are several defaults dialogs for cameras, which can be accessed by selecting **Edit > Default Settings** or by double-clicking either the **Orthographic** or **Perspective View Tools** parent button. In the **Default Settings** dialog, click the arrow next to “Camera tools”, then select a subheading and click the **Edit** button to open the defaults dialog associated with your selection.

The defaults dialog for Camera Tools other than Overviews can be accessed by double-clicking the associated toolbar button.

The various Camera Defaults in the list can be multiple-selected and then edited as a group by holding down the Shift or Control keys. Depending on the selection, not all settings may be available. See “Shift and Ctrl Select” on page 170.

The settings in the **Camera Defaults** dialogs affect how each type of camera captures, clips, and renders views; how they display in plan view; how they are positioned; and how they move.

Once a camera is created, its attributes can be customized. See “Editing 3D Views” on page 797.

Full Camera Defaults

Specify the initial attributes of cameras created using the **Full Camera** tool. See “Camera Views” on page 784.

The settings in this dialog are the same as those the **Full Camera Specification** dialog. See “Camera Specification Dialog” on page 806.

Note: The Reflections setting in the Full Camera Defaults is used by walkthroughs created using the **Walkthrough Path** tool. See “Recording a Walkthrough” on page 872.

Floor Camera Defaults

Specify the initial attributes of cameras created using the legacy **Floor Camera** tool. This tool is not in the menus or default toolbars but can be added to the toolbars and/or assigned a hotkey if you wish. See “Toolbars and Hotkeys” on page 107.

The settings in this dialog are the same as those in the **Floor Camera Specification** dialog.

Perspective Full Overview Defaults

Specify the initial attributes of cameras created using the **Perspective Floor Overview** tool. See “Full Overview” on page 786.

The settings in this dialog also affect **Perspective Framing Overviews**.
The settings in this dialog are the same as those in the
Perspective Full and **Framing Overview Specification** dialogs.

Perspective Floor Overview Defaults
Specify the initial attributes of cameras created using
the **Perspective Floor Overview** tool. See
“Floor Overview” on page 786.

The settings in this dialog are the same as those in the
Perspective Floor Overview Specification dialog.

Cross Section/Elevation Defaults
Specify the initial attributes of cameras created using
the **Cross Section/Elevation** tool. See “Cross
Section/Elevation Views” on page 784.

The panels in this dialog are also found in the **Cross Section/Elevation Specification** dialog. See “Cross Section/Elevation Camera Specification Dialog” on page 810.

Backclipped Cross Section Defaults
Specify the initial attributes of cameras created using
the **Backclipped Cross Section** tool. See “Cross
Section/Elevation Views” on page 784.

The panels in this dialog are the same as their respective panels in the **Cross Section/Elevation Specification** dialog. See “Cross Section/Elevation Camera Specification Dialog” on page 810.

Wall Elevation Defaults
Specify the initial attributes of cameras created using
the **Wall Elevation** tool. See “Cross Section/
Elevation Views” on page 784.

The panels in this dialog are the same as their respective panels in the **Wall Elevation Specification** dialog. See “Cross Section/Elevation Camera Specification Dialog” on page 810.

Orthographic Full Overview Defaults
Specify the initial attributes of cameras created using
the **Orthographic Floor Overview** tool. See
“Full Overview” on page 786.

The settings in this dialog also affect **Orthographic Framing Overviews**.

The panels in this dialog are the same as their respective panels in the **Orthographic Full and Framing Overview Specification** dialogs.

Orthographic Floor Overview Defaults
Specify the initial attributes of cameras created using
the **Orthographic Full Overview** tool. See
“Overviews” on page 784.

The panels in this dialog are the same as their respective panels in the **Orthographic Floor Overview Specification** dialogs.

3D View Defaults Dialog
Select **3D> 3D View Defaults** or **Edit> Default Settings** to open the **3D View Defaults** dialog.

The settings in this dialog control a variety of functions that affect views created by all 3D View tools.
The General Options affect all 3D views.

- Check Camera Bumps Off Walls to prevent cameras from moving freely through walls. This should be unchecked when using a 3D mouse or gamepad. See “3Dconnexion® 3D Mice” on page 794.

- Check Auto Rebuild Walls/Floors/Ceilings to automatically rebuild floors and ceilings before a 3D view or elevation is displayed. When this is unchecked and the structure is not up to date, the Rebuild Walls, Floors, Ceilings icon displays near your mouse pointer. See “Rebuilding Walls, Floors and Ceilings” on page 541.

- Check Legacy Compatible Texture Mapping to use global texture mapping settings rather than texture mapping fixed to individual objects.

- When Auto Adjust Default Glass Properties is checked, the program automatically adjusts the behavior of window, door, and electrical fixture glass in Standard rendered and ray trace views in response to interior and exterior lighting conditions. When this box is unchecked, these adjustments are not made.

- Check Always Display Active Cameras to turn on the display of active camera symbols, even when the “Cameras” layer is turned off. When unchecked, active camera symbols obey the layer setting.

- When Display Openings Independent of Walls and Roofs is checked, doors, windows, and skylights display in 3D views when their containing wall or roof plane does not. Uncheck this to prevent these objects from displaying in 3D when their parent objects do not.

The Vector View Options only affect views using the Vector View rendering technique. See “Rendered and Vector Views” on page 780.

- Framing Back Clip defines the back clip for framing members in cross section views. Framing must be set to display to see the effects of this value. A zero value does not back clip at all.

The View Types with Color On settings control which 3D view types are generated with Color toggled on when the Vector View Rendering Technique is used. See “3D View Tools” on page 784.

- Select a check box to generate that view type in color or uncheck to generate that view type in grayscale.

- A color view can also be changed to a grayscale and vice versa by choosing View> Color.

Specify how the Surface Edge Lines display for all objects in 3D views.

- Check Use Layer Settings to display surface edge lines for objects using the display settings specified by layer in the Layer Display Options dialog.

If this option is not checked, all edge lines are drawn black and solid with a line weight of 0.
• If Use Layer Settings is checked you can also check Use Object Settings. All objects that have special settings specified on the LINE STYLE panel of their specification dialog display using those settings, overriding the layer settings in the Layer Display Options dialog.

3D View Tools

Select 3D> Create Orthographic View to display the Orthographic View Tools or 3D> Create Perspective View to display the Perspective View Tools.

Camera Views

Camera views are Perspective views. They are not scaled and cannot be annotated but are ideal for creating presentation views.

The Full Camera tool creates multi-floor views of the 3D model. It can be used to create interior and exterior perspectives, and is good for displaying cathedral ceilings, roofs, lofts, stairwell openings, and other variation in floor and ceiling levels.

The Floor Camera tool creates perspective views of the current floor only. Nothing above the ceiling surface is generated, and neither is anything below the floor. This legacy tool is not in the menus or default toolbars but can be added to the toolbars and/or assigned a hotkey if you wish. See “Toolbars and Hotkeys” on page 107.

Overviews

An overview can be either orthographic in nature or perspective, depending on the tool used to create it. See “Creating Overviews” on page 785.

The Orthographic and Perspective Full Overview tools create views of the entire model including all floors, ceilings, and the roof.

The Orthographic and Perspective Floor Overview tools create views of the current floor with the ceiling removed and all floors beneath it visible.

The Orthographic and Perspective Framing Overview tools create views of the framing in the model. Framing must be built in order for it to display in a framing overview. See “Framing Overview” on page 786.

The Isometric Overview tools create specially oriented and scaled overviews that are common in engineering drawings. These tools are only available when an Orthographic Overview is active. See “Isometric Overviews” on page 786.

Cross Section/Elevation Views

Cross Section/Elevation views are similar to the traditional, scaled orthographic views often used in drafting. They are scaled and can be fully annotated. See “Cross Section/Elevation Views” on page 787.

A Cross Section/Elevation view displays all floors of the model. If the view is created outside the structure looking toward it, the result is an exterior elevation. If the view is created inside the structure, or passes through any of the structure, a cross section is created.

The Backclipped Cross Section tool includes only the objects between the starting point and stopping point of the cross section line.

The Wall Elevation tool creates an elevation of a wall on a single floor and in a single room. The Wall Elevation tool cannot be used to create exterior views.

Select 3D> Create Auto Elevations to access tools that create, save, and name elevation views as soon as the tool is selected. These tools can also be added to your toolbars. See “Auto Elevation Tools” on page 788.

The Front Elevation tool creates an exterior elevation of the front of the model (on screen, the bottom).

The Back Elevation tool creates an exterior elevation of the back of the model (on screen, the top).

The Left Elevation tool creates an exterior elevation of the left side of the model.

The Right Elevation tool creates an exterior elevation of the right side of the model.

The All Elevations tool creates an exterior elevation of the front, back, left, and right sides of the model.

The Create Room Elevation Views edit tool creates an interior elevation view of each wall defining a selected room. This tool is found on the
Creating Camera Views

All Camera views are created using the same method.

To create a camera view
1. In plan view, select the desired camera tool. The mouse pointer displays the camera icon.
2. Click and drag a line to define the view direction.
 - Where your line begins is the camera’s position.
 - The line that you drag defines the direction the camera is pointed.
 - The end of the line is the focal point of the view, the point the camera rotates around.
 - By default, the field of view is 55°.
3. When you release the mouse button, a view generates in a new window.
4. Return to the plan view. A camera symbol now displays in plan view. See “Working in Multiple Views” on page 124.

In order to create a camera view, you must click and drag at least as far as your current Snap Distance. See “Snap Properties Panel” on page 97.

Camera Height

By default, Cameras are created at a height of 60” (1500 mm). Where this height is measured from depends on the location of the camera:

- If the camera is inside of a room, it is measured from that room’s subfloor.
- If the camera is outside of a room but inside of the Terrain Perimeter, it is measured from the terrain at the location of the camera.
- If the camera is located in neither a room nor within the Terrain Perimeter, it is measured from the default height of the subfloor for the current floor.

Once created, a camera’s height can be modified in its Camera Specification dialog, and the default height value can be set in the Camera Defaults dialog. See “Camera Panel” on page 806.

Creating Overviews

In Chief Architect, there are three different overview types: Full, Floor and Framing Overviews.

Each type of overview can be generated as either an orthographic or perspective view. An overview window’s title bar indicates whether it is perspective or orthographic. See “Perspective and Orthographic Views” on page 780.

Overviews generate as soon as you select the tool and are always created at the same angle. The focal point is always located at the center of the model; however, the position of the camera will vary depending on the size of the 3D model. The larger or more spread out the model, the further away the camera will be from the focal point so that the entire model can be seen in the view.
Once generated, an overview window’s title bar indicates whether it is a perspective or orthographic view and a camera symbol representing the overview displays in plan view. The overview ‘camera’ can be edited much like regular camera views can. See “Editing 3D Views” on page 797.

Full Overview

Select 3D> Create Orthographic View> Orthographic Full Overview or 3D> Create Perspective View> Perspective Full Overview to generate an exterior view of the entire model.

Floor Overview

Select 3D> Create Orthographic View> Orthographic Floor Overview or 3D> Create Perspective View> Perspective Floor Overview to create a view of the current floor with the ceiling removed and all floors beneath it visible.

Floor Overviews are an effective tool for illustrating traffic flow and the relationships between spaces.

To see a different floor, select Tools> Floor/Reference Display> Up One Floor or Down One Floor. You can also return to plan view and make another floor current before generating the Floor Overview.

If you prefer, you can specify in the Camera Defaults dialog that only the current floor be included in Floor Overviews. See “Camera Defaults Dialogs” on page 781.

Framing Overview

Select 3D> Create Orthographic View> Framing Overview or 3D> Create Perspective View> Perspective Framing Overview to create a view of the entire model, displaying only framing and the foundation.

Select 3D> Create Orthographic View> Orthographic Framing Overview or 3D> Create Perspective View> Perspective Framing Overview to create a view of the entire model, displaying only framing and the foundation.

Framing overviews include all floor, wall, and roof framing as well as foundations. Unlike other overviews, which use the Camera View layer set, Framing Overviews use the 3D Framing Set. See “Layer Sets” on page 147.

Framing must be built before generating this view or the view will be empty.

Isometric Overviews

An Isometric Overview is a special orthographic view in which the camera is positioned in such a way that the angles between the X, Y, and Z axes are all 120° in that view. See “3D Drafting” on page 25.

In addition, Isometric Overviews use scaling that is approximately 1.2 times that used in a normal projection so that lines parallel to the X, Y, and Z axes measure their true length in the 2D projection. As such, Isometric Overviews can be useful for technical drawings but may not be well suited for presentation views.
Cross Section/Elevation Views

The Cross Section/Elevation, Back-clipped Cross Section, and Wall Elevation tools produce the traditional, orthogonal views often used in drafting. Regardless of their distance from the camera, all lines and dimensions in these views are their true lengths, making it easy to accurately see the spatial relationships of the 3D objects in the model.

Two additional elevation tools, Exterior Elevations and the Create Room Elevation Views edit tool, allow you to create and save multiple elevation views of either the entire plan or a single room with a single click.

Cross section/elevation views can be clipped to limit how much of the model is included in the view. See “Camera Panel” on page 811.

Cross section/elevation views are the only 3D views that can be enhanced with the 2D CAD tools. They can be fully annotated and dimensioned and then printed to scale.

Cross Section/Elevation Camera Tools

Each of the three cross section/elevation camera tools has a specific function.

A Cross Section/Elevation view displays all floors of the model. The cross section begins at the point where the camera arrow is drawn and continues through the entire model.

The Backclipped Cross Section tool includes only the objects or portions of objects between the starting point and stopping point of the camera’s Line of Sight.

The Wall Elevation tool creates an interior elevation of a single wall defining the room that the camera is drawn in. It does not cut through walls or show the ceiling, floor, or roof. It creates a 2D projection of a wall and the objects located between that wall and the camera and is used primarily for kitchen and bath elevations. This tool cannot be used to create exterior views.

By default, Wall Elevation views recognize room definition created by railings and invisible walls; however, you can specify that these types of walls are ignored in the Wall Elevation Specification dialog. See “Camera Panel” on page 811.

Cross Section/Elevation, Backclipped Cross Section, and Wall Elevation views are created in the same way.

To create a cross section/elevation view

1. Select the Cross Section/Elevation, Backclipped Cross Section, or Wall Elevation tool. The pointer changes to a with crosshairs marking the position of the pointer.
2. Click and drag a line in plan view.
1. Drag in the direction of the Line of Sight to draw a camera arrow.
 • Always drag the camera arrow perpendicular to the wall to be viewed.
2. When you release the mouse button, the view generates in a new window.
 • If the view is a Backclipped Cross Section, a second Cross Section Line at the end of the Line of Sight indicates the furthest extent of the backclip.
 • You can specify the length of the Clip Plane Indicators and also restrict the side to side extents of the view to them. See “Camera Panel” on page 811.

As with camera views, you must click and drag at least as far as your current Snap Distance in order to create a Cross Section/Elevation view. See “Snap Properties Panel” on page 97.

If the Line of Sight does not cut through a 3D object and the object is within the back clipped distance, such as a window shown in elevation, the object retains its 3D definition and can be selected, moved, stretched, or otherwise modified in the view. The 3D model is updated in all views.

Auto Elevation Tools

The Auto Elevation Tools create exterior elevations of the front, back, left and right sides of the model. To use any of these tools, simply select it: the camera view - or all four camera views - are automatically created, saved and named. See “Saving 3D Views” on page 805.

At least one wall or railing must be present in the plan in order for the Auto Elevation tools to work. If no walls or railings have been drawn, nothing will happen when any of these tools is selected.

The directions that these four elevation cameras point are directly related to the orientation of the X and Y axes, reference grid and snap grid in the plan. See “3D Drafting” on page 25.

The front elevation is located below the model on-screen and points upward while the back elevation is found above the model and points downward. This may not be the case, however, if you have used the Rotate Plan View tool. See “Rotate Plan View” on page 121.

If the same Auto Elevation view is created more than once, the additional camera symbols are placed progressively further away from the model in plan view and are numbered. If an Auto Elevation is renamed and then the view created again, the symbols may overlap.

The Auto Elevation Tools parent button can be added to the toolbars if you wish. See “To add a button to a toolbar” on page 109.

Room Elevation Views

The Create Room Elevation Views edit tool creates an interior elevation view of each wall defining or present in a selected room. To create elevation views for a room, select the room and then select this edit tool. See “Editing Rooms” on page 318.

Stepped Cutting Planes

By default, cross section/elevation views have a single, linear cutting plane - or, in the case of Backclipped Cross Sections, two cutting planes. To cut some objects while avoiding others, you can create one or more steps to a cutting plane using the Break Line edit tool. See “Break” on page 200.

To create a stepped cutting plane

1. In plan view, select a Cross Section/Elevation or Backclipped Cross Section camera. See “In Plan View” on page 791.
2. Click the Break Line edit button, then click on the front cutting plane of the selected camera symbol to add a new diamond-shaped Resize edit handle at the point where you clicked.
3. Click and drag the edit handle on either side of the break perpendicular to the cutting plane to create a step.

4. Click and drag the edit handle associated with the break parallel to the cutting plane to adjust the position of the step.

Detailing Cross Section/Elevation Views

CAD objects, including Text and Dimensions, can be created in cross section/elevation views. These objects are superimposed on the view and have no effect on the 3D model itself. If CAD objects have been added to a cross section/elevation view, the program will prompt you to save the view before closing the window. This information is then stored in the view.

Annotations in cross section/elevation views are created using the view’s Active Defaults, which can be set in the **Cross Section/Elevation Specification** dialog. See “Selected Defaults Panel” on page 811.

In cross section views, some objects, such as walls, may be represented using Cross Section lines. If a dimension line finds an object surface edge represented by a Cross Section line, a Point Marker will be placed at that location, and the dimension will locate it instead of the Cross Section line. See “Markers” on page 393.

CAD objects will snap to the Snap Grid when Grid Snaps are enabled. Note that the 3D model may obscure the display of the Snap Grid. See “Grid Snaps” on page 133.

When the Vector View rendering technique is used, you can select **CAD> CAD Detail From View** to create a 2D line drawing of the active cross section/elevation view in a CAD Detail window. This drawing can then be edited as needed. See “CAD Detail from View” on page 256.

Annotated cross section/elevation views can also be sent to layout. See “CAD and Text in Layout” on page 963.

Callout Labels

By default, cross section/elevation cameras display a callout symbol in plan view. When the view is sent to layout, the Automatic Text Below Line will report the Label of the layout page the view was sent to. To avoid unexpected results when using the Automatic Text Below Line, do not send the same camera view to layout more than once. See “Plan Display Panel” on page 812.

Auto Detail

The **Auto Detail** tool automatically creates CAD objects for commonly detailed components of cross section views. To use this tool, select **CAD> Auto Detail** while a cross section view is active.
Auto Detail creates CAD objects in walls, floor and ceiling platforms, foundation walls and footings, slabs, roof and ceiling planes, as well as Material Regions and Custom Backslashes that are intersected by the cross section plane as follows:

- **Walls** - Creates closed CAD polylines for each wall layer with a fill style specified in the wall type definition. The polyline uses the same fill as that specified for the wall layer. See “Wall Type Definitions” on page 292.

- **Floors and Ceilings** - Creates closed CAD polylines for each floor and ceiling layer with a fill style specified in the Platform or Finish definition. See “Floor and Ceiling Platform Definitions” on page 325.

- **Roof and Ceiling Planes** - Creates closed CAD polylines for each roof layer with a fill style specified in its Surface, Structure, or Ceiling definition. See “Roof Layers” on page 593.

- **Foundations** - Closed polylines are created for foundation walls, footings, and floors. The fill style for walls is specified for the wall layer in the wall type definition. The fill style for footings is “Concrete”. The fill style for the floor is set in the floor platform definition.

- **Slabs** - Closed polylines using the “Concrete” fill style are created for Slabs. See “The Slab Tools” on page 531.

- **Material Regions** - Closed polylines for each layer of a Wall or Floor Material Region or a Custom Backsplash are created. The polylines use the fill style specified in the object’s material layers definition. See “Floor and Wall Material Regions” on page 748.

Regardless of the fill style specified for a layer, if the associated material is assigned the Material Type of “Gap”, no CAD object will be created to detail that layer. See “Materials and the Materials List” on page 766.

The CAD objects created by the Auto Detail tool are placed on the Current CAD Layer. See “Current CAD Layer” on page 250.

Note that using the Auto Detail tool twice results in two copies of the same CAD objects.

Once created, these CAD objects can be selected and edited. See “Editing Closed Polyline-Based Objects” on page 180 and “Editing Box-Based Objects” on page 184.

Insulation

Instead of using the fill style specified for a given material layer, the Auto Detail tool can generate an Insulation CAD box. See “Insulation” on page 246.

When Auto Detail as Insulation is checked for a layer, Auto Detail will produce an Insulation box instead of a polyline with a fill style - even if a fill style is also specified.

Auto Detail as Insulation is not available if the selected layer has a “Gap” Material Type assigned to it.

See “Wall Type Definitions Dialog” on page 294 and “Material Layers Definition Dialogs” on page 750.

Displaying 3D Views

A variety of tools and settings allow you to control the appearance of 3D views. There are also numerous ways to adjust a 3D view’s position, focal point and field of view. See “Editing 3D Views” on page 797.

The name of the current plan file and the type of view displays at the top of each view window in its title bar. If a 3D view is saved, its name also displays.

There is no limit to the number of 3D view windows that you can have open at a given time; bear in mind, though, that each window demands use of your
Displaying 3D Views

computer’s resources and that you may see poor performance if too many views are open. See “Working in Multiple Views” on page 124.

Layer Display Options

Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Different view types use different layer sets when they are created. See “Layer Sets” on page 147.

To show framing in a cross section/elevation view, framing must first be built using the Build Framing dialog and the appropriate framing layers must be turned on in the Section View layer set. See “Framing” on page 625.

In Plan View

Cameras can be represented in plan view in either of two ways:

• By symbols that indicate the camera’s position, field of view and focal point.

• Camera symbols representing cross section/elevation views indicate the clip plane position, line of sight, and back clip plane position if there is one.

• By callouts or, for cross section/elevation views, double callouts.

You can control the display of a camera’s focal point and line or sight, or its backclip plane indicator and line of sight, as well as specify a camera symbol or callout, in the camera’s specification dialog. See “Plan Display Panel” on page 808.

2D camera symbols are located on the “Cameras” layer by default; however, you can place a selected camera on any layer you wish. See “Layers” on page 142.

By default, active camera symbols display regardless of whether the “Cameras” layer is on or off. If you prefer that their display be turned on or off with this layer, uncheck Always Display Active Cameras in the 3D View Defaults dialog. See “3D View Defaults Dialog” on page 782.

Active camera symbols and callouts use the Selection Line color set in the Preferences dialog. All other display attributes are derived from the “Cameras” layer. See “Colors Panel” on page 82.

By default, the symbols for Full Overviews, Cross Section/Elevation, and Backclipped Cross Section views display on all floors, while those for Full Cameras, Floor Overviews, and Wall Elevations display only on the floor where they were created. You can, however, specify whether any camera’s symbol displays on all floors or not in its specification dialog. See “Plan Display Panel” on page 808.

You can also move a camera to a different floor by clicking the Up One Floor or Down One Floor button while the camera view is active. Note that this may affect what is seen in the view as well as its display in plan view. See “Floor Up / Floor Down” on page 542.

Camera Labels and Callouts

Both saved and unsaved active cameras can have labels indicating the camera or callout number or its name. Camera labels are located on the “Cameras,
Labels” layer and use the Text Style assigned to that layer. See “Object Labels” on page 515.

- Camera labels and callout numbers are numbered sequentially in each plan in the order they were created unless you rename them.
- Camera labels always use the Camera Name. Saved cameras’ names can be specified in the Camera Specification dialogs. See “Camera Panel” on page 806.
- Saved camera callout labels and additional text can also be specified. See “Plan Display Panel” on page 808.
- If a cross section/elevation view using a callout is sent to layout, the layout page’s Label can display as the callout’s Text Below Line. See “Layout Page Information” on page 980.

Camera symbols display a letter indicating the Rendering Technique it uses. This letter uses the same text style as the camera label. See “Rendering Techniques” on page 828.

Camera symbols are an on-screen reference: they do not print unless Print Image is used and cannot be sent to layout except as an image. They are, however, included when CAD Detail from View is used and in views exported to .dxf/.dwg.

In contrast, camera callouts are included when the view is sent to layout, printed, or exported and when CAD Detail from View is used.

In Rendered Views

There are a number of factors that contribute to the appearance of rendered 3D views:

- Select 3D> Camera View Options> Toggle Textures in a 3D view to turn off the display of material textures. See “About Materials” on page 758. Not available in Glass House, Technical Illustration, Line Drawing or Vector Views.

- Select View> Color to toggle between color and grayscale in 3D views. See “Color On/Off” on page 154.

- Select 3D> Lighting> Adjust Lights to open the Adjust Lights dialog and edit the light sources in the current plan. See “Adjust Lights Dialog” on page 820.

Several other factors can contribute to the overall quality of a rendered 3D view. See “Rendering Tips” on page 815.

In Vector Views

There are also a number of factors that affect the appearance of 3D Vector Views:

- Select 3D> Toggle Patterns in a Technical Illustration, Watercolor, Line Drawing, or Vector View to turn on or off the display of the “Patterns, 3D Views” layer, which controls the display of material pattern lines. See “Layers” on page 142.

- Select View> Color to toggle between color and black and white to control the display line and fill colors.

- The line style, color, and weight of objects in Vector Views can be specified by layer or, for some objects, individually in their specification dialogs. See “Line Style Panel” on page 235.

- The line weight, color, and style of material patterns are set in the Define Material dialog. See “Define Material Dialog” on page 769.

- Line weights display on screen when Show Line Weights is enabled. See “Line Weights” on page 989.

3D Backdrops

A backdrop is an image, usually of an exterior view, that displays in the background of 3D views to help place the model into a realistic setting and add a sense of perspective. If a backdrop is not specified, Chief Architect applies a background color. See “3D Backdrops” on page 868.

Rendering Techniques

Any 3D view can be assigned a Rendering Technique for a range of different purposes: from detail drawings to artistic presentation views. Select 3D> Rendering Techniques to access these tools. See “Rendering Techniques” on page 828.

Delete 3D Surface

The individual surfaces that make up objects can be temporarily removed from any 3D view by selecting 3D> Delete Surface and then clicking on a surface. When the pointer is over a surface, that surface will become highlighted.

Surfaces removed in one view are removed in all 3D views, but are not permanently removed from the model. Continue clicking surfaces to remove them, then select another tool when you are finished.
Surfaces in 3D views are composed of multiple triangles. Hold the Alt key while clicking to delete one triangular face at a time rather than all triangles forming a surface. See “Edge Smoothing” on page 817.

To restore the most recently deleted surface, select 3D> Delete Surface or click the toolbar button.

There are several ways to restore all deleted surfaces:

- Select Build> Floor> Rebuild Walls/Floors/Ceilings.
- Exit the 3D view and reopen it.
- Generate a new 3D view.

Rebuild 3D

Select 3D> Rebuild 3D to regenerate all 3D data associated with the current plan. All open views will remain open.

Repositioning Cameras

Once a 3D view is created, there are many ways to manipulate the camera location and the direction of its line of site using the mouse, the keyboard, and the menus.

The Move Camera with Mouse buttons are included on the toolbars in 3D views by default; but, you can add the other tools your toolbars as well as customize their hotkeys. See “Toolbars and Hotkeys” on page 107.

When the keyboard, toolbar buttons, or menu commands are used to move or rotate a camera, the adjustments occur in regular increments. The size of these increments is specified in the Camera Specification dialog:

- The Incremental Move Distance controls Panning movement and forward and backward Dolly movement.
- The Incremental Rotate Angle controls Orbit movement, Tilt movement, and side to side Dolly movement.

See “Camera Panel” on page 806.

Each time you move the camera, the view is updated. If you are using either the toolbar or keyboard to move the camera, you can hold down the Shift key, suppressing the redraw of the view until the Shift key is released and allowing you to move multiple increments more quickly.

You can also move a camera to a different floor by clicking the Up One Floor or Down One Floor button while the camera view is active. Note that this may affect what is seen in the view as well as its display in plan view. See “Floor Up / Floor Down” on page 542.

Mouse Scroll Wheel and Trackpad

3D views can be panned and zoomed when any tool is active using the mouse scroll wheel or trackpad gestures. See “Trackpads” on page 27.

The program adjusts the speed of these actions depending on characteristics of the camera:

- Zoom speed depends on how close the camera is to the object located behind the mouse pointer. When the target object is far from the camera, zooming is faster; as the camera gets closer to the target, zooming slows.
- Panning speed depends on the length of the camera’s Line of Sight. In general, it is likely to be faster in an exterior view of a large model, slower in an interior view of a small room. See “Creating Camera Views” on page 785.

By default, panning and zooming adjusts the position and direction of the camera. It does not, however, adjust the distances at which surfaces are clipped. This means that if you zoom in closely on an object, some of its surfaces may be removed from the view. One way to avoid this is to lower the camera’s Clip Surfaces Within value in the Camera Specification dialog. See “Camera Panel” on page 806.
3Dconnexion® 3D Mice

3Dconnexion®’s 3D mice can be used to navigate in all views - including camera views and overviews. In the Windows version of Chief Architect, pre-programmed view direction hotkeys are supported on devices with buttons for that purpose. MacOS™ does not provide mapping support to the view direction commands; however, you can create custom hotkeys for the commands in Chief Architect and then program your 3D mouse to use those hotkeys. See Hotkeys.

In Orthographic views, navigation is centered around the camera’s focal point; for Perspective views, you can specify whether navigation is centered about the camera or its focal point in the Preferences dialog. See “Render Panel” on page 102.

For best results when using a 3D mouse, uncheck Camera Bumps Off Walls. See “3D View Defaults Dialog” on page 782.

Rolling is not supported in Chief Architect, In addition, 3D mice cannot be used to move the mouse pointer. For details about using your 3D Connexion® mouse, refer to its documentation.

Gamepads

In the Windows version of Chief Architect, gamepads can be used to navigate in camera views and overviews as well as elevation views.

To use a gamepad in Chief Architect, check Enable Gamepad in the Gamepad Settings dialog. You can also adjust the sensitivity and other aspects of thumbstick functionality when used in Chief Architect. See “Gamepad Settings Dialog” on page 116.

You can specify whether navigation is centered about the location of the camera or its focal point in the Preferences dialog. See “Render Panel” on page 102.

Each button on the gamepad is mapped to a command in Chief Architect. You can review and customize these commands in the Gamepad Settings dialog, as well.

If you wish, you can create a custom hotkey for Toggle Gamepad Change Height in 3D. See “Toolbar Customization Dialog” on page 111.

Move Camera with Mouse

An active camera’s position can be edited using the mouse. Select 3D> Move Camera With Mouse to access the Move Camera with Mouse modes. With the exception of Mouse Orbit Camera, which is available in Orthographic Overviews, these tools are not available in Orthographic views.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| **Mouse-Orbit Camera** lets you move the mouse to rotate the camera around its focal point. The camera’s position and direction both change.

To continuously rotate the camera around its focal point, click in the 3D view, drag the mouse, and release the mouse button to “throw” the view. Click again in the view to stop it from rotating.

To temporarily activate Mouse-Orbit Camera in the Windows version, hold down the Alt key and then click and drag using the middle mouse button. In the Mac version, hold down the Option + Shift keys, then drag using the left mouse button. When mouse button and keys are released, whatever tool was previously in use will still be active.

Note: Gamepads cannot be used in Virtual Reality. See “Virtual Reality” on page 802. |
Repositioning Cameras

Move Camera with Keyboard

An active camera’s position can be changed using the Arrow keys on your keyboard. Select 3D> Move Camera with Keyboard to access the Move Camera with Keyboard modes. With the exception of Mouse Orbit Camera, which is available in Orthographic Overviews, these modes are not available in Orthographic views.

These modes use the Incremental Move Distance and Incremental Rotate Angle set in the active 3D view’s Camera Specification dialog.

- **Keyboard-Orbit Camera** lets you use the keyboard to rotate the camera around the focal point. The camera’s position and direction both change.
- **Keyboard-Pan Camera** lets you move the camera up, down, right, and left using the keyboard.

Move Camera Tools

Select 3D> Move Camera in a 3D view to access these tools. These tools change the active camera’s position, but not its direction and are not available in Orthographic views.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Camera Forward moves the camera and its focal point forward.</td>
</tr>
<tr>
<td>Move Camera Back moves the camera and the focal point back.</td>
</tr>
</tbody>
</table>

Note: Although the Arrow keys are set to move active cameras by default, you can create custom hotkeys for these commands if you prefer. See “Hotkeys” on page 114.
<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Camera Left moves the camera and the focal point to the left in a line perpendicular to the line of sight.</td>
</tr>
<tr>
<td>Move Camera Right moves the camera and the focal point to the right in a line perpendicular to the line of sight.</td>
</tr>
<tr>
<td>Move Camera Up moves the camera and the focal point up.</td>
</tr>
<tr>
<td>Move Camera Down moves the camera and the focal point down.</td>
</tr>
</tbody>
</table>

Orbit Camera Tools

Select 3D> **Orbit Camera** in a 3D view to access these tools. Orbiting the camera rotates it about the focal point using the **Incremental Rotate Angle** set in the active view’s **Camera Specification** dialog.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Camera In moves the camera closer to the focal point along the line of sight. The camera cannot move past the focal point using this tool.</td>
</tr>
<tr>
<td>Move Camera Out moves the camera away from the focal point along the line of sight.</td>
</tr>
<tr>
<td>Orbit Camera Upward rotates the camera up about the focal point. The camera cannot rotate past a vertical line looking straight down on the focal point.</td>
</tr>
<tr>
<td>Orbit Camera Downward rotates the camera down about the focal point. The camera cannot rotate past a vertical line looking straight up at the focal point.</td>
</tr>
<tr>
<td>Orbit Camera Left rotates the camera to the left about the focal point.</td>
</tr>
<tr>
<td>Orbit Camera Right rotates the camera to the right about the focal point.</td>
</tr>
</tbody>
</table>

Tilt Camera Tools

Select 3D> **Tilt Camera** to access these tools. Tilting keeps the camera in one place and pivots the camera about its vertical or horizontal axis. This movement uses the **Incremental Rotate Angle** set in the active view’s **Camera Specification** dialog and is similar to tilting your head up and down or turning it side-to-side.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Camera Upward tilts the camera up while keeping it in the same location. The camera cannot tilt beyond the vertical position.</td>
</tr>
</tbody>
</table>
View Direction Tools

The View Direction Tools allow you to view the model from a specific direction in a camera view or overview. While one of these views is active, select 3D> View Direction to access these tools.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Camera Downward</td>
</tr>
<tr>
<td>turns the camera down while keeping it in the same location. The camera cannot tilt beyond the vertical position.</td>
</tr>
<tr>
<td>Turn Camera Left</td>
</tr>
<tr>
<td>turns the camera to the left while staying in the same location.</td>
</tr>
<tr>
<td>Turn Camera Right</td>
</tr>
<tr>
<td>turns the camera to the right while staying in the same location.</td>
</tr>
</tbody>
</table>

Editing 3D Views

In addition to its position and direction, there are other ways to modify a 3D view.

In the Specification Dialog

You can make adjustments to a camera in the Camera Specification dialog. This dialog is particularly helpful for making fine adjustments to the camera’s position, appearance, and other attributes. See “Camera Specification Dialog” on page 806.

Using the Edit Tools

A camera symbol or symbols selected in plan view can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

The Copy/Paste edit tool is available for a selected camera or overview. It is not, however,
available for cross section/elevation views. See “Copying and Pasting Objects” on page 136.

Using the Edit Handles

Return to plan view without closing the 3D view. See “Working in Multiple Views” on page 124.

Using the **Select Objects** tool, select the camera object. When a camera symbol is selected it displays six edit handles.

- Drag the **Rotate Label** handle or smaller **Move Label** handle to rotate or move the camera label.
- Drag the **Line of Sight** handle to change the camera angle without moving the focal point.
- Drag the **Move** handle to relocate the camera while maintaining its relative angle.
- Drag the **Focal Point** handle to reposition the focal point and change the line of sight without moving the camera.
- Drag the **Rotate** handle to rotate the camera’s line of sight about its center.

The 3D view corresponding to the camera symbol reflects changes made to the symbol in plan view.

![Camera edit handles]

- Drag either of the two **Resize Clip Plane** handles to adjust the length of the clip plane line, which is perpendicular to the camera’s line of sight. Left-click to resize the line concentrically and maintain the camera’s position; right-click to move the selected end as well as the camera. This will affect what can be seen in the view if **Clip to Sides** is checked. See “Camera Panel” on page 811.
- Drag the **Move Clip Plane** handle to move the camera and its clip plane parallel to its line of sight.
- If a stepped cutting plane is created, additional edit handles are available. See “Stepped Cutting Planes” on page 788.

Multiple camera symbols can be selected; however, their editing options are limited to being moved, rotated, and deleted. You can also create revision clouds around group-selected camera symbols.

Using the Contextual Menu

In a 3D view, right-click in an empty space in which the backdrop or background color displays to access the contextual menu. See “Contextual Menus” on page 30.

- In Vector Views, the options are a selection of commonly used commands from the File, Edit, Tools and Window menus.
- In the other Rendering Techniques, the options are a selection of tools and toggles specific to the current view.
Up One Floor/Down One Floor
You can move a camera to a different floor. While the camera view is active, select Tools> Floor/Reference Display> Up One Floor or Down One Floor. Note that this may affect what is seen in the view as well as its display in plan view. See “In Plan View” on page 791.

The position and movement of a camera is affected by its location within the model. When the camera is outside a building, its height is relative to the terrain and follows the terrain as it is moved. When inside a building, the camera height is relative to the floor of the room it is drawn in.

Which floor an active camera is on determines which floor is affected when any floor-specific actions are done. For example, if a camera is on Floor 2 and changes are made to the Floor Default settings while in that view, Floor 2 will be affected.

If the camera is on an upper floor and you move the camera outside of the building, the camera remains at the same height relative to the floor it was created on.

Zooming
The Zoom Tools are available in all 3D views. See “Zoom Tools” on page 126.

Cross Section Slider
Select 3D> Camera View Options> Cross Section Slider when a camera view or overview is active to open the Cross Section Slider dialog.

Selecting Window> Zoom In, Zoom Out or Fill Window does not change the camera’s location or field of view. Instead, the extents of the view are expanded or cropped.

If you wish, you can instead set the Zoom tools to change the Field of View when used in a 3D view. See “Render Panel” on page 102.

Field of View
The Field of View refers to a camera’s field of vision. A wider field of view makes the focal point appear further away, as more of the image is included in the same view window.

In plan view, the angled lines of a camera symbol indicate its field of view.

A camera’s field of view can be adjusted in the Camera Specification dialog. See “Camera Panel” on page 806.

Note: The Cross Section Slider is not available when the Vector View Rendering Technique is used. See “Rendering Techniques” on page 828.
To use the Cross Section Slider

1. Check the box beside a cross section cutting plane to select it and make its Position slider and text box active.
2. Move the Position slider to adjust the position of the cutting plane.
 • The cutting plane Position is measured from the edge of the model that is cut first by the selected cutting plane.

3. Repeat steps 1-3 to use additional cutting planes if you wish.
4. Click OK to close the dialog. If the active camera is saved, its Cross Section Slider settings will also be retained. See “Saving 3D Views” on page 805.

Working in 3D

A variety of tools are available in 3D views that allow you to edit your 3D model. You can also use the Dimension, Text, and CAD Tools to add annotation to cross section/elevation views.

Creating Objects in 3D Views

You can place windows, doors, cabinets, electrical objects, corner trim, and most library objects directly into 3D views. To do this, select the appropriate tool and click in the 3D view. You can then edit the object’s size and placement.

When created in 3D, most objects must be placed against a wall, on a floor platform, or within the Terrain Perimeter.

You can also click and drag to draw some CAD-based objects such as custom countertops, roof planes, terrain features and road, in camera views and overviews views.

The Build Framing and Build Roof dialogs are also accessible in 3D views, although the manual Framing Tools and Roof Tools are not.

Selecting and Editing Objects in 3D Views

Most objects can be selected and edited in 3D views. Select Edit> Select Objects and click on the surface of an object to select it. Once selected, objects can be edited using their edit handles, buttons on the edit toolbar, and the object’s specification dialog. See “Editing Objects” on page 163.

When you select an object, edit handles and a handle surface display. The handle surface is a rectangle around the perimeter of the object that indicates the overall height and width of the selected surface. The edit handles that display depend on the type of object selected. Walls, for example, display two resize edit handles when selected while a slab displays ten handles, allowing you to move, resize and reshape it.

Note: If the wall height of the Exterior Room is adjusted in a 3D view, the default Floor or Ceiling Height of the entire floor is changed. See “Floor and Room Defaults” on page 314.
All moving or resizing is in the plane of the handle surface. You cannot move an object directly towards or away from the camera, for example, because that surface plane cannot be seen in the view.

By default, object movement is restricted to one inch or 10 mm increments, but this restriction can be set to custom increments in the Plan Defaults dialog and toggled off and on using the Grid Snaps button. See “Grid Snaps” on page 133.

Unrestricted positioning can also be enabled by holding down the Ctrl key while moving or resizing an object. See “Unrestricted Movement” on page 193.

Temporary dimension lines display when many objects are selected to help you resize the object and determine its height. These are sometimes easier to see when the color is toggled off. See “Temporary Dimensions” on page 358.

Because cross section/elevation views are orthogonal and display objects at their actual dimensions, they are sometimes more suitable for editing objects than camera views or overviews. See “Cross Section/Elevation Views” on page 787.

When several 3D views are open, changes made in the plan automatically rebuild the model in all views. Because of this, it is typically faster to make changes to your plan with as few windows open as possible.

Editing Materials in 3D Views

Select 3D> Materials> Adjust Material Definition, then click on a surface in the 3D view to open the Define Material dialog for that material. See “Adjust Material Definition” on page 763.

Select 3D> Material Painter to apply materials to surfaces in the view using the Material Painter Tools. See “Material Painter Tools” on page 759.

Select 3D> Material Painter> Material Eyedropper to apply the material on a surface in the view to other surfaces in the view. See “Material Eyedropper” on page 760.

Rebuild 3D

As changes are made to your plan, a 3D view automatically updates to reflect any changes visible in the view. If you find that a view is not updating as expected, select 3D> Rebuild 3D to rebuild the entire 3D model.

Annotating 3D Views

The Dimension Tools, Text Tools, and CAD Tools are available in cross section/elevation views, allowing you to add technical information, call attention to details, and other tasks in these views. See “Detailing Cross Section/Elevation Views” on page 789.

You can also add annotation to any other 3D view by first making a line-drawn copy of the view using the CAD Detail from View tool. See “CAD Detail from View” on page 256.

Cross Section Lines

Cross Section Lines are created in cross section views to represent any objects split by the cross section line of the camera. They are placed on the “Cross Section Lines” layer, which is locked by default, and they get deleted and replaced whenever the view is redrawn.

When a dimension is drawn to locate an object split by a camera’s section line, it actually locates Cross Section Lines. So that dimensions can be retained when Cross Section Lines are regenerated, a Point Marker is automatically created where a dimension meets a Cross Section Line and the dimension locates it instead of the Cross Section Line. See “Point Markers and Dimensions” on page 393.

Cross Section Lines will print when their layer is turned on; however, they are not included when the view is sent to layout. The Point Markers created when dimensions locate Cross Section Lines, however, will both print and display in views sent to layout. See “Layout” on page 961.

The “Cross Section Lines” layer can be unlocked, allowing Cross Section Lines to be be selected and edited. Additional CAD objects can also be placed on this layer when it is unlocked, as well; however, when the view is redrawn, all CAD objects on this layer will be deleted and replaced with a fresh set of Cross Section Lines.
Virtual Reality

The Virtual Reality option is available in the Windows version of Chief Architect and allows you to view a plan in 3D using a VR headset. To view a model in VR, select 3D > Virtual Reality while a Perspective camera view or overview is active.

System Requirements

Three virtual reality headset models are supported for use in Chief Architect:
- HTC Vive
- Oculus Rift
- Microsoft Mixed Reality

In order to run Virtual Reality in Chief Architect, your computer should meet not only the program’s system requirements but also the system recommendations provided by your VR headset manufacturer.

In addition, you must first install Steam, a game and software distribution program available at store.steampowered.com.

Once it has been installed, you must also run the SteamVR Setup so that your headset runs through the Steam software. The setup will walk you through setting up the VR sensors in a clear area, free from obstructions, where you can walk and move around.

Virtual Reality can only be activated while viewing an active Perspective View using either the Standard or Physically Based Rendering Technique. See “Rendering Techniques” on page 828.

Safety Considerations

Virtual Reality should only be run in a space free of obstructions that could cause injury.

To avoid slow performance that could result in motion sickness, turn off any other CPU and GPU intensive applications on your system before launching Virtual Reality.

In addition, these settings are recommended in the current camera view prior to launching Virtual Reality:
- Turn Reflections off.
- Turn on a minimal number of lights and shadows.

See “Lighting” on page 817 and “Camera Specification Dialog” on page 806.

Just like in a Chief Architect camera view, it is possible to navigate through objects in the model when in Virtual Reality, like walls and furniture. To avoid disorientation or motion sickness, you should avoid doing so.

To avoid motion sickness while using virtual reality, gamepad style controllers are not supported. You can, however, walk within the area designated during your Steam VR Setup. To navigate to different locations in the model, you can also teleport as well as switch between Room View and Overview modes.

Room View and Overview Modes

Chief Architect has two Virtual Reality modes:
- In a Room View, you can navigate a model by looking around, walking, and teleporting. Room View is active when you enter VR from a Perspective Camera view.
- In an Overview you can move and rotate the model in order to examine its exterior. Overview mode is active when you enter VR from a Perspective Overview.

Note: For best results, use the Full Camera tool for Room Views rather than Floor Camera. See “3D View Tools” on page 784.

In both modes, your initial position and orientation in Virtual Reality are based on the position and angle of the camera. As you turn your head or walk, the view seen in the VR headset will update to reflect your movements. The original camera in Chief Architect will be unaffected, however.

Once you enter Virtual Reality, you can switch between the two modes:
- To transition from Room View to Overview, point either VR controller straight up until the Teleport Line changes to a short gray line. Press and hold the Transition button on your VR controller until the line changes entirely to the Mode Transition Color and the controller vibrates, then release the button. See “Virtual Reality Dialog” on page 803, below.
- To transition from Overview to Room View, point either VR controller toward a valid surface on the model. Press and hold the Transition button until the line changes entirely to the Mode Transition Color and the controller vibrates, then release the button.
Navigating Room Views

In a Room View, you can explore a model by looking around, walking in your predefined VR space, and teleporting.

To teleport to other locations within the model, press and hold the Trigger on your VR controller while aiming at a suitably flat surface. A Teleport Marker will appear at the location that you point at, and releasing the Trigger will teleport you to that location.

In Room View, the VR controller projects a Teleport Line that indicates whether a targeted surface is a valid location to teleport to. A valid surface is defined as any surface that has less than 45° pitch, however if a valid surface exists less than 12” below an invalid target location, it will show as valid and the teleport marker will be placed next to the targeted surface. This allows you to easily teleport next to an otherwise invalid surface, such as a wall or cabinet.

To cancel a teleport action, aim the Teleport Line at an invalid location. When the line changes color and the Teleport Marker disappears, release the Trigger.

In Room View, a number of navigation actions can be completed using your VR controller. These controls are the same on both right and left controllers, but specific functions differ slightly depending on the VR controller used.

Navigating Overviews

In Overview mode, you can examine and model by moving and rotating it in front of you as if holding a scaled version of the model.

In this mode, the Grip buttons on your VR controller allow you to “grab” and rotate the model. Using the Grip buttons on both VR controllers simultaneously gives a more natural rotation, as if grabbing and rotating the entire model.

Pressing and holding the Trigger allows you to drag the model in any direction: up, down, left, right, towards you, and away from you.

Pressing the Triggers while holding the Grips on both controllers simultaneously allows you to zoom in and out. Moving your hands apart will zoom in to the model, moving them closer together will zoom out.

In Overview mode, a number of actions can be completed using your VR controller. These controls are the same on both right and left controllers, but specific functions differ slightly depending on the VR controller used.

<table>
<thead>
<tr>
<th>Action</th>
<th>HTC Vive/ Microsoft</th>
<th>Oculus Rift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teleport</td>
<td>Trigger</td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>Trackpad Left</td>
<td>Thumbstick Left + Click</td>
</tr>
<tr>
<td>Redo</td>
<td>Trackpad Right</td>
<td>Thumbstick Right + Click</td>
</tr>
<tr>
<td>Reset</td>
<td>Menu Button</td>
<td>Thumbstick Up + Click</td>
</tr>
<tr>
<td>Transition</td>
<td>Trackpad Down</td>
<td>X or A Button</td>
</tr>
<tr>
<td>Update Lighting</td>
<td>Trackpad Upper Click</td>
<td>Y or B Button</td>
</tr>
</tbody>
</table>

Virtual Reality Dialog

To view a model in VR, select 3D> **Virtual Reality** while a Perspective Camera view or Overview is active. The **Virtual Reality** dialog will open.
The current **Virtual Reality Status** is stated at the top of the dialog, along with information about graphics card or chipset being used on the computer.

- Click the **Toggle Virtual Reality** button to turn Virtual Reality on or off.

Information about your graphics card is displayed here for reference. See “OpenGL and Hardware” on page 779.

Options -

- Validity of a surface is indicated by the color of the teleport line. The **Valid Teleport Line** and **Invalid Teleport Line Colors** can be set here.

- The teleport line will display the **Mode Transition Color** when switching between Room View and Overview Modes. This color can also be set here.

- When Virtual Reality is active, the program window shows what the user sees in the VR headset. By default, both eyes’ views are shown in a split screen. If you would prefer to see only the left eye’s view, uncheck **Display Both Eyes On Screen** in the **Virtual Reality** dialog.

- When **Update Lighting on Teleport** is checked, the lighting in the model will update when you teleport more than 10 feet (3 m) to ensure that your destination has lighting. Uncheck this is you prefer to only update lighting manually using the controller.

Specify how the teleport feature works in **Room View Mode**.

- **Use Curved Teleport Line** changes the teleport line from a straight line to a curved arc. This is checked by default for Room Views.

The **Teleport Reference Height** setting determines how the camera height is calculated when the teleport feature is used.

- When **Floor Under Marker** is selected, the new camera position will calculate its height based on the floor surface, or the floor directly beneath where the teleport marker lands if locating a raised surface such as a countertop or table. This may result in being teleported inside of furniture or other objects.

- When **Surface at Marker** is selected, the new camera location will determine its height from the surface where the marker landed. This will place the camera on top of objects such as furniture and may result in the view being in or above the ceiling.

Specify how the teleport feature works in **Overview Mode**.

- **Use Curved Teleport Line** changes the teleport line from a straight line to a curved arc. This is unchecked by default for Overviews.

- **Lock X-Axis Rotation** prevents the model from being tilted vertically.

- **Lock Y-Axis Rotation** prevents the model from being rolled left to right.

- **Lock Z-Axis Rotation** prevents the model from being spun horizontally.

When Virtual Reality is active, neither the camera nor the model can be edited in any way. If you wish to make modifications, you must **Toggle Virtual Reality** off in the **Virtual Reality** dialog, make the necessary adjustments, and then reenter Virtual Reality again.
Saving and Printing 3D Views

3D camera views, overviews and cross section/elevation views can be saved with the plan in which they are created, exported and saved as image files, as well as sent to layout and printed.

Saving 3D Views

Select 3D> Save Active Camera to save the current camera in the plan. You can also save a camera view by checking the Saved box in the Camera Specification dialog. See “Camera Specification Dialog” on page 806.

Saved cameras can be closed and re-opened for later use, and retain their Cross Section Slider, Sunlight, Shadows, and Rendering Technique settings. See “Cross Section Slider” on page 799, “Adjust Sunlight Dialog” on page 827, “Shadows” on page 815, and “Rendering Techniques” on page 828.

In addition, if CAD or Text objects are drawn in a cross section/elevation view, you will be prompted to save the view when you close it. Any CAD or Text objects added to a cross section/elevation view are saved with the view as part of the plan file.

Once a 3D view is saved, it is listed in the Project Browser and can be named. The name displays in its label with the camera symbol in plan view and in its view window tab. See “Project Browser” on page 56.

Activating Saved Views

There are three ways to open a saved 3D view:

- Select the camera symbol in plan view and click the Open View edit button.
- Double-click the camera symbol using the Select Objects tool.
- Double-click on the saved camera view in the Project Browser or right-click on it and select Open View from the contextual menu.

Unsaved cameras that are open in another view window can also be activated using the Open View edit button.

If you open a saved camera view and then modify its location or direction using any of the tools available in that view, the program will confirm whether you want to re-save the camera using these new settings when you close it. See “Repositioning Cameras” on page 793.

CAD Detail From View

In any 3D view using the Vector View rendering technique, you can select CAD> CAD Detail From View to generate an editable line drawing of the view in a CAD Detail window. CAD Details created from a view do not update when the model is changed. See “CAD Detail from View” on page 256.

Exporting 3D Views

All 3D views can be exported and saved as .bmp, .jpg, .png, or .tif files. Select File> Export> Picture to save the current screen image as an image file. See “To export a picture” on page 859.

The Export 360 Panorama tool creates a spherical panoramic image file. See “Export 360 Panorama” on page 896.

In addition, Vector Views can be exported and saved as .emf files. See “Metafiles” on page 861.

Once saved, a picture can be opened and converted into many other formats using a graphics program. Picture files can be sent to layout or used in word processing, desktop publishing, and web development programs to create advertisements, brochures, etc.

Plan Backup

When transferring a plan to another computer or to another user, it is helpful to include all the Images, Textures, and Backdrops used in the plan so that rendered views are complete. The Backup Entire Plan tool allows you to do so. See “Backup Entire Plan or Project” on page 53.

Printing 3D Views

Since all 3D views other than Vector Views are created using pixels instead of lines, File> Print> Print Image must be used when printing. Print Image is a special Chief Architect function that prints the screen in picture format. The entire view prints, including images such as plants and textures. 3D views can also be sent to layout and then printed as part of your construction documents.

Select File> Send to Layout to send the current view to layout. See “Sending Views to Layout” on page 965.
Select a saved, inactive camera symbol in plan view and click the **Send Camera’s View to Layout** edit button to send the view to layout.

For high quality renderings, consider using ray tracing. See “Ray Tracing” on page 839.

Closing 3D Views

Although you can have any number of 3D views open at a time, to conserve resources on your computer it is a good idea to close views when you no longer need them. There are a number of different ways to do this. See “Closing Views and Files” on page 128.

Camera Specification Dialog

The **Camera Specification** dialog can be accessed in plan view by selecting one or more camera symbols and clicking the **Open Object** edit button. See “In Plan View” on page 791.

This dialog can also be accessed while a camera view or overview is active by selecting **Tools > Active View > Edit Active View**.

The selected view’s specific type is indicated in the dialog’s title bar: the specification dialog for a **Full Camera** (), for example, is named **Full Camera Specification**.

The settings in this dialog are also found in the **Full Camera, Floor Camera**, and all **Overview Defaults** dialogs. See “Camera Defaults Dialogs” on page 781.

Camera Panel
Some settings only affect some types of views. Depending on the type of camera view selected, not all the settings may be available.

1. **General** -

 - Specify the **Name** that displays in the camera label in plan view and in the Project Browser. See “Project Browser” on page 56.
 - Check **Saved** to save this view with the plan. As soon as you type anything in the text field, this box becomes checked. If you click OK while this box is checked, it will become checked permanently. Saved cameras are listed in the Project Browser.
 - Select the selected camera’s **Rendering Technique** from the drop-down list. See “Rendering Techniques” on page 828.
 - Check **Show Shadows** to turn on shadows in the selected camera view. When unchecked, shadows are not generated. See “Shadows” on page 815.
 - Check **Ray Casted Sun Shadows** for higher quality shadows cast by sun light. Ray Casted Sun Shadows take longer to generate than regular shadows and only refresh when the camera is not moving.

 Note: Ray Casted Sun Shadows are not used in Virtual Reality. See “Virtual Reality” on page 802.

 - Check **Reflections** to turn on reflections in the selected camera view. When unchecked, reflections are not generated. See “Reflections” on page 816.
 - Light **Bloom** occurs around areas of intense illumination and looks as though the light is ‘bleeding’ beyond the edges of the light source. It adds realism to the view but can take longer to render. Only affects Standard, Duotone, and Watercolor renderings. See “Rendering Techniques” on page 828.

 - Check **Edge Smoothing When Idle** to apply high quality edge smoothing to edge and pattern lines when the selected camera is not in motion. See “Edge Smoothing” on page 817.

 - Select the amount of **Ambient Occlusion** in the view using the slider bar or text field. Ambient Occlusion allows variation in the strength of the ambient light. It is more realistic than uniform ambient light, but can take longer to render. Only affects Standard, Duotone, Painting, Watercolor, and Physically Based renderings. See “Ambient Lighting and Occlusion” on page 818.

2. **The Lighting** settings control which and how many light sources are used in the current view. See “Light Sets” on page 820.

 - Select **Automatic**, then specify the **Maximum Number** of lights that can be used in the current camera view.
 - Select **Light Set**, then choose a set from the drop-down list. Click the **Adjust Lights** button to view and modify the selected Light Set’s properties. See “Adjust Lights Dialog” on page 820.

3. **The Positioning** settings determine the position and orientation of the camera. See “Repositioning Cameras” on page 793.

 - The **Height Above Floor** defines the height that the camera is above the floor level for the current floor. See “Camera Height” on page 785.
 - The **Tilt Angle** determines the vertical angle that the camera is tilted. The camera maintains its focal point and position in plan view, but if the camera is tilted, the focal point is above or below the current camera height.
 - Specify the selected camera’s **Camera Angle**. This is an absolute value: an angle of 0° points the camera toward the left in plan view.
 - Specify the **X Position** and **Y Position** for the selected camera. These are absolute coordinates. Specifying zero for both places the camera at the plan’s origin point (0,0).
 - The **Incremental Move Distance** controls how far the camera moves each time you Pan in any direction or Dolly forwards or backward using the keyboard, toolbar buttons, or menu. For interior views a small number is good, but for exterior you may want a larger increment.
 - The **Incremental Rotate Angle** defines how many degrees the camera rotates each time you Tilt, Orbit, or Dolly side to side using the keyboard, toolbar buttons, or menu. A setting of 90° would make one full rotation in four moves.
 - The **Field of View** defines the camera’s field of vision in angular degrees. See “Field of View” on page 799.

4. **Options** -

 - **Clip Surfaces Within** - Objects located within this distance from the camera do not display in
the view. Decrease this value to display objects located close to the camera; increase it to improve the appearance of some surfaces in Overview cameras with very large extents.

- Uncheck Show Lower Floors to show only the current floor in the selected Floor Overview. When checked, the current floor plus any floors beneath it are included in the view. Only available for Floor Overviews. See “Floor Overview” on page 786.

- Check Hide Camera-Facing Exterior Walls to suppress the display of any exterior walls that face the camera. Interior walls set as Attic walls are also suppressed. This setting only has an effect when the selected camera’s position is on the exterior of a structure and can also have an associated toggle. See “Hide Camera-Facing Exterior Walls” on page 817.

Selected Defaults Panel

The settings on the Selected Defaults panel control which Saved Defaults and layer settings are used in the view. These settings are also found in the Active Defaults dialog. See “Active Defaults Dialog” on page 69.

Plan Display Panel

The settings on the Plan Display panel control the appearance of the selected camera in plan view. See “In Plan View” on page 791.

1. Check Display on All Floors to display the selected camera’s symbol on all floors. When unchecked, it only displays on the floor where the camera was created. See “Creating Camera Views” on page 785.

2. Check Display As Callout to use a callout symbol to represent the selected camera and enable the settings that follow:
 - Specify the Callout Label, which is the text that displays inside the callout circle. If no Text Below Line is specified, the Callout Label is centered in the callout.
 - Specify the Text Below Line for a bottom row of text, if desired. Check Automatic to populate the Text Below Line with the camera’s Name, as specified on the Camera Panel. See “Camera Labels and Callouts” on page 791.
 - To specify the Callout Size, uncheck Automatic and then type in the text field. When Automatic is checked, the size is based on the length of the Callout Label and the size of the current Text Style.
 - Specify the appearance of the Callout Arrow. Choose None, a Small arrow, or a Large arrow.
Uncheck **Filled** if you do not want a solid filled arrow.

- **Note:** A camera callout arrow will only display its solid fill when the camera view is not open. When the view is open, the arrow will display as transparent.

The **Standard Options** settings allow you to specify the appearance of the selected camera’s standard symbol. Uncheck **Default** beside any of these options to modify it. Most of these options are disabled when **Display As Callout** is unchecked, above. See “Dynamic Defaults” on page 67.

- **The Camera Symbol Size** is measured in plan inches (mm).
- Check **Show Camera Focal Point** to display the camera’s focal point in plan view. When unchecked, the camera’s line of sight and focal point are hidden until the camera is selected.
- Check **Show Field of View Indicators** to display the camera’s field of view indicators in plan view.
- You can also change the **FOV Indicator Length**, which is measured in plan inches (mm).

Backdrop Panel

The settings on the Backdrop panel allow you to specify a backdrop image or color to display behind your model in the selected 3D view. See “3D Backdrops” on page 868.

1. **Specify Backdrop** - A preview of the selected backdrop image is shown here. A backdrop cannot be selected or removed when **Use Generated Sky** is checked, below.
 - **Backdrop Name** - The selected backdrop image’s name displays for reference.
 - Click **Select Backdrop** to choose a backdrop image from the library. See “Select Library Object Dialog” on page 705.
 - **Click Remove Backdrop** to use a solid color instead of a backdrop image in all 3D views, then specify the color below.
 - Click the **Color bar** to select the **Background Color** that displays when a backdrop image is not being used. See “Color Chooser/Select Color Dialog” on page 160.
The Background Color for plan views and CAD Details is set in the Preferences dialog. See “Colors Panel” on page 82.

Backdrop Options -

- Check Use Generated Sky to simulate a daytime sky backdrop. When checked, Spherical Panoramic Backdrop will also be checked and a preview of the Generated Sky will display above.

Note: If Use Generated Sky is in use as the backdrop in the current view and Sun Follows Camera is checked, the Generated Sky will not update if the camera is moved.

- Specify a Haze Level of Low, Medium, or High. This determines the degree to which light in the sky backdrop appears to be scattered by particles in the air.

- Specify a Horizon Level using the text field or slider bar. The default value of 44% works well in most situations.

- Check Spherical Panoramic Backdrop to place the selected backdrop onto a sphere that surrounds your model in camera views and overviews.

- The Horizontal Angle and Vertical Angle settings are the same as those in the Backdrop Specification dialog. If these values are changed here, the backdrop saved in the library will be unaffected. See “Backdrop Specification Dialog” on page 869.

Layer Panel

The setting on the Layer panel lets you choose which layer the selected camera’s plan view symbol is placed on. For more information, see “Layer Panel” on page 149.

Label Panel

In the Camera Specification dialogs, the settings on the Label panel are limited to the Suppress Label checkbox and Position and Orientation settings. Camera labels always use the Camera Name specified on the Camera panel. When callouts are used, the Callout Label and Text Below Line are specified on the Plan Display panel.

For information about this panel, see “Label Panel” on page 516.

Cross Section/Elevation Camera Specification Dialog

The Cross Section/Elevation Camera and Wall Elevation Camera Specification dialogs can be accessed in plan view by selecting one or more cross section/elevation camera symbols and clicking the Open Object edit button. See “In Plan View” on page 791.

This dialog can also be accessed while a cross section/elevation camera view is active by selecting Tools> Active View> Edit Active View.

The settings in this dialog are also found in the Cross Section/Elevation, Backclipped Cross Section, and Wall Elevation Defaults dialogs. See “Camera Defaults Dialogs” on page 781.
Camera Panel

The Camera Name displays in plan view and is listed in the Project Browser. See “Project Browser” on page 56.

- Check Saved to save this view with the plan. As soon as you type anything in the text field, this box becomes checked. If you click OK while this box is checked, it will become checked permanently. Saved cameras are listed in the Project Browser.
- Select the Rendering Technique used by the selected camera from the drop-down list. See “Rendering Techniques” on page 828.
- Check Show Shadows to turn on shadows in the selected camera view. When unchecked, shadows are not generated. See “Shadows” on page 815.
- Check Ray Casted Sun Shadows for higher quality shadows cast by sun light. Ray Casted Sun Shadows take longer to generate than regular shadows and only refresh when the camera is not moving.
- Check Edge Smoothing When Idle to apply high quality smoothing to edge and pattern lines when the camera is not in motion. See “Edge Smoothing” on page 817.

Settings in the Positioning section determine the location of the camera in plan view.

- Specify the X Position of the camera in absolute coordinates.
- Specify the Y Position of the camera in absolute coordinates.

The Scene Clipping settings control the extents of the camera view.

- Back Clip After - Enter the distance in inches (mm) from camera to backclip plane. If zero, no back clipping occurs.
- Check Clip To Sides to limit the selected camera view’s side-to-side extents to the length of its Clip Plane Indicator line(s) in plan view. When unchecked, the full width of the model is included in the view.

The Clip Plane Indicator Length can be specified on the PLAN DISPLAY panel when callouts are not used, or using the camera’s edit handles in plan view. See “Editing 3D Views” on page 797.

- Check Ignore Railings and Invisible Walls to ignore the room definition created by these types of walls in a selected Wall Elevation view.

When this is unchecked, Wall Elevation views only recognize room definition created by regular walls. See “Cross Section/Elevation Views” on page 787.

Selected Defaults Panel

The settings on the SELECTED DEFAULTS panel control which Saved Defaults and layer settings are used in the view.

These settings are also found in the Active Defaults dialog. See “Active Defaults Dialog” on page 69.
Plan Display Panel

The settings on the PLAN DISPLAY panel control the appearance of the selected camera in plan view. See “In Plan View” on page 791.

1. Check **Display on All Floors** to display the selected camera’s symbol in plan view on all floors. When unchecked, it only displays on the floor where the camera was created. See “Creating Camera Views” on page 785.

2. Check **Display As Callout** to use a callout symbol to represent the selected camera in plan view and enable the settings below. Most of the Standard Options, below, are unavailable when Display as Callout is checked.
 - Specify the callout **Placement**, either at the Center, Left Side, Right Side, or Both Sides of the clip plane. If Center is selected, no clip plane line displays.
 - Specify the **Callout Label**, which is the text that displays inside the callout circle. If no Text Below Line is specified, the Callout Label is centered in the callout.
 - Specify the **Text Below Line** for a bottom row of text, if desired. Check **Automatic** to populate the Text Below Line with the layout page Label if the selected view is sent to layout. If no layout page Label is specified, no automatic Text Below Line will be created. See “Camera Labels and Callouts” on page 791.
 - To specify the **Callout Size**, uncheck **Automatic** and then type in the text field. When Automatic is checked, the size is based on the length of the Callout Label and the size of the current Text Style.
 - Specify the appearance of the **Callout Arrow**. Choose **None**, a **Small** arrow, or a **Large** arrow. Uncheck **Filled** if you do not want a solid filled arrow.

 Note: Callout arrows only display as filled when a camera is inactive. Inactive camera callout arrows are unfilled.

 - Specify the **Cross Section Line Style**. Not available when Center is selected, above. Check **By Layer** to use the line style specified for the selected callout’s layer, or choose a line style from the drop down list or the Library.
 - Specify the **Cross Section Line Weight**. Not available when Center is selected, above. Check **By Layer** to use the line weight specified for the selected callout’s layer, or choose a line weight from the drop down list or the Library.
selected callout’s layer, type a line weight in the text field.

3 The Standard Options settings allow you to specify the appearance of the selected camera’s standard symbol. Uncheck Default beside any of these options to modify it. Most of these options are disabled when Display As Callout is unchecked. See “Dynamic Defaults” on page 67.

• The Camera Symbol Size is measured in plan inches (mm).
• Check Show Camera Focal Point to display the camera’s focal point in plan view. When unchecked, the camera’s line of sight, focal point, and clip plane indicators are hidden until the camera is selected.
• Specify the Clip Plane Indicator Length in plan inches (mm). See “To create a cross section/elevation view” on page 787.

Backdrop Panel
The settings on the BACKDROP panel allow you to specify a backdrop image or color to display behind your model in the selected 3D view. See “Backdrop Panel” on page 809.

Layer Panel
The setting on the LAYER panel lets you choose which layer the selected camera’s plan view symbol is placed on. For more information, see “Layer Panel” on page 149.

Label Panel
In the Cross Section/Elevation Camera Specification dialog, the settings on the LABEL panel are limited to the Suppress Label checkbox and Position and Orientation settings.

Camera labels always use the Camera Name specified on the CAMERA panel. When callouts are used, the Callout Label and Text Below Line are specified on the Plan Display panel.

For information about this panel, see “Label Panel” on page 516.
Chapter 33: 3D Rendering

There are a variety of tools available to create 3D views of a model: simply click a button to create an overview, or click and drag to create a camera or cross section/elevation view. See “3D Views” on page 779.

To improve the quality of the rendering and create a custom look, you can adjust lighting, edit the materials used in the plan, choose from a variety of rendering techniques and fine-tune 3D view quality settings.

You can also use Ray Tracing to create highly realistic images of your Chief Architect plans. As the name implies, ray tracing calculates the rays of light in a view as they travel through the 3D model and reflect off surfaces. As a result, ray tracing is slower than OpenGL rendering, but can be used to achieve much more complex effects such as complex reflections and highly realistic lighting. See “Ray Tracing” on page 839.

Chapter Contents

• Rendering Tips
• Lighting
• Light Types
• Displaying Lights
• Light Sets
• Light Specification Dialog
• Sun Angles and Shadows
• Sun Angle Specification Dialog
• Adjust Sunlight Dialog
• Rendering Techniques
• Rendering Technique Options

Rendering Tips

There are a variety of factors which affect the appearance and quality of rendered 3D views. You can use these tools and settings to achieve renderings that meet your needs.

• Lighting
• Shadows
• Reflections
• Material Definitions
• Images
• Backdrops
• Edge Smoothing
• Hide Camera-Facing Exterior Walls

Lighting

Lighting is extremely important in most 3D renderings, in ray tracing, and in VRML file export. Lighting controls the visibility of objects in a view, affects the appearance of surfaces, and influences the appearances of colors and textures on those surfaces. Even small changes to light intensity, direction and color can have a large impact on image quality. See “Lighting” on page 817.

Shadows

Like lighting, shadows have an important effect on image quality. Shadows can be generated in any type of camera view using any...
Rendering Technique aside from Glass House. See “Rendering Techniques” on page 828.

When shadows are enabled and the sun is shining directly at a window, its light can shine through the window and into an interior room. These shadows use Ray Casted Sun Shadows by default, but this option can be unchecked if it slows performance in 3D views. See “Generic Sunlight” on page 818.

Shadows are enabled in Full Camera views by default. You can, however, check or uncheck Show Shadows and Ray Casted Sun Shadows in the defaults dialog for any camera tool or in the specification dialog for any camera view. In addition, you can select 3D> Camera View Options> Toggle Shadows in any camera view. See “Camera Panel” on page 806.

Shadows are affected by the number of light sources in a plan, as well as what Rendering Technique is in use. In order for a light source to cast shadows, it must be On in the current view and have Cast Shadows checked in its specification dialog. See “Light Data Panel” on page 499.

In addition to their appearance in camera views, sun shadows can also display in plan view to represent the shadows created by the sun at a particular date, time, and location. See “Sun Shadows” on page 824.

Reflections

Reflections are another aspect of lighting that can increase a 3D view’s realism. When a flat surface is assigned a Mirror material, it can display the reflections of other objects in the scene. A material can be assigned the Mirror class in the Define Material dialog. See “Properties Panel” on page 774.

Note that a Mirror surface cannot display the reflection of another mirror. When one mirror can be seen in another, its material is shown rather than a reflection.

Reflections only generate in Perspective 3D views using the Standard Rendering Technique. They can slow down 3D view generation and responsiveness considerably and are turned off by default in the Camera Defaults dialogs. See “Camera Defaults Dialogs” on page 781.

Reflections can be toggled on or off in a camera view by selecting 3D> Camera View Options> Toggle Shadows. See “Camera Panel” on page 806.

When the Physically Based Rendering Technique is in use, reflections on non-mirror surfaces are modeled, as well. See “Physically Based” on page 830.

Material Definitions

Textures are graphic files that represent contoured surfaces of objects such as carpet, bricks, tile, and wood in rendered views. Textures are assigned to materials which in turn are assigned to objects. See “Patterns and Textures” on page 758.

The display of materials in rendered views is controlled by settings on the TEXTURE and PROPERTIES panels of the Define Material dialog. See “Define Material Dialog” on page 769.

For realistic rendered views, it is sometimes helpful to make adjustments to texture properties so that they map to surfaces correctly. See “Mapping Patterns and Textures” on page 765.

Brightness, shininess and transparency control how light sources affect the display of surfaces in rendered views. See “Lighting” on page 817.

If no texture is selected for a material or if the display of textures is turned off, affected surfaces are a solid color instead.

Specially produced material map image files can add realism to a material’s appearance in rendered and ray trace views by making it appear contoured instead of flat or glossy instead of rough. See “Material Maps” on page 758.

Images

Images are very important for the appearance of rendered views and exported VRML files. Images are picture files that represent individual objects such as trees, flowers, and vehicles. Images are represented in plan view by 2D symbol and are visible in Vector views. See “Placing Images” on page 854.
Backdrops
A backdrop is an image, usually of an exterior view, that displays in the background of 3D views to help place the model into a realistic setting and add a sense of perspective. If a backdrop is not specified, Chief Architect applies a background color. See “3D Backdrops” on page 868.

Edge Smoothing
Angled surface edges and pattern lines will sometimes display on screen as jagged or stair-stepped. Edge Smoothing softens this effect, producing cleaner lines.

You can specify how much Hardware Edge Smoothing occurs in 3D views in the Preferences dialog. Hardware Edge Smoothing is set to “High” by default; however, if 3D views render slowly on your system, you can try using a lower setting. See “Render Panel” on page 102.

Even higher quality Edge Smoothing can be produced by checking Edge Smoothing When Idle in the Camera Specification dialog. This setting does not affect a camera while its position or orientation are being changed, but applies additional smoothing to edge and pattern lines when the camera is not in motion. See “Camera Panel” on page 806.

This high quality Edge Smoothing option is view-specific and can also be toggled on or off by selecting 3D> Camera View Options> Toggle Edge Smoothing When Idle.

Lighting
Lighting controls the visibility of objects in 3D views, affects the appearance of surfaces, and influences the appearances of colors and textures on those surfaces.

Each individual light source has a set of properties, such as intensity and color, that can be defined. See “Light Data Panel” on page 499.

By default, a maximum of eight lights can display in a given camera view or overview. If more than eight are present, those with the highest intensity located in the same room as the camera are rendered. Lights in adjacent rooms may also be rendered, with the highest intensity lights rendered first.

You can specify a different Maximum Lights number in the Camera Specification dialog. See “Camera Panel” on page 806.

You can also manually turn on and off individual lights in order to get the desired lighting effects. See “Displaying Lights” on page 819.

In addition, you can create custom Light Sets with specific lights turned on or off as needed for specific purposes. See “Light Sets” on page 820.

When the camera is outside a building, the program normally uses sunlight for lighting calculations and turns off all other light sources. You can turn the sunlight off and use all the other exterior lights to simulate nighttime views.

There are five types of light sources in Standard rendered and ray trace views:

- Default Interior Light
- Light Fixtures
- Added Lights
- Generic Sunlight
- Ambient Lighting and Occlusion

Default Interior Light
If you create a Standard interior camera in a room where no lights have been placed, the program creates a Default Light source within that room. The Default interior light acts like a central point light source but cannot be selected or edited.

Because the Default Light cannot be adjusted, if you want to control the light in an interior rendered view,
you must add lights to the rooms in your plan by placing light fixtures and Added Lights.

Light Fixtures

An electric symbol that represents a Light Fixture can have one or more light sources associated with it. Properties for each light source such as light type, color and intensity can be modified in the fixture’s specification dialog. See “Electrical Service Specification Dialog” on page 498.

If the light source is a Point or Spot Light, you can also adjust its Offset, or position relative to the fixture. If you choose to Show Position in Camera View, you can see where the light source is located.

Light sources look most realistic when they are offset from a surface.

Added Lights

In plan view, select 3D> Lighting> Add Lights to quickly add a light source to a plan. Added Lights and their labels are placed on the “Light Sources” and “Light Sources, Labels” layers by default.

Added lights only act as light sources in plan files that have at least one room defined. They display 2D symbols in plan view but do not display as objects in 3D views.

While Added Lights do not display as objects in 3D, you can specify that an Added Light’s position be represented by a crosshairs in rendered views that use lighting. See “Light Data Panel” on page 499.

Added lights can be placed into objects that normally do not generate light, such as a TV.

There are two types of added light sources: Point Lights and Spot Lights. See “Light Types” on page 819.

Generic Sunlight

When you create a rendered view and no Sun Angle exists, the program creates a Generic Sun light source.

The Generic Sun’s default intensity, color, and angle can be set in the Generic Sun Defaults dialog, and can be modified in the Adjust Sunlight dialog. In addition, you can specify that it follow the camera in 3D views so surfaces are always illuminated. The Generic Sun’s settings are view specific: each 3D view can have its own, unique settings. See “Adjust Sunlight Dialog” on page 827.

When standard shadows are enabled, sunlight can shine through windows into interior rooms. See “Shadows” on page 815.

If you place a Sun Angle in plan view, the Generic Sun is no longer used as a light source in rendered views. Instead, sunlight is generated based on specific date, time, latitude, and longitude information. See “Sun Angles and Shadows” on page 823.

You can specify that a particular Sun Angle or the Generic Sun be used in any active camera view in the Adjust Sunlight dialog. See “Adjust Sunlight Dialog” on page 827.

Ambient Lighting and Occlusion

Ambient lighting simulates the way light bounces around a scene, producing a basic level of uniform illumination on all surfaces. It is used in camera views and overviews using the Standard, Duotone, Painting, and Watercolor Rendering Techniques and in ray trace views.

There are three types of ambient light in Chief Architect:

- **Interior Ambient** controls the ambient light in interior views.
- **Daytime Ambient** controls the ambient light in exterior views when Toggle Sunlight is on. See “Sun Angles and Shadows” on page 823.
- **Nighttime Ambient** controls the ambient light in exterior rendered views when Toggle Sunlight is off.

You can control the brightness of each in the Rendering Technique Options dialog. See “Standard Panel” on page 831.

Ambient occlusion adds shading to surfaces near corners which, because of their location, reflect less light compared to other surfaces. Too little ambient occlusion can result in a view having a flat appearance. You can specify the amount of Ambient Occlusion to use in Standard, Duotone, Painting, Watercolor, and Physically Based renderings in the Camera Specification dialogs. See “Camera Panel” on page 806.

Additional ambient occlusion options are available in ray trace views. See “Lighting Panel” on page 843.
Light Types

There are two types of light source, each of which generates light in a different way and allows you to create a variety of lighting effects:

- **Point Light sources**
- **Spot Light sources**

Any light source except a Sun Angle can be specified as a Point or Spot Light in the **Electrical Service Specification** dialog. See “Light Data Panel” on page 499.

In addition to being assigned to light fixtures, these two types of light sources can be placed in a plan as **Added Lights**, which are light sources that are not associated with a fixture. As with light fixtures, the lighting properties of Added Lights can be specified in their specification dialog. See “Light Specification Dialog” on page 822.

Point Lights

Like a bare light bulb, a **Point Light** radiates light equally in all directions from its origin. Point lights are a realistic representation of non-directional electric lighting.

If no user defined light exists, Chief Architect creates a Point Light source to represent a light within a room.

To create a Point Light source

1. In plan view, select **3D> Lighting> Add Lights**.

Displaying Lights

The display of light fixtures and Added Lights in floor plan and 3D views is controlled in the **Layer Display Options** dialog. Light fixtures are placed on the “Electrical” layer by default, and Added Lights, on the “Light Sources” layer. See “Layer Display Options Dialog” on page 144.

In addition, they can serve as sources of light in rendered and/or ray trace 3D views. They can be turned on and off, as well as set to cast shadows.
To turn a light on or off

There are several ways to turn a light fixture or Added Light on or off:

- Select one or more fixtures or Added Lights and click the **Turn Light(s) Off in 3D** or **Turn Light(s) On in 3D** edit button.
- Uncheck **On** in the object’s specification dialog. See “Light Data Panel” on page 499.
- Clear the **On/Off** check box in the **Adjust Lights** dialog. See “Adjust Lights Dialog” on page 820.

Added Lights are not associated with a 3D fixture, but you can specify that any light source’s location be represented in 3D views using a crosshairs. Position Indicators can display in all Rendering Techniques aside from Line Drawing. See “Light Data Panel” on page 499.

Light source position indicators will only display when the light is in use in the current 3D view. That is, it must be:

- Turned on.
- Specified for use in Camera views.
- In use in the current view.
- Either located in a room or in an exterior view with Sunlight toggled off.

Sunlight will shine through windows into interior rooms when shadows are enabled. See “Shadows” on page 815.

Light Sets

By default, cameras use an Automatic Lighting Mode that allows a set number of lights to illuminate the view. This number can be specified in the **Camera Specification** and **Adjust Lights** dialogs. See “Camera Panel” on page 806.

If more than the set number of lights are present, lights are prioritized in this order:

- Lights in the same room as the camera before those in different rooms.
- Higher intensity lights before lower intensity lights.
- Lights closer to the camera before those further away.
- Regardless of their intensity or proximity to the camera, lights on floors above the camera are not used in Floor Overviews. See “3D View Tools” on page 784.

Light Sets are an alternative to this automatic behavior. When a Light Set is specified, you control which lights are in use in the current camera and which are not, regardless of their distance from the camera. Multiple Light Sets can be created for different purposes in a single plan, including ray tracing. See “Lighting” on page 850.

The Automatic Lighting Mode is useful because it is an easy way to produce reasonable lighting without taxing your video memory. Light Sets can take some time to set up and may require more resources on your system; however, they give you greater control when producing presentation views.

Light Sets are not removed when lights are deleted from a plan. They are removed, however, when objects are purged using the **Save as Template** tool. See “Save as Template” on page 74.

Adjust Lights Dialog

Light fixtures and Added Lights in the current plan are listed and can be edited in the **Adjust Lights** dialog. Select **3D> Lighting> Adjust Lights** to open this dialog in floor plan or any 3D view. You can also open it by clicking the **Adjust Lights** button in the **Camera Specification** dialog. See “Camera Panel” on page 806.

The **Adjust Lights** dialog is an efficient way to control which lights are turned on in 3D views.
The settings at the top of the dialog allow you to manage the **Light Settings** in the current plan.

When the dialog is opened while a camera view is active:

- The name of the **Current Camera** is stated here for reference.
- Specify the desired **Lighting Mode**. **Automatic** uses the specified **Maximum Lights** while **Light Set** uses the lights as specified below.

When **Light Set** is selected, several additional settings are available:

- Select a **Light Set** to edit from the drop-down list. If the dialog is opened from a camera view, this Light Set will become active.
- Check **Modify All Light Sets** to apply any changes made to the properties of the selected Light Sets to all Light Sets.
- Click the **New Set** button to create a new Light Set with all light sources turned off.
- Click the **Copy Set** button to create a new Light Set that is an exact copy of the one that is currently selected.
- Click the **Rename Set** button to type a new name for the selected Light Set. Not available for the Default Set.
- Click the **Delete Set** button to delete the selected Light Set. A Light Set can only be deleted if it is not in use, and only if the Adjust Lights dialog is opened from the menu in plan view. Not available for the Default Set.

In some circumstances, performance in the **Adjust Lights** dialog can be slow when opened from a camera view.

- To avoid this, uncheck **Update Lighting Automatically**.
- When Update Lighting Automatically is checked, you can click the **Update** button to update the lights in the camera view.

All lights in the current plan are listed here using the same **Names** as their labels. A variety of light attributes can be edited here, but only the **On** setting is specific to the selected Light Set. The others are global.

- If a line item is a light fixture, it will have an arrow to the left of its name. Click this arrow to show the fixture’s light sources as individual line items.
- Check the box in the **On** column to turn it on or uncheck the box to turn it off. If a fixture has multiple light sources and only some are on, a solid square will display in its check box.
• The **Count** column lists the number of light sources assigned to each light fixture. This column is empty for Added Lights.

• The **Room** column states the location of each light. If a light is not in a room, “Outside” will be reported.

• The **Floor** column states the floor level that each light is on.

• The **Type** column states the type of light source used by each light. See “Light Types” on page 819.

• The **Intensity** column states the strength of each light.

• The **Color** column displays the light’s color. Click the button to choose a different color if you wish.

• The **Used In** column states which types of views each light is used in: camera views only, ray trace views only, or both.

• Uncheck the box in the **Casts Shadows** column to prevent a light from casting shadows.

• The **In Use** column states whether each light is emitting light in the Current Camera view. If a fixture has multiple light sources and only some are in use, a blue box will display in its row.

3 To adjust the properties of a light in the list, double-click on its name or select it and click the **Adjust** button. Make changes to the light in its specification dialog and click OK. For more information, see “Light Specification Dialog” on page 820 or “Electrical Service Specification Dialog” on page 498.

Multiple lights can be selected by holding down the Shift key. If multiple lights are selected, clicking the **Adjust** button opens the **Light Data** dialog, which is similar to the **Light Data** panel of a single object’s specification dialog. This dialog will also open if a Trey Ceiling Polyline is the selected light source.

If you are in a 3D view that displays lighting, the view will regenerate based on the new light settings. The Generic Sun and Sun Angles are not listed in this dialog. See “Generic Sunlight” on page 818.

Light Specification Dialog

Select one or more Parallel, Point or Spot Lights and click the **Open Object** edit button to open the **Light Specification** dialog.

You can also select 3D> **Lighting> Adjust Lights** to access a list of the light sources present in the current plan and open the specification dialog for any of them. See “Adjust Lights Dialog” on page 820.

Location Panel

Light Display - Specify where the selected Added Light displays in plan and 3D views.

- Select **All Floors** to display the selected light on all floors in plan view. See “Multiple Floors” on page 537.
- Select **Specify Floor Number** to display the light on one floor only, then choose a floor number from the drop-down list.

Note: The floor or floors that an Added Light displays on in plan view is totally independent of where it displays in 3D.

- Specify the selected light’s **Absolute Elevation**, measured relative to 0, which is the default height of Floor 1.
Sun Angles and Shadows

In addition to the functional and aesthetic properties of ambient light and light sources in rendered views, the direction and angle of the sun's light and shadows are an important consideration. Two tools allow you to generate sunlight and sun shadows with accuracy:

- **North Pointers** allow you to specify the direction of true north in a plan.
- **Sun Angles** let you specify an exact location, date, and time for sunlight and sun shadow generation.

North Pointer

The **North Pointer** tool is used to define the direction of true north in a plan. The direction of north does not affect the orientation of the Snap and Reference grids, but it does affect the direction of sunlight and sun shadows, how conditioned area totals are calculated, and how bearing information is interpreted by the program.

Every bearing is defined relative to North, so it is best to establish this direction before entering survey information for a site plan. See “Site Plans” on page 407 of the Tutorial Guide.

If a North Pointer is not used, north is assumed to be straight up on screen in plan view.

Select **CAD> Lines> North Pointer**, then click and drag to draw the pointer, starting at the tail and dragging toward the point. Once it is drawn, you can define its exact length and angle in its specification dialog. See “Line Specification Dialog” on page 234.

Multiple North Pointers can be drawn in a given plan file, and will always point in the same direction automatically. If you rotate one of them, the others will automatically rotate to match. Similarly, if you draw a new North Pointer at a different angle, existing North Pointers will rotate to that angle automatically.

If you choose to display line angles when a North Pointer exists, be sure to select the appropriate format in the **CAD Defaults** dialog. See “CAD Defaults and Preferences” on page 225.

- If angles are set to **Bearings**, they are relative to the North Pointer.

Layer Panel

For information about the settings on this panel, see “Layer Panel” on page 149.

Label Panel

Labels for Added Lights display in plan view when the “Light Sources, Labels” layer is turned on and use the Text Style assigned to that layer. See “Text Styles” on page 398.

For information about the settings on this panel, see “Label Panel” on page 516.
A North Pointer can be selected and edited using its edit handles and edit toolbar buttons. All attributes of the N aside from its size are drawn from the Text Style assigned to the layer it is are placed on. For more information, see “Editing Line-Based Objects” on page 171.

Sun Angles

Sun Angles let you establish exactly where your plan’s building site is located, and a precise date and time. This information allows the program to determine the sun’s location in the sky and generate sunlight and sun shadows with accuracy.

Note: Sun Angle calculations do not adjust for elevation. They are based on formulas published by the United States Naval Observatory and have limited accuracy as documented by the USNO.

When an exterior 3D view is rendered, the program looks for an active Sun Angle. If it finds none, the Generic Sun is used. See “Generic Sunlight” on page 818.

To create a Sun Angle

1. In plan view, go to Floor 1 or Floor 0. Sun Angles can only be created on these floor levels. See “Multiple Floors” on page 537.

2. Select CAD> Lines> Sun Angle and click in the drawing area to place a Sun Angle arrow at that location.

4. After it is created, a Sun Angle cannot be rotated; but it can be moved as well as resized using its edit handles. Shadows are not affected.

Multiple Sun Angles can be created, each with different specifications; however, only one can be used as a light source in a given 3D view. If more than one Sun Angle is present, specify the one to use in the current view in the Adjust Sunlight dialog. See “Adjust Sunlight Dialog” on page 827.

Sun Angles can display their date and time in plan view and can also produce sun shadow polylines in plan view. Both Sun Angles and their shadows are on the “Sun Angles & Shadows” layer by default.

Sun Shadows

Sun Angles allow the program to produce shadows cast by a building that reflect the exact position of the sun in the sky in a particular location and at a specific date and time. This position and time information is specified in the Sun Angle Specification dialog; the date format is derived from your operating system settings. See “Earth Data Panel” on page 825 and “Region and Language Settings” on page 66.

In plan view, sun shadows are represented by polylines filled with a hatch pattern. If a Terrain Perimeter is present, the shape of a sun shadow polyline is affected by changes in terrain height. If no Terrain Perimeter exists, sun shadows fall on an imaginary plane at a height of zero, the default height for Floor 1. Sun shadows rebuild whenever the terrain is rebuilt. See “Build Terrain” on page 901.

Sun shadows can also be shown in ray trace views provided that Casts Shadows is checked on the Earth Data panel of the Sun Angle Specification dialog.
No sun shadow generates if the sun is below the horizon or if it is so low on the horizon that the shadow would be extremely long.

Multiple Sun Angles can be placed in the same plan to allow the simultaneous display of shadows cast at different times in plan view. Only one should be turned on in 3D views at any given time, however.

To generate the sun shadows associated with a particular Sun Angle, select it and click the Make Shadow edit button or click the Make Shadow button in the Sun Angle Specification dialog. See “Lighting Data Panel” on page 827.

There are several ways to delete a sun shadow polyline:

- In plan view, select and delete the defining polyline.
- In plan view, select and delete the Sun Angle arrow.
- In plan view, select the Sun Angle arrow and click the Delete Shadow edit button.
- In the Sun Angle Specification dialog, click the Delete Shadow button. See “Earth Data Panel” on page 825.
- In the Sun Angle Specification dialog, click the Make Shadow button to delete existing shadows and create new ones.

Sun Angle Specification Dialog

Select CAD> Lines> Sun Angle, then click in plan view to open the Sun Angle Specification dialog and create a new Sun Angle. See “Sun Angles and Shadows” on page 823.

To open the Sun Angle Specification dialog for an existing Sun Angle, select it and click the Open edit button. This dialog can also be accessed by clicking the Edit button in Adjust Sunlight dialog. See “Adjust Sunlight Dialog” on page 827.

Earth Data Panel

The settings on the EARTH DATA panel let you establish exactly where your plan’s building site is located, and exactly when the sun’s light should be calculated. This information allows the program to generate sunlight and sun shadows with accuracy.
The Solar Angles display for reference and may update as changes are made to the settings on this panel.

- The Solar Altitude is the angle of the sun above the horizontal plane, in degrees.
- The Solar Direction is the angle between true North and the sun's direction. This is the angle the Sun Angle arrow points in plan view relative to the direction of North. See “North Pointer” on page 823.

Specify the Location of the selected Sun Angle. The initial location can be set in the Preferences dialog. See “CAD Panel” on page 93.

- Specify the Latitude, which is measured either North or South of the equator, depending on which radio button you select.
- Specify the Longitude, which is measured either East or West of the Greenwich meridian, depending on which radio button you select.

Specify the Date and Time of the selected Sun Angle. The initial time zone can be set in the Preferences dialog.

- Specify a Date for the selected Sun Angle. Select a month from the first drop-down list, a day from the second, and a year from the third.
- Specify a Time for the selected Sun Angle. Select an hour from the first drop-down list; minutes in 15 minute increments can be selected from the second list.
- If you want the Sun Angle to observe Daylight Savings Time, check this box.
- Specify the Time Zone that the building site is located in.

Specify the Plan View Display of the selected Sun Angle.

- Specify the Length of Plan Symbol, which is the length of the Sun Angle arrow in plan view.
- Check Show Date on Sun Angle to have the date and time display on the Sun Angle arrow in plan view. This label uses the Text Style assigned to the “Sun Angle & Shadows” layer. See “Text Styles” on page 398.
- Check Auto Rebuild Terrain to rebuild the terrain automatically whenever you create a sun shadow. If this is unchecked and you regenerate sun shadows, the program will prompt you to rebuild the terrain. See “Building the Terrain” on page 910.

When you use the Build Terrain command in plan view, all sun shadows in the plan are automatically updated.

- Click the Make Shadow button to create or regenerate the sun shadow in plan view. See “Sun Shadows” on page 824.
• Click the **Delete Shadow** button to remove the sun shadow from plan view.

• Check **Always Update** to have the program update the selected Sun Angle’s shadow whenever any of the defining information is changed. When this is checked, the program may be slower when changes are made in this dialog.

• If Always Update is unchecked and you make changes in this dialog, click the **Make Shadow** button to generate a new shadow.

Note that the **Make Shadow** option does not affect 3D views. See “Shadows” on page 815.

Lighting Data Panel

A Sun Angle can be used as a light source in 3D views. The settings on the **LIGHTING DATA** panel control attributes of the sunlight associated with the selected Sun Angle.

• Check **Casts Shadows** to have this light source cast shadows. These shadows are similar to the shadow shown in plan view, but may render differently based on the presence of other light sources.

• Use the **Intensity** slider bar or text field to define the relative strength of the light source. The time of day as set on the EARTH DATA panel does not affect how the Sun Angle renders as a light source, but this does.

• Click the **Color** bar to select a color for the sunlight associated with the selected Sun Angle. See “Color Chooser/Select Color Dialog” on page 160.

Adjust Sunlight Dialog

The **Adjust Sunlight** dialog allows you to control the intensity, direction and color of the Generic Sun light source in the currently active 3D view or to select a **Sun Angle** to serve as the source of sunlight in the currently active view. See “Generic Sunlight” on page 818.

The settings in this dialog are view specific. Any changes made to them affect the sun in the currently active 3D view only. Other 3D views can have their own unique settings.

There are three ways to open the **Adjust Sunlight** dialog when a 3D view is active:

• Select **3D> Lighting> Adjust Sunlight**.

• Click the **Adjust Sunlight** button.

• Right-click in an empty space in the background area, then select **Adjust Sunlight** from the contextual menu.

The initial sunlight attributes used in a newly created camera are set in the **Sunlight Defaults** dialog. See “Defaults and 3D Preferences” on page 780.

The settings defined on the **LIGHTING DATA** panel do not affect the sun shadow in plan view: they only affect 3D views in which lighting and shadows can display.

Line Style Panel

For information about the **LINE STYLE** panel, see “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel control the appearance of the selected Sun Angle’s shadow in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Arrow Panel

For information about the settings on the **ARROW** panel, see “Arrow Panel” on page 236.
Select **Use Generic Sun** to represent the sun in the currently active 3D view using the settings that follow.

- Use the **Intensity** slider bar or text field to control how bright the Generic Sun light appears.
- Click the **Color** bar to define the color of the light being modeled. Colored sunlight may be used to achieve special lighting effects, but may alter the appearance of your material colors and textures.
- Check **Sun Follows Camera** to adjust the position of the Generic Sun so that it is always behind the camera, illuminating surfaces in the view. When this is checked, the Tilt and Direction Angle settings that follow are disabled.

Note: If Use Generated Sky is in use as the backdrop in the current view and Sun Follows Camera is checked, the Generated Sky will not update if the camera is moved.

Select **Use Sun Angle** to represent the sun using a light source defined by a Sun Angle. See “Sun Angles and Shadows” on page 823.

- Select a Sun Angle from the drop-down list to serve as the source of sunlight in the currently active 3D view. If no Sun Angle is present, the Generic Sun is used.
- Click the **Edit** button to open the Sun Angle Specification dialog for the selected Sun Angle.

By default, the Generic Sun light color is pure white, which has the least effect on the appearance of material colors and textures. See “Materials” on page 757.

Rendering Techniques

Any camera view, cross section/elevation view, or overview can be generated using a variety of Rendering Techniques to produce views for a range of different purposes: from detail drawings to artistic presentation views. When a 3D view is active, select **3D > Rendering Techniques** to access these tools.

There are two ways to create a view using a particular Rendering Technique:

- Create a 3D view, then select the desired rendering technique from the menu.

- Specify the **Tilt Angle**, which is the angle of the sunlight with respect to the horizon. A value of 90° means that the light points straight up, while a value of -90° means that the light points straight down. 0° is parallel to the horizon.
- Specify the **Direction Angle**, which is the direction that the sunlight points toward. 0° is measured horizontally on screen, pointing to the right. Positive values rotate in a counter-clockwise direction from there, while negative values rotate clockwise.
- Click the **Reset to Defaults** button to restore the settings set in the Sunlight Defaults dialog in the current view.
- In the Sunlight Defaults dialog, the **Restore Initial Settings** button is available instead. Click this to reset the options in that dialog to the originally installed settings.

Select **Use Sun Angle** to represent the sun using a light source defined by a Sun Angle. See “Sun Angles and Shadows” on page 823.

- Select a Sun Angle from the drop-down list to serve as the source of sunlight in the currently active 3D view. If no Sun Angle is present, the Generic Sun is used.
- Click the **Edit** button to open the Sun Angle Specification dialog for the selected Sun Angle.

By default, the Generic Sun light color is pure white, which has the least effect on the appearance of material colors and textures. See “Materials” on page 757.

- Select the desired rendering technique in the Camera Defaults dialog, then create a 3D view. See “Camera Defaults Dialogs” on page 781.

Once a view is created, the effects of the selected rendering technique can be adjusted in the Rendering Technique Options dialog. See “Rendering Technique Options” on page 831.

If a camera view is saved, its Rendering Technique settings are saved, as well. See “Saving and Printing 3D Views” on page 805.

You can specify which Rendering Techniques use a backdrop image. See “3D Backdrops” on page 868.
Standard Rendering

Standard rendering is a photo-realistic technique that represents materials using textures, models lighting, and can also display shadows. Surface edge lines are not drawn and no special colors or effects are applied.

In plan view, the camera symbol for a view using the Standard technique displays an S in its center. See “Displaying 3D Views” on page 790.

Vector View

In Vector Views, surface edge lines are drawn and pattern lines and colors are used to represent materials while textures are not. Shadows are supported, and when in use a single light source is used to produce them. Shading Contrast can be applied to surfaces, but other special colors or effects are not.

In plan view, the camera symbol for a view using the Vector View technique displays a V in its center.

Glass House

Glass House rendering uses different shades of a single color to display the model with surface edge lines and semi-transparent surfaces. Lighting and shadows are not modeled, and materials are not represented, so neither pattern lines nor textures are used.

In plan view, the camera symbol for a view using the Glass House technique displays a G in its center.

Duotone

Duotone rendering represents materials using textures and models lighting and shadows. Surface edge and pattern lines are not drawn and two colors, one Light and one Dark, are applied over the surfaces, allowing you to create special effects such as sepia tone or grayscale.

In plan view, the camera symbol for a view using the Duotone technique displays a D in its center.

Technical Illustration

Technical Illustration rendering draws surface edge and pattern lines, and uses shades of two colors, Warm and Cool. The warm shade is applied to surfaces that face the light source in the view, and the cool shade, to surfaces that face away from it.

Only one light source is used: the light with the highest Intensity found in the room containing the camera. In exterior views, this light is always the Generic Sun. If no lights are on, a fallback light is used. Lighting is modeled as non-photorealistic, stylized highlights and shadows are supported. See “Lighting” on page 817.
Painting

Paint rendering draws views by placing small regions of color and then stroking them along the surfaces in multiple layers. This technique uses textures to represent materials and models lighting and shadows, and can produce a variety of distinct non-photo-realistic painting styles.

Watercolor

Watercolor rendering approximates the effects of watercolor painting such as pigment pooling and flow. It uses textures to represent materials and models lighting and shadows. When Line Drawing on Top is enabled, pattern lines are also used.

Physically Based

Physically Based rendering is similar to the photo-realistic Standard technique: it represents materials using textures, does not draw surface edge lines, models lighting, and can display shadows. Physically Based rendering models material properties and light propagation more accurately than other rendering techniques and is best used when a focus on lighting and finish materials is the goal.

Note: In some plans, the Painting, Watercolor and Line Drawing techniques may take a considerable amount of time. You can press the Esc key to cancel the rendering.
Rendering Technique Options

The settings in the Rendering Technique Options dialog allow you to control the specific effects of each rendering technique on an active 3D view. To access this dialog, create a camera view cross section/elevation view, or overview and select 3D> Rendering Techniques> Technique Options.

The Rendering Technique Options dialog can also be accessed by double-clicking the Rendering Techniques parent button.

The settings in the Rendering Technique Defaults dialog are the same as those in the this dialog, but control the initial settings of each technique when it is first applied.

In the Rendering Technique Options dialog, select a technique from the list on the left to make its options active on the right. When this dialog is first opened, the technique currently used by the view is selected.

As changes are made in the Rendering Technique Options dialog, the 3D view automatically updates to reflect those changes for all techniques except Painting, Watercolor, and Line Drawing. To update views using these techniques, which take more time to draw than the others, click the Update button in the dialog.

When a 3D view is saved, its Rendering Technique Options settings are saved, as well. See “Saving 3D Views” on page 805.

Standard Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options for Standard renderings.

There are a variety of other tools that affect the appearance of Standard rendered views, as well. See “Displaying 3D Views” on page 790.

Specify the amount of Ambient light to use in different situations in Standard, Duotone, Painting, and Watercolor renderings. See “Ambient Lighting and Occlusion” on page 818.

- **Interior Ambient** affects interior views.
- **Daytime Ambient** affects exterior views.
- **Nighttime Ambient** affects nighttime exterior views.
- Check **Opaque Window Glass** to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.

- **Use Backdrop** is checked, the backdrop image specified for this view is used. When unchecked, the specified Backdrop Color is used instead. See “3D Backdrops” on page 868.

- Click **Reset to Defaults** to apply the Standard settings defined in the Rendering Technique Defaults dialog.

- In the Rendering Technique Defaults dialog, the Restore Initial Settings button is available instead. Click this to reset the options on this panel to the originally installed settings.

Vector View Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options for Vector Views.

Additional settings that affect the appearance of Vector Views can be found in the 3D View Defaults dialog. See “3D View Defaults Dialog” on page 782.
There are a variety of other tools that affect the appearance of Vector Views. See “Displaying 3D Views” on page 790.

- Specify the **Shadow Intensity**, which is how dark or light shadows appear. A value of 100% creates shadows that hide any objects located within them; a value of 0% effectively produces no shadows.
- Check **Opaque Window Glass** to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.
- Check **Apply Shading Contrast** to use different levels of shading on surfaces oriented at different angles to the camera. When unchecked, unmodified material Colors are shown on all surfaces.
- Click **Reset to Defaults** to apply the Vector View settings defined in the Rendering Technique Defaults dialog.
- In the **Rendering Technique Defaults** dialog, the **Restore Initial Settings** button is available instead. Click this to reset the options on this panel to the originally installed settings.

Glass House Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options settings for Glass House renderings.

- Click the **Color** bar to select a color for the semi-transparent surfaces and lines in a Glass House view. See “Color Chooser/Select Color Dialog” on page 160.
- Specify the **Transparency** of the surfaces in Glass House view. For example, to create a wireframe line drawing of your structure, turn transparency to full and minimize line thickness.
- Specify the **Line Thickness** of surface lines in Glass House view.
- When **Use Backdrop** is checked, the backdrop image specified for this view is used. When unchecked, the specified Backdrop Color is used instead. See “3D Backdrops” on page 868.
- Click **Reset to Defaults** to apply the Glass House settings defined in the **Rendering Technique Defaults** dialog.
- In the **Rendering Technique Defaults** dialog, the **Restore Initial Settings** button is available
instead. Click this to reset the options on this panel to the originally installed settings.

Duotone Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options settings for Duotone renderings.

- Click the **Color** bars to select a **Light Color** and **Dark Color** for surfaces and lines in a Duotone view. See “Color Chooser/Select Color Dialog” on page 160.
- Specify the **Desaturation**, which is the degree to which color is removed from the original image. A value of 0% retains the original colors in the view while a 100% results in a grayscale image.
- Specify the **Tone**, which is the extent to which the **Light** and **Dark Colors** cover the original colors in the view. A value of 100% completely obscures the view’s original colors as well as the effects of Desaturation.
- Check **Opaque Window Glass** to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.
- Check **Use Backdrop** to use the backdrop image specified for this view. When unchecked, the specified Backdrop Color is used instead.
- Click **Reset to Defaults** to apply the Duotone default settings set in the Rendering Technique Defaults dialog.
- In the Rendering Technique Defaults dialog, the **Restore Initial Settings** button is available instead. Click this to reset the options on this panel to the originally installed settings.

Technical Illustration Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options settings for Technical Illustration renderings.
• Click the Color bar to select a Warm Color for surfaces that face the light source and a Cool Color for surfaces that face away from the light.

• Specify the Warm Blend, which is the degree to which the selected Warm Color is blended with original colors on well-lit surfaces in the view.

• Specify the Cool Blend, which is the degree to which the selected Cool Color is blended with original colors on shaded surfaces in the view.

• Specify the Line Thickness of all surface edge and pattern lines in the view.

• Specify the Shadow Intensity, which is how dark shadows. A value of 0% produces no shadows. See “Shadows” on page 815.

• Check Opaque Window Glass to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.

• Check Use Backdrop to use the backdrop image specified for this view. When unchecked, the specified Backdrop Color is used.

• Click Reset to Defaults to apply the Technical Illustration settings defined in the Rendering Technique Defaults dialog.

• In the Rendering Technique Defaults dialog, the Restore Initial Settings button is available instead. Click this to reset the options on this panel to the originally installed settings.

Painting Panel

In order for the active 3D view to reflect changes made to the Rendering Technique Options settings for Painting renderings, you must click either the OK button or the Update View button in the dialog. This may take several moments.

• Select a predefined painting Style from the drop-down list. The settings that follow reflect the selected style. If you customize any of the settings, the selected style will be “Custom”.

• Specify the Minimum Brush Size, which is the size of the brush used to paint the final layer.

• Specify the Number of Coats, which is the number of times the view is painted using progressively smaller brushes.

• Specify the Minimum Stroke Length of the brushes used to draw the view. A low value produces finer detail while a higher value creates a choppier appearance.

• Specify the Maximum Stroke Length of the brushes used to draw the view.

• Specify the Approximation Threshold, which is how closely the painted rendering conforms to the original view.

• Specify the Blur Factor, which is the degree to which the original image is blurred. A low value retains more detail in the original view and thus a more accurate representation of the original view.

• Specify the Stroke Curvature, which is the degree to which brush strokes are curved. A low value produces straight curves while a high value creates small, tight strokes.
• Specify the Stroke Opacity, or how transparent the paint brushed over the original view is. A value of 0% results in completely transparent paint.

• Specify the Color Jitter, which is the amount of random colors added to brush strokes.

• Check Opaque Window Glass to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.

• When Use Backdrop is checked, the backdrop image specified for this view is used. When unchecked, the specified Backdrop Color is used instead.

• Click Reset to Defaults to apply the Painting settings defined in the Rendering Technique Defaults dialog.

• In the Rendering Technique Defaults dialog, the Restore Initial Settings button is available instead. Click this to reset the options on this panel to the originally installed settings.

• Click Update View to apply these settings to the active 3D view.

Watercolor Panel

In order for the active 3D view to reflect changes made to the Rendering Technique Options settings for Watercolor renderings, you must click either the OK button or the Update View button in the dialog. This may take several moments.

1. Specify the Smooth Amount, which is the degree to which details are removed from the original view.

2. Specify the Paint Contrast, which determines the extent to which variations in pigment color are used.

3. Specify the Turbulence Strength, which produces “pooling”, or variations in the strength of pigment colors.

4. Specify the Turbulence Scale, which controls the size of the areas of pooling.

• Specify the Pigment Settling Strength, which is creates the appearance of pigment settling into low areas in paper.

• Specify the Edge Strength, which is how well-defined surface edge lines are.

• Check Opaque Window Glass to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.

• When Use Backdrop is checked, the backdrop image specified for this view is used. When unchecked, the specified Backdrop Color is used instead.

• Check Line Drawing on Top to generate pattern lines and surface edge lines with a hand-
drawn appearance, as in the Line Drawing Technique. When checked, the four settings that follow are enabled.

- Click the **Color** bar to specify the color of the lines drawn on top of the rendering. See “Color Chooser/Select Color Dialog” on page 160.
- Specify the **Thickness** of the lines drawn on top of the rendering.
- Specify the **Extend Amount**, which is the distance that lines may extend past intersecting surface edges.
- Specify the **Squiggle Amplitude**, which controls the average amount of curvature in the lines’ squiggles. A value of 0 produces straight lines.
- Click **Reset to Defaults** to apply the Watercolor settings defined in the Rendering Technique Defaults dialog.
- In the **Rendering Technique Defaults** dialog, the **Restore Initial Settings** button is available instead. Click this to reset the options on this panel to the originally installed settings.
- Click **Update View** to apply these settings to the active 3D view.

Line Drawing Panel

In order for the active 3D view to reflect changes made to the Rendering Technique Options settings for Line Drawing renderings, you must click either the OK button or the **Update View** button in the dialog. This may take several moments.

- Click the **Color** bar to select the color of the lines used to draw the view.
- Specify the **Thickness** of the lines, in pixels.
- Specify the **Extend Amount**, which is the distance that lines may extend past intersecting surface edges.
- Specify the **Squiggle Amplitude**, which controls the average amount of curvature in the lines’ squiggles. A value of 0 produces straight lines.
- Specify the **Squiggle Frequency**, which controls how often the lines have curves. A value of 0 produces straight lines.
- Check **Opaque Window Glass** to make the glass in windows and doors opaque. When unchecked, door and window glass is transparent.
- Click **Reset to Defaults** to apply the Line Drawing settings defined in the **Rendering Technique Defaults** dialog.
- In the **Rendering Technique Defaults** dialog, the **Restore Initial Settings** button is available instead. Click this to reset the options on this panel to the originally installed settings.
- Click **Update View** to apply these settings to the active 3D view.
- Click **OK** to close the dialog and redraw the active 3D view based on these settings. Depending on your plan, this may take several moments.

Physically Based Panel

The active 3D view immediately updates to reflect any changes made to the Rendering Technique Options for Physically Based renderings. There are a variety of other tools that affect the appearance of Physically Based rendered views, as well. See “Rendering Tips” on page 815.
• Specify the **Camera Exposure**, which is the amount of light in the scene that is captured by the camera. A low value produces a darker view; too high a value can make the scene look washed out.

• Check **Use Backdrop** to use the backdrop image specified for this view. When unchecked, the specified Backdrop Color is used instead.

• If you find that light and/or color is reflected too strongly onto some surfaces in a view, check **Improve Lighting Quality** to reduce this effect. This setting can result in slowness and should remain unchecked in most circumstances.

• You can adjust the **Hue**, **Saturation**, and **Brightness** of the view, if needed.

• Click **Reset to Defaults** to apply the Physically Based settings defined in the **Rendering Technique Defaults** dialog.
Chapter 34:

Ray Tracing

You can use Ray Tracing to create highly realistic images of your Chief Architect plans. As the name implies, ray tracing calculates the rays of light in a view as they travel through the 3D model and reflect off surfaces. As a result, ray tracing is slower than OpenGL rendering, but can be used to achieve much more complex effects such as reflections and highly realistic lighting.

Chapter Contents

• Ray Trace Views
• Ray Trace Configurations
• Ray Trace Options
• Ray Trace Assistant
• Adjusting Ray Trace Properties and Effects
• Ray Tracing Tips

Ray Trace Views

Ray tracing is a method of generating high-quality 3D views in which the paths of individual rays of light are calculated, making it possible to model effects like reflectivity. Ray tracing a scene can be time consuming, but when lighting and materials are set up properly, the results can be impressively realistic.

Ray trace views are generated in their own view window and are static images of the model - not dynamic. That is, if you make changes to the 3D model, any previously created ray trace views will not be affected.

To create a ray trace

1. Create a 3D camera view or overview.
 - The Standard Rendering Technique must be used. See “Standard Rendering” on page 829.
 - Perspective views are preferable to Orthographic views for ray tracing because they are more realistic to the human eye. See “Perspective and Orthographic Views” on page 780.

2. Position the camera as needed. Do not use the Zoom or Pan tools. See “Editing 3D Views” on page 797.

3. Adjust the shape of the view window as needed.

4. Select 3D> Ray Trace.

5. In the Ray Trace Current View dialog:
 - Select a Ray Trace Configuration from the drop-down list and click the Ray Trace button. See “Ray Trace Current View/Ray Trace Defaults Dialog” on page 841.

6. To pause a ray trace in progress, select File> Pause Ray Trace.

 • Select File> Resume Ray Trace to restart a paused ray trace.

Note: If you have ray traces in queue and pause the one in progress, the next ray trace will begin running. See “Queueing Ray Trace Jobs” on page 851.

7. A ray trace can be cancelled at any time:
• In the **Preparing to Ray Trace** progress dialog, click the **Cancel** button.
• Once the ray trace view window is open, you can cancel the process by selecting **File> Close**.

8. To stop a ray trace in progress without cancelling it, select **File> Stop Ray Trace**.

9. When the ray trace is completed, save the resulting image for future use:
• Select **File> Print Image** to print the image. See “Print Image Dialog” on page 998.
• Select **File> Export Picture** to save the image in any of several file formats including .jpg, .bmp, and .png. See “Exporting Pictures” on page 859.
• Select **File> Send to Layout** to send the ray trace view to a layout page. See “Sending Views to Layout” on page 965.
• Select **File> Export 360 Panoramic Ray Trace to Cloud** to export a completed panoramic ray trace to your Chief Architect cloud account. See “Export 360 Panorama” on page 896.

Progressive Ray Tracing

Chief Architect’s ray tracer begins by generating a low-quality preview of the model based on the current Ray Trace Configuration’s settings. Once the initial ray trace is complete, the ray tracer performs additional passes to incrementally refine the view’s lighting quality and effects.

Ray Trace Configurations

Ray trace views are generated based on settings that control lighting properties as well as the size of the final image. Two configurations are included in the installed template plans: Default Interior Ray Trace and Default Exterior Ray Trace.

You can save multiple ray trace configurations for different purposes and then select the one best suited to the view you want to ray trace. See “Multiple Saved Defaults” on page 67.

If **Save Image to File** is checked in the **Ray Trace Options** dialog, the program will save the ray trace as an image file and will update the file after every pass of the ray tracer. See “General Panel” on page 842.

You can specify how long these additional passes are performed in the **Ray Trace Options** dialog, and can stop a ray trace in progress whenever it meets your needs by selecting **File> Stop Ray Trace**. See “General Panel” on page 842.

The Ray Trace Window

The tab of a ray trace view window states the names of the plan file and of the camera the ray trace is derived from. While a ray trace view is generating, you can switch to a different view and perform other tasks. See “Working in Multiple Views” on page 124.

When the ray trace view window is active, the image will regularly update as the ray trace progresses and its status will display in the Status Bar. When it is finished, the number of passes and cumulative time, including pre-processing time, will display there. See “The Status Bar” on page 33.

You can specify whether your computer’s processor allocates more resources for the ray trace or for working in the program in the **Preferences** dialog. See “Ray Trace Panel” on page 103.

If you have specified an image size larger than your monitor and saved the results as an image file, you may only see one corner of the total view. You can, however, use the scroll bars and/or **Zoom In** or **Zoom Out**. See “Zoom Tools” on page 126.

To access the ray trace configurations saved in the current plan, select **Edit> Default Settings**. Click the + beside “Camera”, then select “Ray Trace” and click the **Edit** button to open the **Ray Trace Defaults** dialog. See “Default Settings” on page 65.

You can also access the available ray trace configurations by selecting **3D> Ray Trace** while a 3D camera view or overview is active. The **Ray Trace Current View** dialog will open.
Ray Trace Current View/Ray Trace Defaults Dialog

- Select the name of the Current Configuration from the drop down list. A Summary of the selected configuration’s settings displays in the bottom portion of the dialog box.
- Click the Launch Assistant button to launch the Ray Trace Assistant. See “Ray Trace Assistant” on page 846.
- Click the Copy button to create a copy of the Current Configuration.
- Click the Edit button to open the Ray Trace Options dialog, where you can make changes to the selected Current Configuration. See “Ray Trace Options” on page 841.
- Click the Delete button to permanently remove the Current Configuration from the plan. Not available if there is only one configuration in the list.
- If the Ray Trace Current View dialog was accessed via the Ray Trace tool, click the Save and Close button to close the dialog without ray tracing the current view. Any new configurations or changes that you may have made to existing configurations are retained.
- If the Ray Trace Current View dialog was accessed via the Ray Trace tool, click the Ray Trace button to begin ray tracing the active 3D view using the Current Configuration and retain any new configurations or changes made to existing configurations.
- If the Ray Trace Defaults dialog was accessed via Default Settings, click OK to close the dialog and save any newly created or renamed configurations.
- Click the Cancel button to close the dialog without saving any changes. Any renamed or newly created configurations will not be retained unless you click Next in the warning message box that displays.

Ray Trace Options

The Ray Trace Options dialog can be opened in either of two ways:

- In any view, select Edit> Default Settings and expand the “Camera” category. See “Default Settings” on page 65.
- In a Standard rendered view, select 3D> Ray Trace.

In either case, you will first need to select the current ray trace configuration in the Ray Trace Configurations/Ray Trace Current View dialog. See “Ray Trace Current View/Ray Trace Defaults Dialog” on page 841.

When the Ray Trace Options dialog opens, the Current Configuration specified in the Ray Trace Current View dialog is active. See “Ray Trace Configurations” on page 840.

The Ray Trace Options dialog has four panels:
- General Panel
- Lighting Panel
- Advanced Panel
- Image Properties Panel
Specify the **Name** of the current Ray Trace Configuration. Names must be unique.

Check **Save Image to File**, then click the **Browse** button to save the ray trace image directly to a .jpg, .bmp, .png, or .tif file after every pass of the progressive ray tracer. If a file has been specified, its pathname will display to the right of the **Choose** button.

If the specified file already exists, the program will ask if you wish to overwrite the existing file or choose a new name and/or location when you start a ray trace.

Specify size and other characteristics of the ray trace **Image**.

- Check **Generate as 360° Panorama** to create a spherical image that can be viewed in a variety of other applications. See “Export 360 Panorama” on page 896.
- Check **Use Active Window Size** to save the ray trace image at the same size as the ray trace view window. The Width and Height of the currently active view window are stated below: if these values are changed, this box becomes unchecked automatically.
- Specify whether the ray trace image’s Width/Height **Dimensions** are measured using **Pixels** or drawing **Units** (inches or mm).
- Specify the **Width** and **Height** of the ray trace image in either Pixels or Units.
- Specify the **Resolution** of the ray trace image, in either Pixels/Inch or Pixels/mm.
- Check **Limit Dimensions to Powers of Two** to restrict the Width and Height to values that are powers of two. When this is checked and an ineligible value is entered, it will adjust up or down to the nearest power of two. This option recommended when Generate as 360° Panorama is checked, above.
- Check **Retain Aspect Ratio** to maintain the width to height ratio of the original image and prevent the ray trace from being stretched or distorted. This option cannot be unchecked when Generate as 360° Panorama is checked, above.

Specify a **Time to Ray Trace**, which determines how long a ray trace runs and thus its final quality. See “Progressive Ray Tracing” on page 840.

- Select **No Limit** to run the ray tracer until you select **File> Stop Ray Trace**.
- Select a **Time** to ray trace from the drop-down list. The ray tracer will complete as many passes as possible during this time.
- Specify a **Number of Passes**. The ray tracer will run as long as needed to complete this number of passes.
You can stop any ray trace at any time by selecting
File> Stop Ray Trace.

Lighting Panel

The settings on the **LIGHTING** panel control the appearance of light in a ray trace scene that isn’t associated with a particular light source. See “Lighting” on page 817.

1. The **Ambient Light Settings** control the appearance of the light present throughout a scene that does not come from a particular source. Ambient light exists everywhere, including shadowed areas. See “Ambient Lighting and Occlusion” on page 818.
 - Uncheck **Use Automatic Settings** to enable the **Color** bar and specify the color of the ambient light. See “Color Chooser/Select Color Dialog” on page 160.
 - When **Use Automatic Settings** is checked, the ambient light is grey in color and its brightness is based on the ambient light settings in the **Rendering Technique Options** dialog. Low ambient values result in darker grey; higher values result in lighter grey. See “Standard Panel” on page 831.
 - Select **Uniform Intensity** to enable the **Intensity** setting below, then specify the strength of the ambient light throughout the scene either by typing a decimal value in the text field or by clicking the up and down arrows. Values between 0 and 10 can be used.
 - Select **Use Ambient Occlusion** to enable the **Minimum** and **Maximum Intensity** settings below. Ambient Occlusion allows variation in the strength of the Ambient Light and is more realistic than Uniform Intensity, but takes longer to ray trace.
 - Specify the **Minimum Intensity**, which is the strength of the ambient light on surfaces with minimum exposure to it.
 - Specify the **Maximum Intensity**, which is the strength of the ambient light on surfaces fully exposed to it.

2. Specify the **Intensity** of the **Direct Sunlight** throughout the scene either by typing a decimal
value in the text field or by clicking the up and down arrows. Values between 0 and 10 can be used.

3 Specify the appearance of atmospheric lighting in exterior views.

- Check **Enable Environment Light** to enable the settings below. When checked, exterior scenes are lit using an encompassing sphere of light, which simulates how light bounces around within the atmosphere. When unchecked, only the Generic Sun is used. See “Generic Sunlight” on page 818.

- Specify the **Intensity** value, which is the strength of the Environmental Light.

- Click the **Use Sky** radio button to use the Generated Sky as a basis for the Environmental Light’s color. See “3D Backdrops” on page 792.

- Click the **Use Color** radio button, then click the **Color** bar to specify the color of the outdoor Environmental Light.

- Click the **Use Backdrop Image** radio button, then browse to select an image to use as a basis for the Environmental Light’s color. The image is wrapped around the scene’s encompassing sphere and influences the color of the Environmental Light, but does not actually appear in the ray trace view.

- Click the **Select** button to select a different image.

- Click the **Remove** button to remove the currently selected image and use a color instead.

4 The **Light Sources** settings allow you to control which Added Lights and light sources associated with fixtures are used in the ray trace view. See “Light Types” on page 819.

- Select **Use Lighting of Active Camera** to use the same lighting in the ray trace as in the original camera view. See “Camera Panel” on page 806.

- Select **Light Set**, then choose a Light Set to use in the ray trace from the drop-down list. See “Light Sets” on page 820.

- When Light Set is selected, you can click the **Adjust Lights** button to open the **Adjust Lights** dialog.

Advanced Panel

The settings on the **ADVANCED** panel allow you to specify lighting quality and focal blur.

1 **Global Illumination** -

 - Check **Use Photon Mapping** to accurately calculate bounced lighting in a scene. When unchecked, ray traces have low quality lighting effects but generate more quickly. Use Photon Mapping should be checked for all interior scenes and unchecked for most exterior scenes.

 - Check **Compute Caustics**, to use caustic photons, which are photons used in areas of focused light. Caustic photons are helpful when modeling certain effects such as light shining through glass.

2 **Enable Focal Blur** to enable the F-Number setting below and set the amount of focal blur that occurs outside the camera’s focal range.

 - Specify the **F-Number** value, which defines the camera focal blur and is like the f-stop in photography. Decrease this value for more focal blur or increase it for less blur.

In order for Photon Mapping to function, at least two different objects must be present in the model. If there are too few surfaces, a ray trace with Photon Mapping cannot run.
Focal blur cannot be produced if the camera’s focal point is located within the Clip Surfaces Within distance set in its specification dialog. See “Camera Panel” on page 806.

Image Properties Panel

The settings on the IMAGE PROPERTIES panel allow you to customize the properties of colors in Ray Trace views. Once a Ray Trace has been started, these settings can be modified. See “Adjusting Ray Trace Properties and Effects” on page 849.

1 Chief Architect’s ray tracer works with a color range greater than what your monitor or printer can display. When Use Tone Mapping is checked, these colors are intelligently mapped to a displayable range. Uncheck this box to simplify how the colors are converted and disable the settings below.

- Uncheck Auto Contrast to enable the Contrast setting below. When checked, the program chooses a Contrast value based on the image’s properties.
- Specify the Contrast, which is the relative difference between light and dark colors in the view, using the slider bar or by typing in the text field.
- Specify the Intensity, or brightness, of the image. This value not necessarily uniform throughout the view and is similar to a camera’s exposure setting.
- Specify the Softness, which determines whether color intensity is based on pixel or overall image intensity.
- Specify the Color Correction, which is the extent to which strong color casts are removed from the image.

2 General Properties -

- Specify the Brightness of the image, which controls how dark or light the image is overall.
- Specify the Contrast, or relative difference between light and dark colors. This setting is similar to the setting of the same name, above, but is not as fine a control because it takes place after tone mapping has been done.
- Specify the Saturation, which is the intensity of colors in the view.

Don’t be afraid to over-saturate your image slightly in very bright scenes – this is a common occurrence in actual photographs.

If you are ray tracing an interior scene where the primary source of light is the sun through a window or door, you may need to adjust your image brightness.

3 Click the Reset to Defaults button to restore the settings in this dialog to their initial, installed values.
Ray Trace Assistant

The Ray Trace Assistant is an easy way to set up new ray trace configurations. It can be accessed by clicking the Create New button in the Ray Trace Current View/Ray Trace Defaults dialog. See “Ray Trace Current View/Ray Trace Defaults Dialog” on page 841.

The choices in the Ray Trace Assistant correspond to settings in the Ray Trace Options dialog. See “Ray Trace Options” on page 841.

Welcome

Select Indoor or Outdoor for a ray trace with lighting effects suitable for the type of view.

Image Size

Specify the size of the final ray trace image. The options here correspond to the Image Size settings in
the Ray Trace Options dialog See “General Panel” on page 842.

- Check Use Active Window Size to set the ray trace to the current size of the active 3D view window. When this is checked, the other settings on this panel are disabled.
- Check Retain Aspect Ratio to maintain the width to height ratio of the original image and prevent the ray trace from being stretched or distorted.
- Specify the Dimensions used to measure the Width and Height of the ray trace image: either Pixels or drawing Units.
- Specify the Width and Height of the ray trace image, in either Pixels or Units.
- Specify the Resolution of the ray trace image, in either Pixels/Inch or Pixels/mm.
- Check Limit Dimensions to Powers of Two to restrict the Width and Height to values that are powers of two. When this is checked and an ineligible value is entered, it will adjust up or down to the nearest power of two. This option is recommended if you are likely to use the Generate as 360° Panorama. See “Export 360 Panorama” on page 896.

Environment Lighting

The ENVIRONMENT LIGHTING panel is only available when Exterior is selected on the Welcome page. Specify the atmospheric conditions of the exterior view you would like to ray trace. The options here correspond to the Outdoor Render Settings in the Ray Trace Options dialog. See “Lighting Panel” on page 843.

- Select Sunny for environmental lighting that is white in color.
- Select Overcast for environmental lighting that uses a pale gray color.
- Select Sunset for environmental lighting that uses a pale orange color.
- Select Dark for environmental lighting that uses a dark blue color.
- Select Nighttime for environmental lighting that uses a dark blue color with a greater intensity than Dark uses.
Focal Blur

Specify the amount of focal blur to use in the ray trace. The options here correspond to the **F-Number** in the **Ray Trace Options** dialog. See “Advanced Panel” on page 844.

- Select **No Focal Blur** to disable Focal Blur when this option is used.
- Select **Some Focal Blur** to use an F-Number of 5.6.
- Select **Lots of Focal Blur** for to use an F-Number of 2.8.

Completing the Assistant

Specify a **Name** for the newly created ray trace configuration. This name will be listed in the **Ray Trace Current View/Ray Trace Defaults** dialogs, and can also be changed there. See “Ray Trace Current View/Ray Trace Defaults Dialog” on page 841.

The initial name created by the program is based on the settings from the Welcome page. If you click the **Back** button and change these settings, this name will adjust as well, provided that you did not change it in any way.

Click **Finish** to create the new ray trace configuration and return to either the **Ray Trace Current View** or **Defaults** dialog, where it will be selected as the Current Configuration.
Adjusting Ray Trace Properties and Effects

A number of attributes of a ray trace image can be adjusted while the view is being generated or after it is complete.

If **Save Image to File** is checked in the **Ray Trace Options** dialog, the program will automatically save to the specified image file if changes are made to it using either the **Adjust Image Properties** or **Adjust Effects** tools and the ray trace view window is closed. See “General Panel” on page 842.

Adjust Image Properties

Select File> **Adjust Image Properties** to open the [Image Properties](#) dialog. The settings in this dialog are the same as those in the **Ray Trace Options** dialog, where their initial values are set. See “Image Properties Panel” on page 845.

Adjust Effects

Select File> **Adjust Effects** to open the [Adjust Effects](#) dialog.

- Check **Enable Bloom** to enable the settings below. Bloom, or light bloom, can occur around areas of intense illumination and looks as though the light is ‘bleeding’ beyond the edges of the light source.
- Specify the **Radius**, which is the width of the bloom area beyond a light source. The higher the Radius setting, the longer the bloom calculation will take.
- Specify the **Weight**, which is the intensity or strength of the bloom effect.
- Click **OK** to close the dialog and apply your changes to the view. Depending on your settings, this could take some time. A progress indicator will display at the bottom of the window. You can press the Esc key to cancel the bloom operation at any time.

Ray Tracing Tips

Ray Tracing gives you the ability to produce high quality, photo-realistic images of your model; however, it is also a resource intensive process that can be quite time-consuming. For best results, there are a number of variables to consider.

Ray Trace Configurations

A Ray Trace Configuration is a group of Ray Trace Options settings saved in the current plan. You can create your own custom configurations for a variety of purposes. See “Ray Trace Options” on page 841.

Ray Trace Configurations can be saved in your template plans, saving you the effort of reproducing them for each new project. See “Template Files” on page 73.

Creating the Camera View

To create a ray trace image in Chief Architect, begin by creating a camera view or overview of the model. The camera position, field of view, and orientation determine the scene’s appearance in the ray trace window. See “Editing 3D Views” on page 797.

In order to ray trace a view, the Standard Rendering Technique must be active. See “Standard Rendering” on page 829.

Ray trace views can be created from both Orthographic and Perspective views; however, Perspective views appear more realistic to the human eye and are better suited to producing photo-realistic images. See “Perspective and Orthographic Views” on page 780.
Lighting

Lighting is an extremely important aspect of high-quality ray trace views. For photo-realistic results, be prepared to add light sources to your model and spend some time making adjustments to their positions and light data settings. See “Lighting” on page 817.

Unlike rendered views, which can support only a limited number of lights, ray trace views can handle as many lights as you like. Lighting in ray trace views is also more realistic than the lighting used in rendered views in that lights are not limited to the current room. Instead, all light sources that are turned “On” in their specification dialog and have been set to Use in Ray Tracing can be used. See “Light Data Panel” on page 499.

To increase ray tracing speed, the program will identify any lights that do not contribute direct lighting to the scene when a ray trace is preprocessing and will remove them from the ray trace lighting calculations.

You can create your own custom Light Sets for ray tracing and can specify which set to use in the Ray Trace Options dialog. See “Lighting Panel” on page 843.

For light sources that cast shadows in a ray trace scene, consider using the Soft Shadows option. Soft Shadows requires more ray tracing time, but smooths the appearance of shadows created by a light, improving their appearance. See “Light Data Panel” on page 499.

Most other rendering settings, including those in the Preferences dialog, are not used for generating a ray trace view, although Ambient Light, set in the 3D View Defaults dialog, is. See “3D View Defaults Dialog” on page 782.

Material Definitions

The attributes of the materials applied to objects in a scene have an extremely important effect on the final quality of any ray trace. These attributes can be adjusted in the Define Material dialog.

All of the attributes that affect a material’s appearance in a Standard rendering will also affect its appearance in a ray trace. See “Texture Panel” on page 771.

In addition, a number of settings specifically affect ray traces. See “Properties Panel” on page 774.

One example is reflectivity. For example:

- For outdoor scenes, ensure that your windows are slightly reflective. You may want to set up a building across the street that, though not in the scene, appears in the reflections in the windows.
- In interior scenes, use partly reflective materials on objects such as stove tops, tile floors, and coffee pots.

Interior Views

When creating an interior ray trace view in which sunlight shines through windows, bear these settings in mind:

- To produce effective lighting in interior ray traces, Use Photon Mapping needs to be checked. See “Advanced Panel” on page 844.
- For colored shadows created by light passing through colored semi-transparent objects, check Compute Caustics as well. See “Advanced Panel” on page 844.
- The Direct Sunlight Intensity setting for interior views should be set higher than for exterior views. A value of 5 is a good starting point, but you may wish to experiment. See “Lighting Panel” on page 843.
- When your ray trace is finished and the ray trace window is active, select File> Adjust Image Properties and adjust the Brightness value as needed. See “Adjust Image Properties” on page 849.

Nighttime Views

For best results when creating a nighttime ray trace view, there are a few considerations to bear in mind:

- While the Standard rendered view you wish to ray trace is active, select 3D> Lighting> Toggle Sunlight to turn off the sun as a light source. See “Generic Sunlight” on page 818.
- Use the Ray Trace Assistant to create an Outdoor ray trace configuration. Choose Dark or Nighttime as the outdoor conditions on the Environment Lighting page. See “Ray Trace Assistant” on page 846.
• When the new configuration is finished, click the Edit button in the Ray Trace Options dialog and enable Photon Mapping. The Use Caustics option improves the quality of light shining through transparent objects. See “Advanced Panel” on page 844.

• When your ray trace is finished and the ray trace window is active, select File> Adjust Image Properties and either lower the Intensity value or uncheck Use Tone Mapping to turn this feature off altogether. See “Adjust Image Properties” on page 849.

Faster Ray Tracing

Depending on the scene, a ray trace can quite literally take days to produce. There are several things you can do to reduce the time required:

• Reduce the number of surfaces in the 3D model by turning off all layers not used in the scene to be ray traced. For example, you may be able to turn off terrain layers for interior views, or cabinet layers for exterior views. See “Layers” on page 142.

• An even more effective way to reduce the size and complexity of a 3D model is to use Save As to create a copy of the plan, then delete all areas of the model that do not affect the scene to be ray traced. Depending on the scene, you may be able to delete entire rooms - or even entire floors.

• Image size is a significant factor in the speed of a ray trace. As you adjust the lighting and other variables in a scene, you can save time by creating smaller ray traces for preview purposes. To do this, specify a relatively small image size in the Ray Trace Options dialog. When you are ready to create a final ray trace, specify a larger image size. See “General Panel” on page 842.

CPU Usage

Ray tracing is a data intensive process that can require a lot of resources on any computer. You can specify whether Chief Architect or the ray trace engine has access to more of your computer’s processor resources when both are running in the Preferences dialog. See “Ray Trace Panel” on page 103.

Queueing Ray Trace Jobs

Because Chief Architect’s ray trace engine is a separate process from the program, you can set up a queue of multiple ray trace jobs, much like you can queue multiple print jobs for a printer.

Ray traces are generated one at a time, so in order for a queue of multiple ray traces to be completed, they must all use Ray Trace Configurations set to use a defined period of time or number of passes. See “General Panel” on page 842.

To queue multiple ray traces

1. Start your first ray trace and then return to floor plan view without closing the ray trace window. See “Working in Multiple Views” on page 124.

2. Open or create the next camera view that you would like to ray trace.

3. Choose the desired Ray Trace Configuration and begin the ray trace.

4. Repeat these steps to queue as many ray traces as you need. As soon as one finishes, the next one will begin.

If you have multiple ray traces queued and you **Pause** the one in progress, the next job in queue will begin running. If you **Resume** the first job, the one in progress will be paused.

You can work on other tasks on your computer while your ray traces run, or you can walk away. You can lock your computer and even turn off the monitor; but do not exit out of Chief Architect or shut down the computer or your queue will be lost.

Do not use the No Limit option when queueing ray trace jobs.
Chief Architect uses picture files in a variety of ways to enhance your drawings.

The Library Browser contains images of real world objects like plants and vehicles that can display in 3D views.

Picture files can also be imported into Chief Architect and shown in most views.

You can save any view using a variety of picture file formats. In addition, Chief Architect allows you to create virtual tour videos that can be played back later and shared with others.

Chief Architect can also generate ray trace images from a Standard rendered view for photo-realistic rendering capabilities. Ray tracing is discussed in its own chapter. See “3D Rendering” on page 815.

Chapter Contents

- Picture Files vs Pictures and Image Objects
- Images
- Displaying Images
- Editing Images
- Image Specification Dialog
- Pictures
- Picture File Box Specification Dialog
- Metafiles
- Metafile Box Specification Dialog
- PDF Files
- PDF Box Specification Dialog
- Displaying Pictures, Metafiles, and PDF Boxes
- Editing Pictures, Metafiles, and PDF Boxes
- Creating Screen Captures
- 3D Backdrops
- Backdrop Specification Dialog
- Walkthrough Paths
- Recording a Walkthrough
- Walkthrough Path Specification Dialog
- Creating VRML Files
Picture Files vs Pictures and Image Objects

In common computer language, picture files, pictures and images are more or less synonymous. In the Chief Architect environment, however, there are some notable differences between these terms.

In Chief Architect, a two dimensional image file such as a .bmp, .jpg, .gif, or .png is referred to as a picture file or an image file. Examples of these files are saved on most computers and can be opened in a variety of applications.

A Picture, on the other hand, is a file that has been imported into the program. Pictures can be imported into plan view, cross section/elevation views, CAD details, and layout pages. They are two-dimensional only and do not display in camera views or overviews.

An Image object is also based on a picture file, but it does display in both 2D and 3D views. Images have 3D width and height data associated with them, as well as a 2D symbol which displays in plan view.

Picture files have additional uses in Chief Architect, as well:

- Backdrops are picture files that display behind 3D views. See “3D Backdrops” on page 868.
- Textures are picture files that realistically represent materials in 3D views. See “About Materials” on page 758.

Images

Images add realistic detail to 3D views without adding many surfaces to the model. For example, a tree image with a single surface can be used instead of a tree symbol with thousands, dramatically improving realism without compromising drawing time.

There are two types of Images in Chief Architect:

- **Images** rotate so that they always face the camera in 3D views.
- **Billboard Images** do not rotate to face the camera. An example of when this may be useful is an image of a trellis, which might look awkward when facing a camera from a side view.

Placing Images

A selection of Images are available in the Library Browser. Select one and click in a plan view, camera view or overview to place it. See “Placing Library Objects” on page 704.

Creating Images

Custom Images can be added to the User Catalog in the library, as well as created in plan files. Chief Architect can use any image with a *.bmp, *.jpg, *.png, *.gif, or *.tif extension.

Generally, .png files work best as Images because this format has good compression and allows for the Image to contain transparency information.

To create an Image in plan view

1. In plan view, select **Build> Image> Create Image** or **Billboard Image** to open the Image Specification dialog. See “Image Specification Dialog” on page 856.

2. On the **IMAGE** panel:
 - Click the **Browse** button to select a picture file on your computer or enter the path to a valid picture file in the **Image File** field. If the file is not located in the Chief Architect X12 Data folder, a copy of the file will be created at Chief Architect X12 Data\Images\-My Images and the Image object will reference that copy. See “Chief Architect Data” on page 40.
 - Select a **2D Plan Symbol** from the drop-down list or click the **Library** button and select a CAD block or symbol from the library. The selected symbol represents the image in plan view. See “Image Panel” on page 856.
 - Specify the **Size** and **Position** of the image.

3. Specify transparency information on the **TRANSPARENCY** panel.

4. Click OK to close the Image Specification dialog.

5. Click to place the new Image in plan view.

To create an image in the Library Browser

1. In the Library Browser, right-click on an unlocked folder.
2. Select **New > Image** from the contextual menu to open the **Image Specification** dialog.

3. Browse to the image file you want to add and select your other options. See “Image Specification Dialog” on page 856.

4. Once created, the image is listed in the library folder that you right-clicked on. Size and other data is saved.

Using Paste Image

You can also import an image by first copying it to the system clipboard, then navigating to a Chief Architect window and selecting **Edit > Paste > Paste** from the menu, or by using the Screen Capture tools. See “Paste Special” on page 138 and “Creating Screen Captures” on page 867.

Displaying Images

The display of images in floor plan and 3D views is controlled in the **Layer Display Options** dialog. See “Layer Attributes” on page 142.

Images are placed on the “Images” layer by default but can be moved to other layers once they have been created. See “Image Specification Dialog” on page 856.

In Plan View

In plan view, most images are represented by an **Image** symbol. You can specify a different symbol to represent an image if you wish. See “Image Specification Dialog” on page 856.

Any 2D CAD block from the library can represent an image object. If you do not see a CAD block that suits your needs, you can create one or import one from another application. See “Custom 2D Symbols” on page 252.

In 3D Views

The actual picture associated with an image object can be seen in 3D views, as can any transparency data associated with it. See “Image Specification Dialog” on page 856.

Images can be set to either rotate so that they always face the camera or remain stationary, like billboards. See “Images” on page 854.

In Layout Views

Images can be included in all views sent to layout with the exception of those using Plot Lines. See “Plot Line Views” on page 968.

Editing Images

Images can be selected in 2D and 3D views and edited using the edit handles, edit tools and the **Image Specification** dialog. See “Image Specification Dialog” on page 856.

Using the Mouse

In plan view, a selected image can be rotated, moved, and resized. In 3D views, a selected image only has two edit handles: the circular Resize handle and square Move handle.

Converting a Folder of Images

A folder of image files can be converted into Image objects and added to the library all at once, saving the effort of converting them individually.

To convert a folder of images

1. Select **Build > Image > Create Image Library**.

2. In the **Select an Image Folder** dialog, select a folder of image files to convert and click OK.

3. A new library with the same name and directory structure as the converted folder is listed in the Library Browser. Depending on the number of images in the folder, this may take a few moments.
Using the Edit Toolbar

A selected image or images can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

When an image is resized using the edit handle, its aspect ratio is retained and 2D symbol resizes proportionally.

Image Specification Dialog

Select an image and click the Open Object edit button to open the Image Specification dialog.

Image Panel
General information about the selected Image can be specified here.

- The **Image File** associated with the Image can be specified. Click **Browse** to choose a file saved on your computer or type the file’s full pathname in the text field.
- Select a **2D Plan Symbol** from the drop-down list to represent the Image in plan view. See “Displaying Images” on page 855.
- Click the **Library** button to choose a CAD block from the library to act as the Image’s 2D symbol. See “Select Library Object Dialog” on page 705.

Note: Images cannot be assigned a 2D Plan Symbol that contains a nested CAD block. See “CAD Blocks” on page 251.

Specify the Size/Elevation of the image as it displays in 3D views.

- Enter a **Height** for the selected image.
- Enter a **Width** for the selected image.
- Uncheck **Retain Aspect Ratio of X** if you would like to modify the Height or Width without affecting the other value. If you do this, the image may appear distorted. This check box does not affect editing performed outside of this dialog and is an action rather than a state: the next time you open this dialog, it will be checked.
- Click **Reset Original Aspect Ratio of** to reset the image’s original aspect ratio and remove any distortion caused by resizing.
- Select the **Elevation Reference** from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.

Options -

- Check **Reverse Image** to reflect the appearance of the image about an imaginary vertical line through its center.
- Check **Image Always Faces Camera** to prevent the image from rotating to face the camera in 3D views. This box is unchecked for Billboard Images. See “Images” on page 854.

Any **Copyright** information associated with the selected Image will be stated here.

A preview of the selected Image displays here. The Glass House Rendering Techniques is not available for images. See “Dialog Preview Panes” on page 32.

Transparency Panel

The settings on the **TRANSPARENCY** panel let you specify portions of the selected image as transparent.
Click the Use Transparency From The Image File radio button to use any transparency data included in the image file.

- Click the Use Custom Transparency Color radio button to specify a color in the image to represent the transparency and enable the settings below.

- Click the Color bar to select a color in the Select Color dialog. See “Color Chooser/Select Color Dialog” on page 160.

- Use the slide bar or enter a value to specify a level of Tolerance to be applied to colors that are almost the same as the specified transparency color.

- Move your pointer over the small preview image below. The pointer changes to an eyedropper and a magnified preview displays to its right. Click to select the color of the pixel your pointer is over as the Transparency color. The selected color displays in the Color bar, below.

- A magnified preview of the area in the preview image above displays here, allowing for accurate pixel selection.

 Note: The image preview will display its original orientation, even if Reverse Image is checked on the Image panel.

The Transparency Color

If the portion of the image file that you wish to use contains the transparency color, that part of the image also becomes transparent. If this happens, the image may appear partially disintegrated.

You may need to experiment to find the best transparency color and tolerance for the image.

Layer Panel

For information about the settings on this panel, see “Layer Panel” on page 149.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected image’s 2D Plan Symbol in plan view, provided that the selected symbol is a closed shape. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Pictures

A variety of picture file types can be imported into and exported out of Chief Architect. Metafiles are also types of picture files that can be imported and exported. See “Metafiles” on page 861.
Exporting Pictures

There are several ways to save a picture of a view in Chief Architect:

Using the **Export Picture** tool is similar to creating a screen capture of everything in the current view window. Pictures can be saved in various file formats and used in other applications.

Export Picture is best suited for rendered and ray trace views. When exporting a line-based view, best results can be achieved by saving it as a Metafile. See “To export a metafile” on page 861.

The **Screen Capture** tools offer another way to create a picture file based on the current view. See “Creating Screen Captures” on page 867.

The **Export 360 Panorama** tool creates a spherical panoramic image file. See “Export 360 Panorama” on page 896.

Use the **Print Image** tool to either print or save the current view as a PDF file. See “Print Image Dialog” on page 998.

To export a picture

1. Open the view that you would like to export as a picture file.
2. Zoom, pan or otherwise adjust the view so that what you see on screen suits your needs. See “Displaying 3D Views” on page 790.
3. Select **File> Export> Export Picture (BMP, JPG, PNG)** to open the **Export Picture** dialog, below, and specify the desired image size and other properties.
4. In the **Export Picture File** dialog, which opens next, give the file to be exported a name, file type, and location. See “Exporting Files” on page 44.

Export Picture Dialog

1. Specify the exported file’s **Image Size** in pixels or inches (mm).
 - Check **Use Active Window Size** to export the picture at the same size as the active view window. The window’s Width and Height are described below. In camera views only, these values can be changed, in which case this box becomes unchecked automatically.
 - Select either **Pixels** or **Units** as the method by which the picture’s dimensions are measured.
 - Specify the **Width** and **Height** of the image. The initial values correspond to the view window’s size. In plan view and CAD Details, they display for reference only.
 - Specify the **Resolution** of the image. Select **Dots/Inch** or **Dots/mm** from the drop-down list.
 - Uncheck **Retain Aspect Ratio** if you would like to modify the Height or Width without affecting the other value. Leave this box checked to prevent the image from becoming distorted.
2. Check **Transparent Background** to produce alpha transparency in the spaces between all objects that can be seen in the current view. Transparency associated with Fill and Text Styles is retained, as well. Note that the .png and .tif file types support transparency, while the .jpg and .bmp file types do not.

Importing Pictures

Pictures can be imported into and displayed in plan view, cross section/elevation views, CAD Details, and layout pages. Pictures do not display in camera views or overviews. See “Displaying Pictures, Metafiles, and PDF Boxes” on page 866.

There are several ways to import a Picture into Chief Architect:
• Select File > Import > Import Picture (BMP, JPG, PNG) to open the Import Picture File dialog, which is a typical open file dialog. See “Importing Files” on page 48.
• Click and drag an image file from an operating system window into the Chief Architect window.
• In any application, copy an image to the system clipboard, then select Edit > Paste > Paste from the Chief Architect menu in an eligible view window. See “Paste Special” on page 138.
• Use the Screen Capture tools. See “Creating Screen Captures” on page 867.

Note: Importing large, or multiple, Pictures into a plan or layout file can result in program slowness.

An imported picture is placed in the center of the current view. Once imported, pictures can be selected and edited. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

Picture File Box Specification Dialog

Select an imported picture file and click the Open Object edit button to open the Picture File Box Specification dialog.

Information about the selected Picture File can be specified here.
• The Filename of the picture file displays here. Type a new pathname to change the picture assigned to this box.
• Click the Browse button to choose a new picture file or to relink to a missing file.
• Check Save in Plan to embed the picture in the plan or layout file. If a picture file is embedded, you do not need to include it when sending the plan or layout to a different computer.
• Click the radio button beside either PNG or JPEG to specify how to save the embedded picture data. Pictures that were originally .jpg files use the JPEG option by default; those that were .gif or .png files use the PNG option by default.
• Specify the picture’s Quality % when JPEG is selected. A lower value results in better compression, while a higher value reduces data loss.
Metafiles

Center/Orientation - Specify the position of the selected Picture’s center point and its angle. See “3D Drafting” on page 25.

- Specify the X and Y Positions of the picture box’s center point relative to the absolute origin.
- Specify the Angle of the picture box relative to a horizontal line pointing towards the right hand side of the screen.

Specify the Size of the picture in plan inches (mm).

- Specify the Width of the picture box. The original width in pixels displays to the right.
- Specify the Height of the picture box. The original height in pixels displays to the right.
- Uncheck Retain Aspect Ratio of X if you would like to modify the Height or Width without affecting the other value. If you do this, the picture may appear distorted.

This check box does not affect editing performed outside of this dialog and is an action rather than a state: the next time you open this dialog, it will be checked.

A variety of Display Options are available.

- Check Black and White Dither to dither the selected picture file. Dithering creates a two tone effect that may produce better results when printed.
- Check Grayscale to replace the color in the selected picture with shades of gray.
- Check Reflect to reverse the image.
- Enter a degree of Brightness from 1 - 100%.
- Enter a degree of Contrast from 1 - 100%.

Line Style Panel

The settings on this panel are similar to those on the LINE STYLE panel in numerous other dialogs, with one exception: check Show Outline to turn on the display of the picture’s border polyline. For more information, see “Line Style Panel” on page 235.

Fill Style Panel

For information about using the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.

To export a metafile

1. Accurately position the view on screen.
2. Select File> Export> Export Metafile (EMF).
3. Drag a marquee from corner to corner, defining the area that will included in the metafile.
4. Release the mouse button to open the Export Metafile dialog, which is a typical Save As dialog. See “Saving, Exporting, and Backing Up Files” on page 42.
5. When you click the Save button, the Metafile Size dialog opens.

Note: PNG is the better option for pictures of line drawings, text, or large areas of a single color. JPEG is the better option for photos.

Note: Metafiles are not supported in Mac operating systems and cannot be imported or exported in Mac versions of the software.

Metafiles

A metafile (.emf, .wmf) is a special picture file format made up of vectors (lines) that allow the image to be rescaled without loss of quality. High resolution pictures of line-based views can be exported as a metafile.

Exporting Metafiles

An enhanced metafile (.emf) can be exported from any line-based view: that is, from plan view, CAD Details, layout pages, and 3D Vector Views.

Only objects that display on screen are included in an exported metafile.
6. Specify the desired Width or Height of the metafile. When one value is edited, the other changes to maintain its aspect ratio.

Specify, too, the desired Dots Per Inch (DPI) for the metafile. A larger value results in a higher quality metafile, but also a larger file size.

7. When a metafile is exported from a 3D Vector View, you can also specify the printed thickness of lines in the view. To increase the printing line weight, type a larger number in the Use Line Weight field. See “Vector View” on page 829.

Metafiles exported from plan view use the line weights defined in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Importing Metafiles

Metafiles can be imported into and displayed in plan view, cross section/elevation views, CAD Details, and layout pages. Metafiles do not display in camera views or overviews. See “Displaying Pictures, Metafiles, and PDF Boxes” on page 866.

There are two ways to import a metafile into Chief Architect:

- Select File> Import> Import Metafile (EMF,WMF) to open the Import Metafile dialog, which is a typical open file dialog. See “Importing Files” on page 48.

- You can also click and drag a metafile file from an operating system window into the Chief Architect window to import it.

An imported metafile is placed in the center of the current view. Once imported, metafiles can be selected and edited. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

Metafile Box Specification Dialog

Select an imported metafile and click the Open Object edit button to open the Metafile Box Specification dialog.

General Panel

1. **Center/Orientation** - Specify the position of the selected metafile’s center point and its angle. See “3D Drafting” on page 25.

2. Specify the X and Y Position relative to the absolute origin.
Specifying Metafile Properties

• Specify the **Angle** of the metafile box relative to a horizontal line pointing towards the right hand side of the screen.

2 Specify the **Size** of the metafile in plan inches (mm).

• Specify the **Width** of the metafile box.

• Specify the **Height** of the metafile box.

• Uncheck **Retain Aspect Ratio of X** if you would like to modify the Height or Width without affecting the other value. If you do this, the metafile may appear distorted. This check box does not affect editing performed outside of this dialog and is an action rather than a state: the next time you open this dialog, it will be checked.

• **Reset Original Aspect Ratio** - If the aspect ratio is changed, you can click this button to return the picture to its original aspect ratio.

• Check **Reset Cropping** to fill the extents of the selected metafile box with the image associated with it. If the box has been resized, the image may appear distorted. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

Line Style Panel

The settings on this panel are similar to those on the LINE STYLE panel in numerous other dialogs, with one exception. Check **Show Outline** to turn on the display of the picture’s border polyline. For more information, see “Line Style Panel” on page 235.

Fill Style Panel

For information about using the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.

PDF Files

Portable Document Format (.pdf) files are a special type of file that can be viewed on nearly any computer and can include a wide variety of visual information.

Printing and Exporting PDF Files

You can save any view as a 2D .pdf file by selecting **File> Export> Export PDF**. This will open either the **Print View** or **Print Image** dialog, depending on the view type.

You can also save any view as a 2D .pdf file by selecting “Chief Architect Save as PDF” as the Destination printer Name in either of these dialogs. See “Printing to a PDF File” on page 991.

Importing PDF Files

To import a .pdf file, select **File> Import> Import PDF**.

You can also import a .pdf file by dragging it from an operating system window into the Chief Architect window.

You can import .pdf files into Chief Architect in plan view, cross section/elevation views, CAD Details, and in layout. Once imported, PDF boxes behave and can be edited similar to imported pictures and metafiles. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

Some .pdf files can contain both 2D and 3D information; however, Chief Architect can only support 2D data in an imported .pdf file. When a 3D .pdf file is imported, it may display text, a static image of the 3D model, or it may not import at all.

Note: Importing large, or multiple, .pdf files into a plan or layout file can result in program slowness.
The full pathname of the .pdf file displays here. If the pathname is not that of a valid .pdf file, this text will display in red.

- Click the Browse button to choose a new .pdf file or to relink to a missing file.
- Specify the Page of the .pdf file that displays in the preview on the right. Type a page number in the text field or use the spin control arrows to browse the pages sequentially.

A preview of the page selected above displays on the right.

Specify how much of the .pdf file you wish to import. When multiple pages are imported, a separate PDF box is created for each one.

- Select Current Page to import only the page specified above and shown in the preview to the right.
- Select Pages, then specify the starting page in the From field and the ending page in the To field.
- Select All to import the entire .pdf file.

PDF Box Specification Dialog

Select an imported PDF box and click the Open Object edit button to open the PDF Box Specification dialog.
General Panel

The full Filename of the .pdf file displays here. Type a new name to associate the selected PDF box with a different .pdf file.

- Click the Browse button to choose a new .pdf file or to relink to a missing file.
- Specify the Page of the .pdf file that displays in the selected PDF box.
- Check Save in Plan to embed the .pdf in the plan or layout file. If a .pdf is embedded in a file, you do not need to include it when sending the file to a different computer. If the .pdf file is modified, however, the PDF box in Chief Architect will only update automatically if this is unchecked.

Center/Orientation - Specify the position of the selected PDF box’s center point and its angle. See “3D Drafting” on page 25.

- Specify the X and Y Positions of the PDF box’s center point relative to the absolute origin.
- Specify the Angle of the PDF box relative to an imaginary horizontal line pointing towards the right hand side of the view window.

Specify the Size of the PDF box in plan inches (mm).

- Specify the Width of the PDF box.
- Specify the Height of the PDF box.

- Uncheck Retain Aspect Ratio of X if you would like to modify the Height or Width without affecting the other value. If you do this, the PDF box may appear distorted. This check box does not affect editing performed outside of this dialog and is an action rather than a state: the next time you open this dialog, it will be checked.

- Reset Original Aspect Ratio - If the aspect ratio is changed, you can click this button to return the picture to its original aspect ratio.

- Check Reset Cropping to fill the extents of the selected PDF box with the image associated with it. If the box has been resized, the image may appear distorted. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

Line Style Panel

The settings on this panel are similar to those on the LINE STYLE panel in numerous other dialogs, with one exception: Check the Show Outline box to turn on the display of the PDF box’s border polyline.

See “Line Style Panel” on page 235.

Fill Style Panel

For information about using the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.
Displaying Pictures, Metafiles, and PDF Boxes

The display of Pictures, Metafiles, and PDF Boxes is controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

Pictures, Metafiles, and PDF Boxes are placed on the Current CAD Layer by default; but once imported, they can be moved to other layers. See “Image Specification Dialog” on page 856.

Pictures, Metafiles, and PDF Boxes can be imported into and displayed in plan view, cross section/elevation views, CAD Details, and layout pages. A Picture, Metafile, or PDF Box can only be seen in the view where it was imported and cannot be imported into a camera view or overview.

Drawing Groups

Each object in a plan or layout file is included in a Drawing Group, which influences whether it displays in front of or behind other objects. By default, imported pictures and PDF Boxes are placed in Drawing Group 38, the Back Group, and imported metafiles are placed in Drawing Group 21, the same Drawing Group as CAD objects.

Once imported, the drawing order of pictures, metafiles, and PDF Boxes can be customized. See “Drawing Groups” on page 153.

In Layout

Pictures, metafiles, and PDF boxes are included when a view is sent to layout, and can also be imported directly onto a layout page. See “Pictures, Metafiles, and PDFs in Layout” on page 964.

Editing Pictures, Metafiles, and PDF Boxes

Pictures, Metafiles, and PDF Boxes can be selected and edited using the edit handles, the edit toolbar, and their specification dialogs.

Imported pictures, metafiles, and PDFs are placed on the Current CAD Layer by default; but once imported, these objects can be placed on any layer. See “Layers” on page 142.

In the Specification Dialog

Pictures, Metafiles, and PDF Boxes can be customized in their specification dialog. See:

- “Picture File Box Specification Dialog” on page 860
- “Metafile Box Specification Dialog” on page 862
- “PDF Box Specification Dialog” on page 864

Using the Mouse

Pictures, Metafiles, and PDF Boxes have edit handles similar to other box-based objects. See “Editing Box-Based Objects” on page 184.

- If you drag an Extend handle along a Picture, Metafile, or PDF Box’s edge, the contents of the box will not be resized. If you resize it larger, an empty space will be created between that edge and the contents; if you resize it smaller, the contents will be cropped.

Using Dimensions

Pictures, Metafiles, and PDF Boxes can be relocated relative to other objects with precision using dimensions.

To avoid changing the selected object’s aspect ratio, make sure you choose to move the entire object rather than the selected edge. See “Moving Objects Using Dimensions” on page 365.

Using the Edit Tools

A selected Picture, Metafile, or PDF Box can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Point to Point Resize

A selected picture, metafile, or PDF box can be resized in either the X or Y direction with the Point to Point Resize edit tool.
To use the Point to Point Resize tool

1. Select a picture box, metafile box, or PDF box.
2. Click the Point to Point Resize edit button.
3. The mouse pointer displays the Point A icon. Click on the first of two points in the selected object’s box area that have a known distance between them.
4. An extension line extends from Point A to the mouse pointer, which now displays the Point B icon.
5. Click on the second of the two points with a known distance between them.
6. After you click on the second point, the Point to Point Resize dialog opens.
7. The current distance between the two points populates the text field. Enter a new dimension that matches the desired distance between the points.
8. When Retain Aspect Ratio is checked, the ratio between the selected object’s height and width is maintained when you click OK and the object is resized. When this is unchecked, the object may become distorted-looking.
9. Click OK to resize the picture, metafile, or pdf.

Resize Factor

With a bit of calculation, an imported picture, metafile, or PDF box can be resized to scale using the Transform/Replicate Object dialog. Once resized, the information in the object box can be traced using Chief Architect’s drawing tools and then deleted.

To calculate the Resize Factor

1. Find two items in the imported object that are separated by a known horizontal or vertical distance, such as two walls or plot lines.
2. Draw parallel CAD lines on top of these two items. See “The CAD Drawing Tools” on page 228.
3. Find the distance between the CAD lines. See “The Manually Drawn Dimension Tools” on page 356.
4. The Resize Factor for the image is the distance described in the picture divided by the distance between the CAD lines.

For example, if the items are supposed to be 10 feet apart on the picture, but the distance between the two CAD lines drawn on them is only 2 feet, you need to set the Resize Factor for the picture to 5. (10’ divided by 2’ equals 5). When the picture is 5 times the original size, the items on the picture are at the actual scale shown on the picture.
5. Select the picture and click the Transform/Replicate Object edit button.
6. In the Transform/Replicate Object dialog, select the Resize Factor check box.
7. Enter the Resize Factor calculated above, then click OK.
Save Capture As - Specify in what form you would like the screen capture to be saved.

- Select Backdrop to add the image to a new 3D backdrop in the User Catalog in the library, where it will be selected. See “3D Backdrops” on page 868.
- Select Image to add the image to an Image object in the User Catalog in the library, where it will be selected. See “Images” on page 854.
- Select Material to add the image to a new material in the User Catalog in the library, where it will be selected. See “Creating Materials” on page 764.
- Select Picture to display the picture in the current plan, cross section/elevation, or CAD Detail view. See “Pictures” on page 858.
- Check Hide Chief Architect While Capturing to minimize the program window so you can capture an image in another application.
- Click Capture to proceed with a screen capture and click Done when you are finished. The Screen Capture Setup settings are saved between program sessions and are used in all files.

To create a screen capture

1. Select Tools> Screen Capture> Capture Screen , or click the Capture button in the Screen Capture Setup dialog.
2. The mouse pointer displays a crosshairs icon when the Screen Capture tool is active. Move it to the window that you want to capture from. This can be in Chief Architect, a web page, or another program.
3. Click and drag a rectangular marquee to capture the area within the marquee.
4. A captured Picture will be placed immediately in the Chief Architect drawing area. Captured Backdrops, Materials, and Images are saved in the User Catalog of the Library Browser.

To change the name of a captured backdrop, image, or material, right-click on its name in the library list, select Rename, and type in the new name. See “Renaming Library Items” on page 701.

3D Backdrops

A backdrop is an image, typically of an exterior view, that displays in the background of 3D views to help place the model into a realistic setting and add a sense of perspective.

![The backdrop in this view includes hills and clouds](image)

Backdrops automatically adjust to fit each view window, so they look best when they are created with a height to width ratio that is similar to the window you are working in.

Specifying a Backdrop Image

Backdrop images are view specific. You can select a backdrop image for a camera view from the library in either of two ways:

- In a 3D view, open the Library Browser. Select a Backdrop image, then move your mouse pointer into the view window. Click anywhere in the view to apply the selected backdrop.
- Open the Camera Specification dialog, and on the BACKDROP panel, click the Select Backdrop button. See “Backdrop Panel” on page 809.

When a backdrop image is not applied, Chief Architect applies a background color instead. This color can be specified on the BACKDROP panel of the Camera Specification dialog, as well.

Spherical Panoramic Backdrops

Spherical Panoramic Backdrops are a special type of backdrop that wraps around the model in 3D views as though it were applied to a sphere surrounding it. It takes an image processing program or special camera to generate spherical panoramic backdrops.
If you have such a file, you can specify it as your Backdrop image, then check Spherical Panoramic Backdrop in the camera’s specification dialog.

The Use Generated Sky option produces a special Spherical Panoramic Backdrop that simulates a daytime sky using the Generic Sun or active Sun Angle data. See “Sun Angles and Shadows” on page 823.

Backdrop Defaults

By default, Chief Architect uses backdrop images in Perspective Full Cameras only. You can, however, specify which types of views use backdrops by default, and also select the default backdrop images for each, in the Camera Tools Defaults dialogs. See “Camera Defaults Dialogs” on page 781.

Similarly, backdrop images are only used by default in a few Rendering Techniques: Standard, Painting, Watercolor, and Physically Based. You can choose whether a backdrop is used in any technique in the Rendering Technique Options dialog. See “Rendering Technique Options” on page 831.

Adding New Backdrops

A new backdrop image can be created using a variety of graphic file formats and can be imported into Chief Architect in several ways:

- Select File> Import> Backdrop to open the Import Backdrop File dialog, which is similar to the Import Picture File dialog. See “Importing Pictures” on page 859.
- Right-click on the User Catalog and select New> Backdrop from the contextual menu.
- Copy and paste an image into Chief Architect. See “Copying and Pasting Objects” on page 136.
- Use the Screen Capture tools. See “Creating Screen Captures” on page 867.
- Import a folder of backdrop images.

To add a folder of backdrops to the library

1. Select File> Import> Create Backdrop Library.
2. Browse to the location of a folder of images on your hard drive that you would like to bring into the library as backdrops, select it, and click OK.
3. A folder with the same name will be created in the User Catalog, containing the imported backdrop images.

Backdrop Specification Dialog

To open the Backdrop Specification dialog, select File> Import> Import Backdrop or right-click on the User Catalog in the Library Browser and select New> Backdrop from the contextual menu. See “Adding New Backdrops” on page 869.

You can also open this dialog by right-clicking on a backdrop image in the User Catalog in the Library Browser and selecting Open from the contextual menu.
Backdrop - Specify backdrop’s Name and the image file associated with it.

- Type a Name for the selected backdrop, to be used in the Library Browser and 3D View Defaults dialog.
- In the Location field, type the full pathname of the image file or click the Browse button and browse to the file on your computer. If the file is not located in the Chief Architect X12 Data folder, a copy of the file will be created at Chief Architect X12 Data\Backdrops\-My Backdrops and the program will reference that copy. See “Chief Architect Data” on page 40.

The Spherical Backdrop Options should only be used if the selected backdrop was specially created to serve as a spherical panoramic backdrop.

- Check Spherical Panoramic Backdrop to project the image onto a sphere that surrounds the model in camera views and overviews.
- The Horizontal Angle controls how many times the backdrop appears as you rotate in a full circle around the model. A value of 360° wraps the image around once; a value of 720°, twice; and a value of 180° makes only half the image wrap around the sphere.
- The Vertical Angle determines how much of the backdrop stretches up and down. To have it stretch from the highest point in the sky to the lowest point below the ground, use a value of 180°. To have the backdrop stretch from just below a horizontal render to just above, use a smaller value, such as 100°.

Some experimenting with the Angle values may be necessary to achieve the desired results. You may prefer to do this after adding the backdrop to a plan. See “Backdrop Panel” on page 809.

If the selected image has a Copyright, information about it will display here.

Walkthrough Paths

A 3D Walkthrough is a series of pictures saved as an .mp4, .wmv, or .avi file that can be played like a video by other applications such as Windows Media Player.
Create Walkthrough Path

There are several ways to create a walkthrough along a path, but the Create Walkthrough Path tool is the fastest and most flexible option.

To create a Walkthrough Path

1. Begin by choosing a codec for recording walkthroughs. See “Selecting a Codec” on page 874.
2. In plan view, select 3D> Walkthroughs> Create Walkthrough Path, then click and drag to draw a Walkthrough Path. See “To use the Spline tool” on page 249.
3. Edit the direction and curvature of the spline’s segments, as needed. See “Editing Spline-Based Objects” on page 186.
4. Add Key Frames to the path and modify their specifications.
5. Select the path and click the Record Walkthrough Along Path edit button. See “Record Walkthrough Along Path” on page 872.

You can also create a walkthrough based on a regular CAD polyline or spline by selecting it and clicking the Record Walkthrough Along Path edit button. This was the only way to record a walkthrough along a path in Chief Architect versions X1 through X4 and does not provide as many options as using a Walkthrough Path.

In plan view, you can convert a CAD polyline or spline into a Walkthrough Path. See “Convert Polyline” on page 205.

Walkthrough Paths display in plan view when the “Walkthrough Paths” layer is turned on. When displayed, Walkthrough Paths display in front of other objects and will print. They are included in views sent to layout or exported to .dxf/.dwg. See “Layers” on page 142.

Key Frames

Key Frames are points along a Walkthrough Path that allow you to change:

- Camera direction, tilt angle, and height;
- Changes in walkthrough speed;
- The floor that the walkthrough is on.

These changes are applied as the camera moves along the Walkthrough Path from one Key Frame to another.

To add a Key Frame to a Walkthrough Path, select the path and click the Add Key Frame edit button. Then click on the path to add a Key Frame at that location.

In plan view, each Key Frame is represented by a camera symbol centered along the walkthrough path. It displays the frame number, is pointed in the direction of its Camera Angle, and its position along the path corresponds to its Time setting.

Key Frame Time, Angle, and other properties can be edited in the Walkthrough Path Specification dialog. See “General Panel” on page 875.

You can also use the Edit Key Frames edit tool to enable Move and Rotate edit handles for each Key Frame on the selected Walkthrough Path.

To use the Edit Key Frames edit tool

1. Select a Walkthrough Path and click the Edit Key Frames edit tool.
2. Each Key Frame on the selected Walkthrough Path will display a Move and Rotate edit handle.
 - Click and drag the square Move handle to reposition the Key Frame along the path.
 - Click and drag the rectangular Rotate handle to change the Key Frame’s direction angle
3. When you are finished adjusting the Key Frames, click the Main Edit Mode edit tool to restore the Walkthrough Path’s normal edit handles.

Walkthrough Paths and Stairs

If you draw a Walkthrough Path up or down a staircase or ramp, it will follow the height of the stairs or ramp and continue on the next floor.
To create a multiple floor walkthrough

1. Draw a Walkthrough Path so that it extends into a staircase or ramp in the same direction as its Direction Arrow. See “Displaying Stairs, Ramps, and Landings” on page 550.
 • Do not drag the Walkthrough Path across the entire length of the stairs or ramp. If you do, its height will remain relative to the current floor.
2. When you release the mouse button, the program will automatically display a dashed line with an arrow extending past the last Key Frame on the current floor.
 • If it follows stairs or a ramp going upward, the path will also extend to the top end of the staircase or ramp.

3. Go up or down one floor, select the Walkthrough Path, and resize and reshape it as needed. You can use the Create Walkthrough Path tool to draw more segments and additional Key Frames can be added, as well.

Playing a Walkthrough

Once a walkthrough has been recorded, it can be played using a media player.

To play a walkthrough

1. Select 3D> Walkthroughs> Play Walkthrough to open the Select Video File dialog.
2. Browse to the .mp4, .wmv, or .avi file on saved on your computer. Your default video application plays the walkthrough video.

Recording a Walkthrough

There are two approaches to recording a walkthrough of a plan:

• Select a path in plan view, then direct the program to record a walkthrough along that path.
• Create a 3D view, then begin recording and use the Move Camera tools to navigate through the view.

Record Walkthrough Along Path

Once a Walkthrough Path has been drawn, you can use it to record a walkthrough video. See “Create Walkthrough Path” on page 871.

To record a walkthrough along a path

1. In plan view, select a Walkthrough Path or a CAD polyline or spline.
2. Click the Record Walkthrough Along Path edit button.
The Quality settings control the compression and total number of individual frames in the walkthrough.

- Specify a Compression percentage between 0 and 100. A value of 0 gives the highest quality images and largest file sizes.
- Specify the desired number of Frames Per Second, between 1 and 100. A higher number results in a higher quality recording but also a larger video file.
- Specify a Duration Along Path, in seconds.
- The Total Frames to Record displays for reference and equals the Frames Per Second times the Duration along Path.

The Resolution settings control the size of the walkthrough’s frames.

- Select a size from the drop-down list. “Current Size” is selected by default. If you modify the Width or Height below, “Custom” will become selected.
- The current Width, based on the selected Resolution, is stated here. If you change this value, the selected Resolution will become “Custom”.
- The current Height, based on the selected Resolution, is stated here. If you change this value, the selected Resolution will become “Custom”.
- Check Retain Aspect Ratio to retain the original ratio between the frame Width and Height. If you modify either value while this is unchecked, the walkthrough may appear distorted.

Rendering Options -

- Select the walkthrough’s Rendering Technique from the drop-down list. See “Rendering Techniques” on page 828.
- Check Show Shadows to turn on shadows in the walkthrough. See “Shadows” on page 815.
- Check Ray Casted Sun Shadows for higher quality shadows cast by sun light. Ray Casted Sun Shadows take longer to generate than regular shadows.
- Bloom occurs around areas of intense light and looks as though the light is ‘bleeding’ beyond the edges of a light source. It adds realism to the view but takes longer to render. Only available when a Rendering Technique that supports lighting is selected above.
- Check Hide Camera-Facing Exterior Walls to suppress the display of any exterior walls that face the camera. Interior walls set as Attic walls are also suppressed. This setting only has an effect when the walkthrough path is on the exterior of a structure.

Select a Video Codec from the drop-down list. This setting is retained between sessions and is also global, affecting all walkthroughs in all plan files. See “Selecting a Codec” on page 874.

When you click OK, the Save Video As dialog will open, allowing you to specify the name, location, and file format for the walkthrough file. The available file formats may vary, depending on which codec you selected.

Frame by Frame Walkthroughs

You can also create a walkthrough by recording it frame by frame. Although time-consuming, creating a walkthrough in this manner lets you see exactly what is being recorded as you record it.
To record a walkthrough frame by frame

1. Create a camera view. This view is the first frame of the walkthrough.
2. While the camera view is active, select 3D> Walkthroughs> Record Walkthrough.
3. In the Walkthrough Options dialog:
 - Select a Frame Rate between 1 and 100. The value entered is the number of frames per second.
 - Select a Compression Percent between 0 and 100. A value of 0 gives the highest quality images and the largest file size.
 - Select a Codec from the drop-down list. See “Selecting a Codec” on page 874.
 - Click OK.
4. In the Save Video As dialog, specify the name, location, and file format for the walkthrough file, then click Save. The available file formats will vary, depending on the codec you selected.
5. Use the camera movement tools to navigate the view. Each time the screen redraws, it is recorded as the next frame in sequence. See “Editing 3D Views” on page 797.
6. To move the camera without saving a view, select 3D> Walkthroughs> Pause Recording to temporarily stop recording.
 - You can then select 3D> Walkthroughs> Save Frame button to control what views are saved.
7. When the walkthrough sequence is complete, select 3D> Walkthroughs> Stop Recording or close the view.

Selecting a Codec

A codec is a utility that compresses and decompresses media files, and is used when both recording and viewing videos such as walkthroughs. When you record a walkthrough in Chief Architect, you can choose which of the codecs installed on your system you want to use. This selection is universal and is retained between program sessions: when you choose a codec in either Walkthrough Options dialog, it will become selected the next time you open either dialog, even if you do so in another plan.

“Windows Media Video 9” is the default codec in the Windows version and “H.264”, in the Mac version; but any codecs installed on your system will be available to use.

To choose the codec that best suits your needs, it is a good idea to create a test walkthrough using each of the codecs installed on your system to see how well their walkthrough quality and file compression meet your requirements. Note that your choice of codec may affect the file formats in the Save Video As dialog.

For more information about codecs, visit chiefarchitect.com.

Walkthrough Path Specification Dialog

Select a Walkthrough Path and click the Open Object edit button to open the Walkthrough Path Specification dialog. See “Walkthrough Paths” on page 870.
General Panel

1. A list of the selected path’s **Key Frames** displays on the left. Click on a Frame in the list to select and edit it using the settings on the right. When the dialog is opened, the last key frame edited in the current program session will be selected automatically. See “Key Frames” on page 871.

 - Specify the **Floor** that the selected Key Frame is located on. See “Multiple Floors” on page 537.
 - Specify the **Time** in seconds at which the selected Key Frame is found in the duration of the walkthrough. Frame 1 is always at 0.0 and cannot be moved; similarly, the last frame is always at the end of the walkthrough Duration.
 - Specify the **Speed After (ft/s)**, which is how fast the camera moves along the walkthrough path from the current Key Frame to the next. Not available if the last Key Frame is selected.
 - Specify the **Camera Angle** at the selected Key Frame.
 - Specify the **Tilt Angle** of the camera at the selected Key Frame.
 - Specify the **Height** of the camera at the selected Key Frame.
 - Click the **Delete** button to remove the selected Key Frame from the path.
 - Specify the **Key Frame Symbol Size**, which is the size of the symbols representing the selected walkthrough path’s Key Frames in plan view. See “Key Frames” on page 871.

 By default, Key Frames use the **Camera Symbol Size** set in the **Camera Defaults** dialog. See “Camera Defaults Dialogs” on page 781.

2. **Walkthrough Options** -

 - Specify the **Duration**, or total length of the walkthrough video in seconds.

 Specify how **Camera Angles** are measured:

 - Select **Relative to Path** to measure each camera angle relative to the direction of the walkthrough path at each Key Frame location.
 - Select **Absolute** to measure each camera angle relative to the plan’s X, Y, and Z axes. See “3D Drafting” on page 25.

 Note: When Relative Angles are used, a Camera Angle of 0° points in the direction of the walkthrough path. When Absolute Angles are used, 0° always points in the positive direction along the X axis.

 Specify how **Camera Height** is measured:

 - Select **Relative to Floor/Terrain** to measure camera height relative to the floor or terrain at each Key Frame location.
 - Select **Absolute** to measure camera height relative to the plan’s Z axis.
Polyline Panel

The POLYLINE panel states the length of the path’s **Perimeter**. The **Area** and **Volume** of a walkthrough path will always be described as “Not closed”. See “Polyline Panel” on page 245.

Selected Line Panel

The SELECTED LINE panel is available when the selected path edge is a line as opposed to an arc. See “Selected Edge” on page 168.

Moving the Start of a line segment moves the end of the previous connected line, if there is one. Similarly, moving the End of a line segment moves move the start of the next connected line, if there is one.

This panel is similar to the LINE panel of the **Line Specification** dialog. See “Line Panel” on page 234.

Selected Arc Panel

The SELECTED ARC panel is available when the selected path edge is an arc as opposed to a line. See “Change Line/Arc” on page 201.

This panel is similar to the ARC panel of the **Arc Specification** dialog. See “Arc Panel” on page 241.

Creating VRML Files

VRML (Virtual Reality Modeling Language) is a 3D file format that can be used by various “walkthrough” viewers, as well as other rendering packages.

VRML files use the **.wrl** file format and contain an entire 3D model, including lighting information. Images and textures can also be referenced. You can post a **.wrl** file and its associated image and texture files to the web or e-mail them to a customer.

VRML files are often created from rendered views so that lighting and textures are used; however, you can export from a Vector View if you wish. See “Editing 3D Views” on page 797.

The entire model is exported, but the starting point for the walkthrough is defined by the camera location at the time of export.

When a camera view or overview is active, select File> Export> Export VRML. The **VRML Export Options** dialog opens.

VRML Export Options Dialog

1 Define the **Camera Field of View**. **Standard** most closely corresponds to the default Chief Architect camera view. The other options generate a wider field of view.
Create VRML Files

2 Specify how Textures/Images are exported.
 • Check No Textures Exported to prevent texture files from being exported with the .wrl file. If textures are exported, the texture files must be in the same folder as the .wrl file.
 • Check Copy Images to Export Folder if you plan to share the VRML with others. This copies texture bitmaps with the .wrl file so that they render correctly when exported.

3 Specify how Lighting is exported.
 • Turn off Ambient Lights turns off the default lights that are used to light a scene.
 • Turn off Fixture Lights turns off the default lights that are generated for fixtures and used to light a scene.
 • Night Sky/Ground Colors darkens the ground plane and sky to create a nighttime appearance.

4 Options
 • Walk Through Surfaces allows you to walk through walls and closed doors from room to room, instead of stopping when you reach a wall.
 • Run Default VRML Viewer starts the .vrml viewer and opens the new .vrml file as soon as it is generated.

Once the general parameters have been selected, click OK. Name the .wrl file and save it in the desired folder and click Save.

VRML Use of Texture and Image Files

In order for textures to be rendered correctly, the texture and image files associated with an exported VRML file must be in the same directory as the .wrl file.

VRML files do not support the use of .bmp textures or images. Instead, compressed file formats such as .gif, .png, or .jpg files must be used.

If you wish to use custom textures or images in your VRML file, you have two options:
 • Make sure that they are saved in a format other than .bmp before you bring import them into Chief Architect. This is the recommended option.
 • Create a .gif file with the same name and in the same directory as the .bmp file. When you export the .wrl file, Chief Architect automatically substitutes the .gif for the .bmp file. Whenever possible, you should use a supported file format instead of using .bmp and .gif pairs.

For more information about .vrml players, visit chiefarchitect.com.

It is best to keep all .vrml files in a folder separate from your normal Chief Architect files, since all textures used in the model also export to the same folder. This could add a significant number of files, creating potential organization problems.
Importing is the process of opening a file that was produced in a different program in Chief Architect. Exporting, on the other hand, is the process of saving information in a Chief Architect file to a format that can be read by another program.

Chief Architect allows you to import and export a variety of information from and to other applications. This chapter focuses on importing and exporting 2D .dwg/.dxf files and a variety of 3D file formats. Other importing and exporting options are described in the chapters in which those objects or settings are discussed.

Chief Architect Account Login

Your online Chief Architect Account allows you to take advantage of a variety of valuable resources including catalog downloads, license management, and technical support. See “Creating a Chief Architect Account” on page 187.

In order to export a 3D model to a Chief Architect 3D Viewer, export a 360° Panorama image file, or import a drawing from the Room Planner mobile app, you must first log in your Chief Architect account. See “Export Chief Architect 3D Viewer File” on page 880, “Export 360 Panorama” on page 896, and “Import Room Planner File” on page 881.

If you try to do any of these tasks while you are logged out of your account, the Chief Architect Account Login dialog will open, giving you an opportunity to log in.

You can also log into or out of your online account at any time by selecting Help> Log in to Chief Architect Account or Help> Log out of Chief Architect Account.

Chapter Contents

- Chief Architect Account Login
- Export Chief Architect 3D Viewer File
- Import Room Planner File
- DXF vs DWG File Formats
- Importing 2D Drawings
- Import Drawing Assistant
- Exporting 2D DXF/DWG Files
- Additional 2D Export Information
- 3D Data Import Requirements
- Importing 3D Symbols
- Symbol Categories
- 3D Symbols and Materials
- Exporting a 3D Model
- Export 360 Panorama
- Export to REScheck
When importing a Room Planner file, use the same **E-mail Address** and **Password** that you used to save the drawing to the cloud in Room Planner.

When exporting a Chief Architect 3D Viewer or 360° Panorama file, use the **E-mail Address** and **Password** that you use to log in to the account on our website that is associated with your software product key.

Export Chief Architect 3D Viewer File

The **Chief Architect 3D Viewer** allows a model created in Chief Architect to be viewed in either:

- A web browser on a computer.
- The 3D Viewer app on a mobile device.

In order to export a Chief Architect 3D Viewer file, you must be logged in to your Chief Architect cloud account.

For more information about the Chief Architect 3D Viewer, visit chiefarchitect.com.

To export a file to the cloud for viewing with either option, select **File > Export > Export Chief Architect 3D Viewer File** while a 3D view is active.

With the exception of Rope Lights, any light sources that are On in the current view, as well as ambient light, will be exported along with the model. See “Lighting” on page 817.

3D Viewer Export Options

- Select **Create New Model** to export a new model without affecting any previously exported files.
- Select **Replace Existing Model** to select a previously-exported model in the list and replace it with the model being exported now.
- To select an existing model to replace, click on its line item in the list.

When you click OK, the **Export 3D Viewer File** dialog opens, where you can specify the exported model’s name, description, and other details.

When you click OK, the 3D model is exported using the layer settings in the camera view that was active when the model was exported.

On the 3D Viewer page, you can also choose to share an exported model with someone so that it can be opened in a 3D Viewer page or in the 3D Viewer mobile app.
Select Cameras to Export Dialog

• The **Camera Name** of each saved Perspective Camera and Overview in the plan is listed here. The camera that is active when you export the model, if listed, is followed by “(source)”. Floor Overviews can be exported; however, they behave like Full Overviews in the 3D Viewer.

• In the **Include** column, click to add or remove a check mark for each camera that you would like to export. By default, only cameras of the same type, on the same floor, and using the same layer set are Included.

• In the **Initial View** column, add a check mark for the camera that you would like to be active when the model is opened in 3D Viewer.

• Click the **Include All** button to export all saved cameras with the model. A large number of saved cameras may slow down the interface of the 3D Viewer app.

• Click the **Include None** button to export no saved cameras with the model. When the model is opened, an unsaved 3D Overview will be the initial view.

Select Notes to Export Dialog

Notes placed in plan and camera views in Chief Architect can be exported with a 3D Viewer model. See “Notes, Note Types, and Note Schedules” on page 395.

• Each Note’s **Title** is listed in the first column. This information corresponds to the Text Above and Below Line in the Note Specification dialog. In the 3D Viewer, this information is used as the note’s Title. See “Note Panel” on page 397.

• The **Description** of each note is listed in the second column. This information corresponds to the Schedule Text in the Note Specification dialog. In the 3D Viewer, this information is used as the note’s Description.

• Click in the **Include** column to add or remove a check mark for each Note that you would like to export.

• Click the **Include All** button to export all Notes with the model.

• Click the **Include None** button to export no Notes with the model.

Import Room Planner File

Select **File > Import > Import Room Planner File**, then select and download a Room Planner file from the cloud. See “Chief Architect Account Login” on page 879.

Files created in Room Planner version 2 and newer can be imported into Chief Architect X12.

Note that the exterior walls in an imported Room Planner drawing will inherit their thickness and other properties from the **Exterior Wall Defaults** dialog in the current plan, while interior walls will retain the thickness that was set in Room Planner. See “Exterior and Interior Wall Defaults Dialogs” on page 263.

Unless a custom ceiling height has been specified in Room Planner, rooms in an imported file use the Default ceiling height set in the **Floor Defaults** dialog. See “Floor Level Defaults” on page 314.

By default, window sizes in imported Room Planner drawings are measured from the outside of their frames, just as their Height and Width are in the **Window Specification** dialog. If you prefer, you can specify that windows are measured from the inside of the frames in the **Preferences** dialog. See “General Panel” on page 85.

Visit roomplanner.chiefarchitect.com for more information about the Room Planner mobile app.
DXF vs DWG File Formats

.dwg is the native AutoCAD® file format. Originally a proprietary format, it is now widely used with many different products.

.dxf (Drawing eXchange Format) is a standard file format created by Autodesk for the transfer of data between other programs.

Many design programs can read and write .dxf and .dwg files. Both formats interpret data as CAD objects such as lines, polylines, and circles. Both formats can also contain 3D data which can be imported into Chief Architect, as well.

Binary .dxf format is another related file format. It is easier for computers to read, is more accurate, and occupies less disk space and regular .dxf files. When exporting, however, bear in mind that not all applications support binary .dxf.

Importing 2D Drawings

2D drawings are imported by reading entities from a .dxf or .dwg file and creating the equivalent CAD objects in Chief Architect.

Chief Architect X12 can import 2D .dxf or .dwg files compatible with AutoCAD® through version 2020. A .dxf or .dwg file can be imported into plan view, a Wall Elevation view, Cross Section/Elevation view, or a CAD Detail.

Only drawings created in AutoCAD®’s Model Space can be imported directly into Chief Architect. Entities drawn on the first page of Paper Space are imported as a CAD block and can be inserted into a drawing from the CAD Block Management dialog. See “CAD Block Management” on page 253.

Entities drawn on subsequent pages of Paper Space are not recognized.

External references (xrefs) are not recognized by Chief Architect, either.

In general, all Z coordinates are mapped to zero. If an entity in an imported drawing has thickness, Chief Architect ignores it.

Supported Entities

The following is a list of the entities that are imported and how they are converted. All other entities are ignored:

- **Lines** - Both 2D and 3D lines.
- **Circles** - Fully supported in 2D.
- **Arcs** - Fully supported in 2D.
- **Ellipses** - Fully supported in 2D.
- **Spline entities** - Fully supported as 2D polylines.
- **Polylines and Lightweight Polylines** - Polylines are imported as polylines. Bumps are converted to arcs. Line widths are ignored.

- **Lightweight Polylines** - Fully supported in 2D.
- **Points** - Points are not supported unless the layer they are on is converted to Elevation Data. See “Importing Elevation Data” on page 921.
- **Text and Multi-line Text** - Both are imported as Rich Text and mapped to the Text layer. Multi-line text objects retain their original width. The first font in a multi-line text object is applied to the entire object. If that font is unavailable, Arial is used.
- **Multileaders** - Fully supported in 2D.
- **Unicode** - Fully supported in text objects only.
- **Blocks and Block Inserts** - A block is a named group of CAD entities that have been joined together to behave as a single object. A block insert is a reference to such a block. Blocks are loaded by name. If a duplicate name is found, you can specify whether a block is imported under a new name, replaces an existing block or simply uses the existing block of the same name.
- **Hatch entities** - If Import Hatch entities is selected on the SELECT FILE page of the Import Drawing Assistant for a .dwg file, Hatch patterns are imported as a CAD block consisting of solid black filled polylines.
- **2D Solids** (Not ACIS Solids) - Fully supported in 2D.
- **Solids** - A solid is a 3 or 4-sided filled area. These are imported as 2D faces.
- **2D Solids (Not ACIS Solids)**
- **3D Faces/Polyface Meshes** - A 3D face has its Z coordinate mapped to zero, and imports as a polyline.
- **Dimensions** - Rotated, aligned and 3-point angular dimensions are supported. All other dimension types are imported as lines and text rather
than functioning dimensions.

CAD blocks containing dimensions as text must be exploded before the text can be edited separately. For more on exploding, see “CAD Blocks” on page 251.

- **Attributes** - Attributes are text objects associated with other items, like blocks. These are imported as text objects at the appropriate location but the association with the original object is broken.

- **Line Styles** - Line styles are not imported. Instead, if a style of the same name displays in the Chief Architect line styles, that line style is used. Otherwise a solid line style is used.

- **Layers** - You can specify which layers in the imported drawing to import into your Chief Architect file. You can also choose how you wish to map drawing layers to layers in the destination file. See “Layers” on page 142.

Import Drawing Assistant

A 2D `.dxf` or `.dwg` file can be imported into any orthographic view: plan view, cross section/elevation views, CAD Details, and layout.

To import a 2D drawing file, open the view in which you would like to place the drawing and select **File > Import > Import Drawing (DWG/DXF)** to open the welcome page of the **Import Drawing Assistant**. Click **Next** to continue.

You can also launch the **Import Drawing Assistant** by dragging a `.dxf`/`.dwg` file from an operating system window into the Chief Architect window.

If the file you are importing is password protected, you will be prompted to enter the password before continuing.
Click the **Browse** button to select the file that you wish to import. When a file is selected, its full pathname displays to its left. The directory containing the last file selected using the **Import Drawing Assistant** displays here otherwise. If the pathname is not a valid dxf/.dwg file, this text will display in red.

Note: If the file you are importing is password protected, you will be prompted to enter the password before continuing.

If you want to convert lines with shared end points to polylines and/or boxes, check the appropriate options. Polylines are not affected by these settings, nor are lines that do not share end points.

- Check **Polyline**s to import lines with shared end points as polylines.
- Check **Boxes** to import lines with shared end points that form a closed rectangular shape as boxes.

Specify how to treat CAD blocks associated with the selected drawing.

- Select **Import all CAD blocks** to include all CAD blocks associated with the file being imported whether or not they are in use. See “CAD Block Management” on page 253.
- Select **Only import CAD blocks if they are referenced in the drawing** to reduce the volume of transferred data.

Check **Import Hatch entities** to import areas of hatching as solid-filled polylines.

Click **Next** to load the file into memory so that Chief Architect can present information about the contents of the file. This can take a while for larger files.
Select Layers

A list of the layers found in the imported file and information about each layer displays in this table. See “Layers” on page 142.

- In the Layer column, check the box to the left of each layer name to specify which layers you want to import. Layers with checked boxes are imported; those with unchecked boxes are not.
- Layers that were Visible in the original program are checked by default. You can include a layer that is not visible by checking the box to the left of its name.
- Layers that were Frozen in the original program are not checked by default. You can include a frozen layer by checking the box to its left.
- If a layer is set to Convert To a Terrain Perimeter or Elevation Data, it will be indicated in this column provided that you are importing into plan view.

Click Select All to check the box to the left of all layer names in the table. Click Clear All to clear the checkbox to the left of all layer names in the table.

The Convert To drop-down list allows you convert the data on any layer into a Terrain Perimeter or Elevation Data. See “Terrain Perimeter” on page 900 and “Importing DWG/DXF Elevation Data” on page 925. Only available when importing into plan view.

To convert a layer to a Terrain Perimeter or Terrain Data, click on its name in the table and then select an option from the Convert To drop-down list. The option you choose will then display in the Convert To column in the table.

Note: If an open polyline is converted into a Terrain Perimeter, the program will draw an additional edge to close the gap.
The Layer Mapping page lets you control how layers in the imported drawing are mapped into the destination file.

1. The simplest option is select a single layer in Chief Architect and assign all objects in the imported drawing to that layer. Original layer attributes are lost, but line color, style, and weight are preserved on a per object basis.
 - Select a layer from the drop-down list or click the Define button to open the Layer Display Options dialog and specify a layer and its properties. See “Layer Display Options Dialog” on page 144.

2. The second option is to map the layers in the drawing to Chief Architect layers by name. Layers are created in the destination file with the same names as those listed on the Select Layers window of the Import Drawing Assistant, and the imported CAD objects are placed on those layers.
 - In combination with the second alternative, you may choose to import all attributes for each layer into the current Layer Set, or import no attributes at all.

3. The third option is to map each layer individually with complete control of all layer mapping options. Selecting the third option opens the Advanced Layer Mapping page.

Advanced Layer Mapping
If you select the **Advanced Layer Mapping** option, the **Advanced Layer Mapping** page displays, allowing you complete control of how all imported layers are mapped.

1. A list of the layers found in the imported file and the layers in Chief Architect that they are mapped to display in this table.
 - The original name of each **DWG/DXF Layer** is found in the first column.
 - The name of the **Chief Layer** that each imported layer is mapped to is listed in the second column. The initial Chief Layer selections depend on which option was selected on the Layer Mapping page.
 - If a Chief Layer does not already exist in the destination plan or layout file, it will be listed as “**New**” in the third column.
2. When a row in the table above is selected, the **Chief Layer** options become active. Select multiple entries by holding down the Shift key.
 - If the layer in the selected row is mapped to an existing Chief layer, it will display in the drop-down; if not, the drop-down will be blank.
 - Select a layer already present in the destination plan or layout file from the drop-down list.
 - Click the **Browse** button to open the **Layer Display Options** dialog. See “Layer Display Options Dialog” on page 144.

Click **Next** to continue.

Duplicate CAD Blocks

If one or more CAD blocks in the imported file have the same name as a CAD block in the destination plan or layout, the **Duplicate CAD Blocks** page will display. See “CAD Blocks” on page 251.

![Duplicate CAD Blocks](image)

There are four options. The first three apply to all duplicate CAD blocks in the plan.

- The first choice is to have the program automatically generate unique names for each duplicate. For instance, if the original file’s name is “block-name,” the program gives the new block a name like “blockname_Copy_1”.
- The second option is to replace the block already in the plan with the duplicate being imported. This option is not recommended, as every instance of the CAD block in the plan will be replaced.
- The third is to keep the block that already exists in the plan and discard the duplicate being imported.
- Select the fourth option to open the **Advanced Duplicate CAD Blocks** page and manage each duplicate individually.

Click **Next** to continue.
If you chose the fourth option on the Duplicate CAD Block page, the Advanced Duplicate CAD Block page displays, allowing you to manage each duplicate CAD block individually.

Click on a CAD block name in the list of Duplicate Names. Select multiple names by holding down the Shift key.

Click one of the three active buttons in the center of the dialog to specify how the selected block(s) are to be treated.

- Click Auto Name to have the program automatically generate a unique name for the selected CAD block. The duplicate’s name is the same as the original with “_Copy” appended to the end.
- Click Replace to replace the existing CAD block in the destination file with the CAD block listed here. This option is not recommended, as all instances of the CAD block are replaced.
- Click Use Existing to keep the CAD block already in the destination file and discard the CAD block listed here.

Review your choices in the tables at the right.

- To remove a CAD block from a field on the right, select it and click the Remove button.

Click Next to continue.

Drawing Unit

Select a unit of measurement from the drop-down list. Selecting the correct unit helps ensure that your imported drawing is accurately sized.
Exporting 2D DXF/DWG Files

Line-based 2D files can be exported from Chief Architect in both .dxf and .dwg file formats. You can specify the version of AutoCAD® to export to. Compatibility with other software may vary.

Custom line styles created in Chief Architect cannot be exported. When exported to .dxf/dwg, they are replaced by a solid line style, although the line weight and color are retained. See “Line Styles” on page 157.

There are two ways to export a 2D drawing file in Chief Architect: Export Current View and Export All Floors.

Export Current View

To export a plan view, CAD Detail, or 3D view that is currently active, select File> Export> Current View (DWG/DXF).

Bear in mind that Orthographic views are drawn to scale and will produce a 2D drawing that can be accurately dimensioned. Perspective views, on the other hand, are not scaled and do not produce drawings that can be dimensioned accurately. See “Perspective and Orthographic Views” on page 780.

Export All Floors

To export the plan view for all floor plans simultaneously, select File> Export> All Floors (DWG/DXF) from any floor of the plan. The floor plans are exported to a single .dxf or .dwg file.

If you choose to export all floors, the file will contain all floors superimposed on each other. Upon export, each layer in your Chief Architect drawing is divided into separate layers: one for each floor. For example: “Electrical-2” contains objects on Floor 2 that were originally on the “Electrical” layer.

You can use the CAD Detail from View tool to automatically create a 2D line drawing from a 3D Vector View. See “CAD Detail from View” on page 256.

Import Complete

When a .dxf/.dwg file is imported into Chief Architect, all of its components are selected as a group. The selection set has Move and Rotate edit handles available for relocating the entire drawing, as well as a variety of edit tools. Once another object or tool is selected, the drawing components are no longer group-selected.

If you do not see your imported drawing, select Window> Fill Window \[\text{Return}\], as it may have been placed at a location not currently visible on screen. When the drawing can be seen, move your mouse pointer over it and note its coordinates in the Status Bar. If any coordinate value has more than six digits, use the Transform/Replicate Object edit button to move it closer to the origin. See “Transform/Replicate Object Dialog” on page 208.

Imported CAD objects can be selected and edited just like objects that were drawn in the program. See “Editing Objects” on page 163.

The CAD to Walls tool can be used to convert imported CAD lines in plan view into doors, windows, walls, and railings. See “CAD to Walls” on page 291.

Note: During the import process, Chief Architect defaults to inches or millimeters. If you are importing a site plan or topo prepared by a surveyor, or importing a metric drawing into an imperial plan (or vice versa), you may need to change units.

If the file being imported was drawn at a scale other than 1:1, you can compensate for this scaling by creating a custom unit of measurement and specifying it here. See “Unit Conversions Panel” on page 90.

Specify how dimensions are imported.

• Select Import as dimensions where possible to import dimensions as Chief Architect-supported dimension lines.

• Select Import as CAD blocks to import dimensions as CAD entities that are not recognized by Chief Architect as dimensions.

Check Move drawing to the origin to place the drawing at 0,0. When this is unchecked, it is imported to the same location as it was drawn in the original application. See “3D Drafting” on page 25.
Export Drawing File Dialog

1. **AutoCAD® File Format Options** - .dxf and .dwg files created by Chief Architect can be compatible with a variety of AutoCAD® versions. Specify which version from the drop-down list.

2. The **Layer Options** settings allow you to control the layers associated with the file being exported. See “Layers” on page 142.
 - Select a **Layer Set** to for the drawing being exported. See “Layer Sets” on page 147. Not available in layout files.
 - Click the **Define** to open the Layer Display Options dialog and modify the selected Layer Set. Not available in layout files.

3. **Other Options**
 - **Scaling Unit** - Select the unit of measurement to be used. For best results, choose inches or feet for Imperial plan or layout files, or metric units for metric files. See “Dimension Preferences and Defaults” on page 342.
 - Uncheck **Create Associative Dimensions** to export dimensions as simple CAD entities that are not recognized dimensions by other programs. Associative dimensions are recognized by AutoCAD® and many other CAD programs.

 When exporting a layout page, it is often best to uncheck this box.
 - Check **Export Pattern Lines** to export pattern lines. Pattern lines are exported as normal CAD lines.
 - Check **Export Filled Areas** to export filled areas as AutoCAD® 2D solid entities.
 - Check **Export AutoCAD® Index Colors** to automatically map all colors used in the drawing to the closest 256 AutoCAD® Index Color (ACI). Black (RGB 0,0,0) and white (RGB 255,255,255) are mapped to ACI 7. When unchecked, colors are exported using RGB colors.

 Dimension lines using non-default primary or secondary formatting will lose their changes and will use the default format(s) upon export.
When you are satisfied with your selections, click the Export button to save the exported file as either a .dwg, .dxf, or binary .dxf file.

Additional 2D Export Information

The export process converts high level Chief Architect objects (doors, windows, etc) into simple, CAD-based objects (lines, arcs, etc). Chief Architect exports all data to AutoCAD®’s Model Space.

Supported Entities

The following entity types are currently supported for 2D export:

- **Line** - The simplest entity. In AutoCAD®, lines are 3 dimensional with the Z coordinate set to zero.
- **Arc** - Arrows have a start angle, end angle and radius.
- **Circle** - Fully Supported.
- **Multi Line Text** - If exporting to an AutoCAD® release that supports multi-line text, Chief Architect writes the file as multi-line text. If exporting to a version that does not support multi-line text, the file is written as simple text.
- **Unicode Text** - Fully supported.
- **Polylines** - Polylines are a collection of points with lines or arcs connecting them. Chief Architect supports both lines and arcs. Arcs are referred to as bulges in AutoCAD®.
- **Block Insert** - A block insert is a reference to a block, which is a named collection of entities. A block can also contain block inserts.

Dimensions

Aligned, rotated, and angular dimensions can all be exported. CAD blocks containing dimensions as text must be exploded before the text can be edited separately. See “CAD Blocks” on page 251.

Dimensions with text added using the *Add Additional Text* tool are not supported when exported to .dxf/.dwg. When exported, they are converted to text and CAD lines. See “Add Additional Text” on page 365.

Each dimension has an associated block containing a representation of the dimension as it is drawn in Chief Architect. It also contains all the data to recreate that information.

- When an exported dimension is modified in AutoCAD® or other CAD program, its appearance changes.
- Chief Architect does not support arrowhead styles or fonts.
- Three kinds of dimensions are generated: Aligned, Rotated and 3 Point Angular.

Layers

Layers in other systems are similar to Chief Architect layers, but there are some subtle differences. Layer information is mapped as follows:

<table>
<thead>
<tr>
<th>Chief Architect</th>
<th>Other Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name</td>
</tr>
<tr>
<td>Color</td>
<td>Nearest AutoCAD® Color. Chief Architect uses the default AutoCAD® color table to determine this mapping.</td>
</tr>
<tr>
<td>Display</td>
<td>On</td>
</tr>
<tr>
<td>Size</td>
<td>Line Weight. In AutoCAD®, line weights are determined by a table of mm line widths. Chief Architect maps to the closest match in this table based the current view’s Line Weight Scale. See “Drawing Sheet Setup Dialog” on page 986.</td>
</tr>
<tr>
<td>Style</td>
<td>Line type</td>
</tr>
<tr>
<td>Lock</td>
<td>Lock</td>
</tr>
</tbody>
</table>

Line Types

A line type, or line style, is used by layers and entities to determine how lines are drawn. Chief Architect line types installed with the program are supported on export; custom, user-created line styles,
3D Data Import Requirements

Importing a symbol that can be used by Chief Architect is a relatively simple process that begins with previously created 3D data. This 3D data often comes from a program other than Chief Architect. If you use another 3D modeling program to create the 3D data, be aware of the following requirements before attempting to create symbols.

There are a number of requirements that must be met before any 3D data can be used to create a symbol in Chief Architect:

- The 3D data must be stored in a standard Drawing Exchange File (.dxf), AutoCAD® Drawing (.dwg), object (.obj), 3D Studio® Mesh (.3ds), stereolithography (.stl), COLLADA (.dae), or SketchUp version 2019 and prior (.skp) file format. If you have 3D data in another format, you must convert it into one these formats first.
- Geometry and material information stored in .3ds files are imported; cameras and lights are not.
- The 3D model must be composed of 3D DWG or 3DSOLID solid entities, or face data. Faces are typically referred to as 3D faces, polygonal faces, or poly meshes. Other types of entities such as lines, curves, circles, polylines, and free form surfaces can exist in the file but are not imported when the symbol is created. This is true for all (.dxf/.dwg/.obj/.3ds/.skp) file types.
- The face data should be assigned to different layers so that you can map them to the correct materials when viewing them in 3D. It is helpful to name your layers using a convention that identifies that materials should be assigned to each sub-component.
- Pay attention to the origin and orientation of the 3D data when designing symbols. Chief Architect allows some adjustment when creating the symbol, but it is easier to build the 3D data correctly before importing it into Chief Architect. For more information about defining the origin, see “Symbol Origin” on page 721.
 - If a symbol with faces that have more than four vertices is imported, the faces are truncated, resulting in an object that appears to have holes. The best remedy is to re-export the model from the original application using only triangular or quadrilateral faces.
 - Chief Architect does not support grouped objects in symbols imported from .3ds files.

Surface Normals

If you use third party software to create a .dxf/.dwg/.obj/.3ds/.skp file that will be imported as a symbol, you should be familiar with the concept of surface normals.

A surface normal is a vector that is perpendicular to the plane of a surface. This vector points in one direction, determined by the way the face is drawn.

If a face is drawn clockwise, the surface normals are directed outward; if a face is drawn counterclockwise, the surface normals point inward. Chief Architect assumes that the face on the positive side of the normal vector is the outside face.

Many objects can be drawn using only one side of each face. A cube is a good example: the inside of a cube is not visible, so it is not necessary to create its inside faces. When inside faces are not calculated, 3D views in Chief Architect can generate more quickly.

Importing 3D Symbols

Chief Architect supports the import of 3D surface and 3D solid objects saved in .dwg, .dxf, .3ds, .obj, .stl, .dae, and .skp formats.

For most file types, there are three ways to import a 3D symbol into Chief Architect:
• By selecting **File> Import> Import 3D Symbol** tool.

• By selecting **New> 3D Symbol** from the contextual menu in the Library Browser. See “Using the Contextual Menus” on page 693.

• By dragging and dropping the file from an operating system window into plan view.

3D .dxf/.dwg files can only be imported by selecting **File> Import> Import 3D Symbol**.

Symbols imported by clicking and dragging are imported for use in the current plan, while those imported using the **Import 3D Symbol** dialog can also be saved in the library. See “The Library” on page 691.

To drag and drop a 3D symbol file

1. Open the plan in which you would like to import a 3D symbol and remain in plan view.
2. Open an operating system window in front of the Chief Architect program window.
3. Resize and position the window so that the Chief Architect program window can be seen behind it.
4. Click on the desired .3ds, .obj, .stl, .dae, or .skp file and drag it into the Chief Architect program window.

5. When your cursor changes to a +, click in the drawing area to place as many copies of the symbol as desired. When you are finished, select a different tool.

Symbols imported by clicking and dragging are imported as generic stand-alone interior fixtures. If you wish to assign different characteristics to a symbol, use the **Import 3D Symbol** dialog to import it.

Importing Multiple Symbols

More than one symbol can be imported into the Chief Architect library at a time provided that the following requirements are met:

• The symbols are located in the same folder on your computer.

• Multiple symbols can only be imported using the **Import 3D Symbol** dialog. If you try to drag and drop group-selected files in an operating system window, only the file that was selected first is imported.

• When imported as a group, symbols must be assigned to the same symbol category. If you wish to assign them to different categories, they must be imported separately.

Symbols that are imported as a group are assigned names based on their original file names with the file extension omitted.

Import 3D Symbol Dialog

To import a symbol object, select **File> Import> Import 3D Symbol**.

The **Import 3D Symbol File** dialog, which opens first, is a typical **Open File** dialog in which multiple files can be group-selected for import. See “Importing Files” on page 48.

The **Import 3D Symbol** dialog, which opens next, allows you to specify additional information about the symbol.

- Choose a symbol **Category** from the drop-down list. The category affects how and where the sym-
bol can be used, and cannot be changed after it is imported.

- Check **Add Symbol to Library** to save the symbol in the User Catalog. This is always checked when multiple symbols files are selected. See “Add to Library” on page 700.
- Check **Show Advanced Options** to open the symbol’s specification dialog. See “Symbol Specification Dialog” on page 713.

Symbol Categories

The category that you assign to a symbol will influence how the symbol can be placed in a plan and how it will appear in the Materials List and in schedules. See “Materials Lists” on page 943 and “Schedules and Object Labels” on page 505.

3D Symbols and Materials

When a symbol is imported into Chief Architect, material definitions may be included with it. Whether and how material information is included depends on the symbol’s file format. See “About Materials” on page 758.

DXF/DWG and STL Files

.dxf/*.dwg* and *.stl* files do not include information about material definitions. When imported, default materials for the selected symbol type will be assigned. If the *.dxf/*.dwg or *.stl* file associated with a symbol is changed, all previously specified material information for the symbol will be lost.

All layers, layer names, solids and instances of blocked solids from the *.dxf/*.dwg or *.stl* file display in the list of components on the left side of the MATERIALS panel of its specification dialog. See “Materials Panel” on page 761.

OBJ Files

Material definitions for most *.obj* files are saved in a separate file with the *.mtl* file extension. If such a file exists, the materials associated with the *.obj* file display in the list on the left side of the MATERIALS panel of its specification dialog.

If Chief Architect does not receive material definition information in an accompanying *.mtl* file, default material properties are assigned.

Material definitions for *.obj* files can also include texture information in the form of image files (*.jpg, *.png, etc).

- Click **OK** to import the symbol, then click in plan view to place the symbol at that location. Continue clicking to place as many copies of the symbol as needed. Select another tool when finished.

Note: If you import a *.obj, .3ds or .skp* file with textures that are already present in your library, the **Texture Filename Conflict** dialog opens. See “Texture Filename Conflict” on page 895.

For a complete list of symbol categories and how they affect a symbol’s behavior, select Help > Launch Help from the program menu.

3DS and DAE Files

Material definitions for *.3ds* and *.dae* files refer to texture information in separate image files.

In order to properly import a *.3ds* and *.dae* file, Chief Architect needs these referenced image files. If a texture file is not available, the material it is associated with is created without a texture.

The material definitions associated with an imported *.obj* symbol are not available for use by other objects in Chief Architect until that symbol has been placed into a plan. The associated texture files are then copied to the user’s Textures folder. See “Chief Architect Data” on page 40.

SKP Files

The textures associated with a *.skp* file are saved in the file. After you import a symbol and either place it in a plan or add it to the Library, these textures are saved in the Chief Architect Textures folder.

Chief Architect does not support deformed textures. If a texture associated with a *.skp* file is deformed, it will be imported without the deformations.
Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Saving Textures

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.

Exporting a 3D Model

Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
- Any surfaces removed using the Delete Surfaces tool will not be exported. See “Displaying 3D Views” on page 790.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Texture Filename Conflict

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.

Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
- Any surfaces removed using the Delete Surfaces tool will not be exported. See “Displaying 3D Views” on page 790.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Texture Filename Conflict

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.

Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
- Any surfaces removed using the Delete Surfaces tool will not be exported. See “Displaying 3D Views” on page 790.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Texture Filename Conflict

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.

Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
- Any surfaces removed using the Delete Surfaces tool will not be exported. See “Displaying 3D Views” on page 790.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Texture Filename Conflict

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.

Exporting a 3D Model

The entire 3D model, or any part that you choose, can be exported from Chief Architect into one of four formats:

- 3DS Format
- DAE Format
- STL Format
- DXF/DWG Format

To export the 3D model

1. A camera view or overview must be active. See “Types of 3D Views” on page 780.
2. Make sure that everything that you want to export is set to display in the current view, and everything you do not want to export is not set to display. See “Layers” on page 142.
- Any surfaces removed using the Delete Surfaces tool will not be exported. See “Displaying 3D Views” on page 790.
3. When the model is ready, select File> Export> 3D Model (3DS) and choose the file format that you want to use.
4. Give the file a name, making sure to save it in the desired location. See “Exporting Files” on page 44.

3DS Format

A .3ds file can be opened by any program that uses 3D Studio®’s .3ds format. When the model is ready, select File> Export> 3D Model (3DS) to export to this format.

Texture Filename Conflict

If a texture of the same name already exists in the plan when an .obj, .3ds, or .skp file is imported, the Texture Filename Conflict dialog displays.

- Select Rename the imported texture, then click the Browse button to create a copy of the texture’s image file with a new name that you specify.
- Select Use the existing texture instead of the imported texture to keep the existing texture.
- Select Replace the existing texture with the imported texture to replace the texture already present in the plan with the new, imported one.
- Check Do this for all remaining textures in this object to use the same selection for all textures with filename conflicts associated with this symbol.
Any material textures used in the model are saved as image files in a folder in the same location as the saved .dae file. The folder has the same name as the .dae file, appended with “_textures”.

STL Format

An .stl file can be opened by any program that uses Stereolithography format, and can be printed using a stereolithography machine, or 3D printer. When the model is ready, select File> Export> 3D Model (STL).

The Export STL Model dialog is a typical File Save dialog.

A 3D model exported to an .stl file does not include any material or texture information.

DXF/DWG Format

A .dxf or .dwg file can be opened by any program that uses AutoCAD®’s 3D .dxf or .dwg format. When the model is ready, select File> Export> 3D Model (DWG/DXF) to export to this format.

The entire 3D model, including geometry, is exported.

3D DXF/DWG Layer Names

When you export a 3D model to .dxf/.dwg format, all surfaces are exported as 3DFACE entities. These entities are placed on layers that are named by Chief Architect.

A complete list of the layer names and associated objects is found in the program’s Help: on the Contents tab, browse to Importing and Exporting> Exporting a 3D Model. See “Contextual Help” on page 38.

Export 360 Panorama

The Export 360 Panorama tool creates a spherical panoramic image that can be opened in various panorama viewers. Select File> Export> Export 360 Panorama while a 3D view is active to access this tool.

For best results, position the camera as near as you can to the center of the scene before exporting.

Export 360 Panorama File

All of the settings in this dialog are retained during the current program session.

1. Specify the size of the exported image, in pixels.
 - Specify the Height and Width of the exported image file, in pixels.
 - Check Limit Dimensions to Powers of Two to restrict the Width and Height to values that are powers of two. When this is checked and an ineligible value is entered, it will adjust up or down to the nearest power of two. Although not required, this option is recommended for best results in some panoramic image viewers.
 - The Retain Aspect Ratio check box displays for reference and cannot be changed. The ratio between Width and Height is 2 to 1 when Limit Dimensions to Powers of Two is unchecked, above.

2. Check Save to Disk to save the exported panoramic image file on the local computer system.
 - Specify the full pathname of the File you wish to export, or click the Browse button to open the Export 360 Panorama File dialog, which is a typical File Save dialog. See “Exporting Files” on page 44.

3. Check Save to Chief Architect Cloud to save the exported panoramic image file to your
Chief Architect Cloud Account. See “Chief Architect Account Login” on page 879.

- Type a short, descriptive **Name** for the exported panoramic image file.
- Type a brief **Description** of the file.

When you click OK, a panoramic image is created and a progress dialog may display. Because spherical panoramas are composed of multiple images stitched together, they may take longer to create than a standard exported picture.

Note: You can also upload a previously saved panoramic image file to the cloud on the 360 Panoramas page of your online account.

Generate as 360° Panorama is also an option in the **Ray Trace Options** dialog. See “General Panel” on page 842.

Export to REScheck

REScheck™ is a residential energy code compliance program offered by the U.S. Department of Energy that evaluates the thermal envelope of a structure and determines how well it meets various energy codes. For more information, visit: http://www.energycodes.gov/rescheck.

To export a plan’s thermal envelope information for use in REScheck™, select **File > Export > Export to REScheck**. Chief Architect exports using the .rxl file format, which can be used by both the desktop and web-based versions of REScheck™.

Exported Project Data

Chief Architect can export the following REScheck Project data:

- **Front Faces** - The side of the house that faces down on-screen is considered the front, and North is considered up on-screen unless a North Pointer is used. See “North Pointer” on page 823.

- The **Conditioned Floor Area** is calculated and exported by Chief Architect. See “Conditioned Area Totals” on page 957.

- The **Owner/Agent** information is drawn from the plan file’s Client Information. See “Client Information” on page 57.

- The **Designer Contractor** information is drawn from the plan file’s Designer Information. See “Designer Information” on page 57.

In a REScheck report exported from Chief Architect, the Project Type is set as “New Construction” and “1-and-2 Family, Detached” is selected under Building Characteristics. Location and Title/Site/Permit are not exportable.

Exported Envelope Data

Nearly all REScheck Envelope data can be exported from a Chief Architect plan:

- **Floors** - The Assembly type, Gross Area, and Cavity and Continuous R-Values are exported. See “Floor and Ceiling Platform Definitions” on page 325.

- **Slabs on Grade** - The Slab Perimeter and Continuous R-Value are exported. Slab Depth of Insulation is not included and must be entered manually. See “Foundations” on page 521.

- **Ceilings** - The Assembly type, Gross Area, and Cavity and Continuous R-Values are exported.

- **Walls** - The Assembly type, Orientation, Gross Area, and Cavity and Continuous R-Values are exported. All are exported as Walls rather than Basement or Crawl Walls. Like walls on the same floor are grouped by orientation. See “Wall Type Definitions Dialog” on page 294.

Note: The On Center Spacing of Framed walls is derived from the framing material assigned to the wall type’s Main Layer. See “Materials and the Materials List” on page 766.

- **Doors and Windows** - The Assembly type, Orientation, Gross Area, and U-Factor, Solar Heat Gain Coefficient (SHGC) are exported. See “Energy Values Panel” on page 423.

Information about skylights and mulled units is not exported.

Wall Labels

If any walls forming the thermal envelope have labels, they will be exported and used in the REScheck report. If similar walls are grouped, their
labels will not be used unless the labels are all identical. See “Wall Labels” on page 278.

Export to REScheck Dialog

- Uncheck **Group Similar Walls** to treat walls on multiple floors separately. When checked, walls with the same properties and orientation are added together and treated as one wall, regardless of the floors they are on.
- Uncheck **Group Similar Doors/Windows** to treat all doors and windows separately. When checked, doors and windows with the same properties and orientation are added together and treated as one item.

Click the **Export** button to open the **Export REScheck File** dialog, which is a typical Save File dialog. See “Exporting Files” on page 44.
Chief Architect allows you to model the terrain around a house. Begin by specifying elevation data that creates the surface contours, and then add surface features such as planting areas and water features.

You can import terrain data from a variety of sources and use this data to produce your 3D model.

Once the terrain is modeled, shadows that follow the terrain can be created using the Sun Angle tool. See “Sun Angles and Shadows” on page 823.

Driveways, parking lots and sidewalks as well as plants and sprinklers are among the objects that can be placed in your terrain and are discussed in “Plants and Sprinklers” on page 935 and “Roads, Driveways and Sidewalks” on page 927.

Chapter Contents

- Terrain Toolbar Configuration
- Terrain Perimeter
- Elevation Data Tools
- Terrain Modifier Tools
- Terrain Feature Tools
- Garden Bed Tools
- Water Feature Tools
- Stepping Stone Tools
- Terrain Wall and Curb Tools
- Sun Shadows
- Terrain Objects in the Library
- Displaying Terrain
- Editing Terrain Objects
- Importing Elevation Data
- Converting CAD Objects to Terrain Data

Terrain Toolbar Configuration

The Terrain and Road Tools can be accessed through the Terrain menu. You can also display these tools on your toolbar using the Terrain Configuration. See “Toolbar Configurations” on page 108.

The Terrain Configuration and Terrain menu both display the following Terrain, Road, Plant, and Sprinkler parent tools:

- **Elevation Data Tools** allow you to add elevation data to your terrain.
- **Terrain Modifier Tools** model changes in elevation within a defined area.
- **Terrain Feature Tools** let you add materials over the top of the terrain.
- **Garden Bed Tools** create Terrain Features with a mulch material.
- **Water Feature Tools** create Terrain Features with a water material.
- **Stepping Stone Tools** are used to create paths composed of multiple Terrain Features.
- **Terrain Wall and Curb Tools** let you draw walls and curbs that follow the terrain.
Road, Driveway and Sidewalk Tools allow you to create paved areas that can form intersections.

Plant Tools allow you to place plant images and 3D plant symbols.

Sprinkler Tools are used to lay out sprinkler symbols and irrigation lines.

Terrain Perimeter

The Terrain Perimeter is a closed polyline defining the boundary of the terrain that generates in 3D views and of the contour lines that generate in plan view. Select Terrain> Create Terrain Perimeter to create a terrain perimeter.

A CAD polyline can also be converted into a terrain perimeter. See “Editing Terrain Objects” on page 910.

If you create a terrain perimeter in plan view but do not see it, select Window> Fill Window. See “Zoom Tools” on page 126.

When created in a new, blank plan, a new terrain perimeter will be 50’ x 100’. If you create a terrain perimeter after you have drawn all or part of a 3D model, it may increase in size as needed to encompass everything in plan view.

Once created, the terrain perimeter can be resized and edited like other polyline-based objects. See “Editing Closed Polyline-Based Objects” on page 180.

When a terrain perimeter is first created, it is completely flat and is placed at a height of 0’-0”, or sea level.

The terrain perimeter by itself does not have elevation data associated with it. You can use the Elevation Data and Terrain Modifier tools to create terrain that slopes in a wide variety of ways. If you do not create elevation data within the terrain perimeter, the terrain remains flat at an elevation of 0’-0”. See “Elevation Data Tools” on page 901 and “Terrain Modifier Tools” on page 905.

Plot Plans and Plan Footprints

Using the CAD drawing and editing tools, you can create an accurate plot plan of any building site. For more information, see “Site Plans” on page 407 of the Tutorial Guide.

Another approach is to use the Plan Footprint tool and other CAD Tools in a CAD Detail. See “Plan Footprint” on page 257.

Terrain Height vs Floor Height

Chief Architect always defines the default height of Floor 1 at 0’-0”. This height value is the constant by which the heights of structural elements in the program like walls, floors, and ceilings are measured. The heights of architectural object can be measured relative this absolute height, as well. See “Floor 1 Default Height” on page 314.

The default height of Floor 1 is not, however, the absolute by which terrain elevation is measured. Instead, elevation data is measured relative to sea level. This means that if you want to, you can use real-world elevation data to generate a 3D terrain model without also having to measure floor and ceiling heights from sea level. See “Importing Elevation Data” on page 921.

The program automatically positions Floor 1 a set distance above the terrain. To do this, it first finds the center point of the building footprint. Then, it determines the elevation of the terrain at that point. Finally, it adds the thickness of the floor platform to this value. If a foundation is present, it also adds the thickness of any sill plates plus either 6” (150 mm) or 8” (200 mm) depending on the foundation type. The
resulting value, referred to as the automatic Subfloor Height Above Terrain, is how far the default height of Floor 1 is above sea level in the current plan. See “Foundations and the Terrain” on page 530.

The Subfloor Height Above Terrain distance is stated and can be modified in the Terrain Specification dialog. You can specify a custom value to produce a daylight or walkout basement. See “General Panel” on page 911.

Build Terrain

Select Terrain > Build Terrain to generate the terrain surface based on the provided elevation data. Build Terrain also updates the Building Pad Elevation value in the Terrain Specification dialog. See “Building the Terrain” on page 910.

Auto Rebuild Terrain

By default, terrain will automatically build any time a 3D view is created, ensuring that the terrain in the view is up-to-date. If your terrain is large and/or highly detailed and has not been modified, and you find that this unnecessarily slows down the generation of 3D views, consider turning this behavior off in the Terrain Specification dialog. See “General Panel” on page 911.

Clear Terrain

To remove the generated terrain contours, select Terrain > Clear Terrain. When the terrain is cleared, contours do not display in 3D and contour lines do not display in plan view.

Elevation Data Tools

Select Terrain > Elevation Data to add elevation information to your terrain.

When terrain is generated, this data is used to calculate the surface of your site and is represented by contour lines in plan view and a curved surface in 3D. See “Displaying Terrain” on page 909.

Elevation data can be specified using the Elevation Point, Elevation Line, Elevation Spline, Elevation Region, and Terrain Break tools.

Elevation data can also be imported. See “Importing Elevation Data” on page 921.

Clear Terrain does not remove the terrain perimeter, elevation data, or terrain features from the model. Rather it deletes all program-generated 2D contour lines and 3D contours.

The Terrain Perimeter has a variety of editable properties, including many that affect the appearance of the terrain in 2D and 3D views. See “Terrain Specification Dialog” on page 911.

Terrain Surface Triangles

Chief Architect generates 3D terrain surfaces by dividing them into triangles. The size of the triangles determines how detailed contour lines and terrain surfaces in the 3D model can be. You can specify triangle size in the Terrain Perimeter Specification dialog. See “General Panel” on page 911.

Increasing the triangle count decreases triangle size, yielding more detailed contour lines and a better 3D approximation of the terrain. Smaller triangles demand longer terrain generation time and increased memory requirements. If you select a large number of small triangles for a large site, you may wait a long time for the calculation.

Decreasing the triangle count increases triangle size. Elevation lines are sampled less frequently, speeding up terrain generation. If you specify a small number of triangles for a plan with detailed elevation data, contour lines and 3D surfaces may not generate correctly.

When a large terrain perimeter is used, consider increasing the Triangle Count to help make sure all Elevation Data and Terrain Modifiers generate contours.

To avoid unexpected results, do not draw Elevation Data objects - including Terrain Breaks - with different elevation information at the same location.
Elevation Points

An Elevation Point contains the absolute elevation data for one point in the terrain model. Typically, Elevation Points are imported rather than placed manually.

Chief Architect requires many points to make an accurate approximation of your site. Even small sites may require over a hundred points to generate an accurate model of the terrain if it is sloped. For the sake of illustration, the following example shows only a few elevation points.

To place an elevation point

1. Select Terrain> Elevation Data> Elevation Point and click in plan view at the point where you would like to place elevation data. See “Place Point” on page 229.
3. Click somewhere else in plan view and the Elevation Point Specification dialog opens again with the last elevation value entered.
4. Repeat steps 1, 2 and 3 to place additional elevation points with varied elevation values as needed.

Elevation Lines

An Elevation Line contains absolute elevation data for many points along a line at a constant elevation. Elevation lines can be connected to create a polyline with many straight sections. For the sake of illustration, the images in the following example show single-section elevation lines.

To draw an elevation line

1. Select Terrain> Elevation Data> Elevation Line, then click and drag a line inside the Terrain Perimeter in plan view.
2. Click on the elevation line to select it, then click the Open Object edit button.
3. At first, an elevation line is at elevation 0' - 0". In the Elevation Line Specification dialog, specify the desired elevation and click OK. See “Elevation Line/Region Specification Dialog” on page 914.
4. Repeat steps 2 and 3 to draw additional elevation lines as needed.

Elevation Splines

Elevation Splines can be used to form complex curves and shapes. Like elevation lines, elevation splines contain absolute elevation data for many points along a constant elevation.

To place an elevation spline, select Terrain> Elevation Data> Elevation Spline and click and drag multiple sections in plan view. See “Splines” on page 249.

Elevation splines are initially placed at elevation 0' - 0" and must be opened and assigned an elevation. See “Elevation Line/Region Specification Dialog” on page 914.

After it is drawn, an Elevation Spline can be edited much the way other spline-based objects can. See “Editing Spline-Based Objects” on page 186.

Elevation Regions

An Elevation Region contains absolute elevation data for an enclosed region and is ideal for creating a flat surface in your terrain.

Elevation Regions are similar to Flat Regions in that they produce an area with a flat surface; however, they differ in that an Elevation Region affects the contours of the terrain outside of its perimeter and may also have some sloping within its perimeter. See “Flat Regions” on page 905.

To create an elevation region

1. Select Terrain> Elevation Data> Elevation Region.

2. There are two ways to add a Terrain Modifier to your plan:
 - Click once to place an 8’ (0.6 m) square feature at that location.
• Click and drag from end-to-end to draw a feature sized as needed. See “Rectangular Polyline” on page 246.

3. Click on the region to select it, then click the Open Object edit button.

4. At first, an elevation line is at elevation 0' - 0". In the Elevation Region Specification dialog, specify the desired elevation and click OK. See “Elevation Line/Region Specification Dialog” on page 914.

After it is drawn, and Elevation Region can be reshaped much the way other closed polyline-based objects can. See “Editing Closed Polyline-Based Objects” on page 180.

An Elevation Region can also be created by drawing a closed polyline using Elevation Lines.

Terrain Breaks

A Terrain Break creates a division along the terrain surface that affects terrain generation. Elevation data on one side of the terrain break does not affect the terrain generation on the other side, allowing you to create immediate drops in terrain.

To place a Terrain Break, select Terrain> Elevation Data> Terrain Break and click and drag a line in plan view.

• If the Terrain Break divides the terrain perimeter into two separate pieces, the terrain data on either side is calculated independently and smoothed separately, resulting in sharp terrain contours.

• If the Terrain Break does not extend completely from one side of the terrain perimeter to the other, the areas near each end of the Terrain Break are blended.
Terrain Modifier Tools

Select Terrain> Modifier to access tools that allow you to modify the existing elevation data by drawing a closed polyline. Their height is relative to the terrain surface generated from the Elevation Data provided in your plan.

The elevation data associated with a Terrain Modifier only affects the terrain within its perimeter. The rest of the terrain is unaffected.

Raised and Lowered Regions

The Raised Region tool creates a raised area with a top surface that is flattened like a plateau but follows the surface of the terrain. The Lowered Region tool creates a depression with a bottom that follows the terrain and is flattened.

Hills and Valleys

The Hill and Valley tools create raised and lowered areas in the terrain that come to a point rather than flattening at their highest or lowest elevations.

The Retaining Wall tool creates a similar effect by drawing a Terrain Break as well as a retaining wall that rests against the break. By default, the top height of the retaining wall matches the terrain on the high side of the break and the bottom matches the low side. See “Retaining Walls” on page 908.

Flat Regions

The Flat Region tool creates an area with a surface that is flattened like a plateau but is level rather than following the contours of the terrain.

There are two ways to add a Terrain Modifier to your plan:

- Click once to place a modifier with endpoints that form a 10’ (4 m) square at that location.
- Click and drag from end-to-end to draw a feature sized as needed. See “Rectangular Polyline” on page 246.

Terrain Modifiers can only be drawn when a Terrain Perimeter is present, and will only display in 3D when they are drawn within the perimeter. See “Displaying Terrain” on page 909.
Once created, Terrain Modifiers can be selected and edited in a variety of ways. See “Editing Spline-Based Objects” on page 186.

Terrain Feature Tools

Select Terrain> Feature to access tools for drawing bounded areas that follow the contours of the terrain rather than modifying them.

Terrain Features are useful for creating landscaping features because they have specified heights and materials. You can, for example, create paths and planting beds with gravel or mulch materials that stand out in a grassy Terrain Perimeter. See “Adding Terrain Features” on page 502 of the Tutorial Guide.

In fact, Garden Beds, Water Features and Stepping Stones are special Terrain Features with material and height attributes already applied to them, saving you time when drawing these objects.

Terrain Features can only be drawn when a Terrain Perimeter is present, and will only display in 3D when they are drawn within the perimeter. See “Displaying Terrain” on page 909.

Terrain Features can be created in either of two ways:

- Click once to place a feature with endpoints that form a 10’ (4 m) square at that location.
- Click and drag from end-to-end to draw a feature sized as needed. See “Rectangular Polyline” on page 246.

Once created, Terrain Features can be edited into nearly any shape you require. See “Editing Closed Polyline-Based Objects” on page 180 and “Editing Spline-Based Objects” on page 186.

Rectangular Features

The Rectangular Feature tool can be used to create straight-sided features that can be edited into a wide variety of shapes.

Rectangular Features can also be edited like other closed polyline-based objects. See “Editing Closed Polyline-Based Objects” on page 180.

Terrain Holes

By default, the program automatically cuts a hole in the terrain around any structures located within and on the same floor as the Terrain Perimeter. The shape of these holes follow the exterior surfaces of the walls and will automatically update if any of those walls are moved.

If you prefer to manually control the holes around structures, select the Terrain Perimeter and click the Make Terrain Hole(s) Around Building(s) edit button. See “Terrain Perimeter” on page 900.

The Make Hole(s) Around Building(s) edit tool creates a Terrain Feature polyline with Make Hole
checked in its specification dialog around each building on the same floor level as the Terrain Perimeter. See “Terrain Feature Specification Dialog” on page 917.

Garden Bed Tools

Select Terrain> Garden Bed to access tools that can be used to place garden bed features in your terrain.

Polyline Garden Bed

This tool draws a garden bed with straight sides and four right angles. See “Rectangular Features” on page 906.

Round Garden Bed

Use this tool to draw garden beds with rounded edges and smoothly curved corners. See “Spline Feature” on page 906.

Water Feature Tools

Select Terrain> Water Feature to access tools for drawing ponds and streams in your terrain.

Ponds are basically Terrain Features with material and height attributes typical of bodies of water. See “Terrain Feature Tools” on page 906.

Similarly, Streams are Terrain Curbs with a water material. See “Terrain Wall and Curb Tools” on page 908.

Round Pond

Use this tool to draw a pond with rounded edges. See “Spline Feature” on page 906.

Kidney Shaped Pond

This tool draws a kidney shaped pond. See “Kidney Shaped Features” on page 906.

Stepping Stone Tools

Select Terrain> Stepping Stone to place a walkway made of individual stepping stones.

Kidney Shaped Garden Bed

You can draw a kidney shaped garden bed with this tool. See “Kidney Shaped Features” on page 906.

Garden Beds are basically Terrain Features with material and height attributes typical of planting beds. See “Terrain Feature Tools” on page 906.

You can specify a Garden Bed’s material and height in its Terrain Feature Specification dialog. See “Terrain Feature Specification Dialog” on page 917.

In addition, you can choose to distribute copies of a plant image within a Garden Bed. See “Distributed Plant Panel” on page 918.

Stream

Select the Stream tool, then click and drag to draw a stream. Streams are drawn and edited the same way that splines are. See “Splines” on page 249 and “Editing Spline-Based Objects” on page 186.

Click the Advanced Splines edit button to activate additional edit handles that you can use to reshape the stream. See “Advanced Splines” on page 188.

Streams follow the contours of the terrain, so they may appear to flow uphill if they are not drawn correctly in the terrain. Try to draw them so that they follow a downward course for their entire length.

Once drawn, Water Features can be selected and edited just like any other Terrain Feature.

Specify the material and set the height of Water Features in their specification dialogs. See “Terrain Feature Specification Dialog” on page 917 and “Terrain Path Specification Dialog” on page 919.
Stepping Stones are basically Terrain Features with material and height attributes typical of walking paths. See “Terrain Feature Tools” on page 906.

There are two ways to draw Stepping Stones:

• Click once to place a stepping stone with end-points that form a 1’ (300 mm) square at that location.

• Click and drag from end-to-end to draw a stepping stone sized as needed. See “Rectangular Polyline” on page 246.

Polyline Stepping Stone

The Polyline Stepping Stone tool draws rectangular stepping stones. See “Rectangular Features” on page 906.

Terrain Wall and Curb Tools

Select Terrain> Terrain Wall and Curb to draw landscaping walls and curbs that follow the contours of the terrain.

Straight and curved Terrain Walls and Curbs are drawn just as other walls are. See “Creating Walls” on page 273.

Terrain Walls and Curbs are examples of Terrain Paths. Other examples include Sidewalks and Streams. See “Terrain Path Specification Dialog” on page 919.

Terrain Walls

Use the Straight Terrain Wall tool to draw a wall that sits on top of and follows the terrain.

Use the Spline Terrain Wall to draw a curved terrain wall. This wall is drawn the same way as a CAD Spline. See “Splines” on page 249.

Once drawn, a Terrain Wall can be like other line-based objects. See “Editing Line-Based Objects” on page 171 and “Editing Spline-Based Objects” on page 186.

Terrain walls are 5’ (1500 mm) high and concrete by default, but you can specify the material, height and more in the Terrain Path Specification. See “Terrain Path Specification Dialog” on page 919.

Retaining Walls

The Retaining Wall tools function similarly to Terrain Breaks, but include a wall. See “Terrain Breaks” on page 904.

Round Stepping Stone

The Round Stepping Stone tool draws stepping stones with rounded edges. See “Spline Feature” on page 906.

Once drawn, Stepping Stones can be selected and edited just like any other Terrain Feature.

By default, Stepping Stones have a concrete material; however, you can specify the material and set the height of Stepping Stones in the Terrain Feature Specification dialog. See “Terrain Feature Specification Dialog” on page 917.

Terrain Curbs

Terrain Curbs are useful for creating curbs around planting beds and along paths.

Use the Straight Terrain Curb tool to draw a straight landscaping curb.

Use the Spline Terrain Curb tool to draw a curved landscaping curb. This curb is drawn the same way as a CAD Spline. See “Splines” on page 249.

Once drawn, a Terrain Curb can be like other line-based objects. See “Editing Line-Based Objects” on page 171 and “Editing Spline-Based Objects” on page 186.

You can specify the height of straight and spline terrain curbs on the GENERAL panel of the Terrain Path Specification. See “Terrain Path Specification Dialog” on page 919.
Sun Shadows

Sun shadows are generated by the program and represent shadows cast at a particular location on the Earth and at a specific date and time. See “Sun Angles and Shadows” on page 823.

Sun shadows are computed based on the contour of the terrain. If a terrain perimeter exists, the sun shadow adjusts to the terrain.

A sun shadow is automatically rebuilt whenever terrain is rebuilt. If you generate a sun shadow and the terrain is not up-to-date, the terrain automatically rebuilds. You can turn off the automatic rebuild. See “Sun Angle Specification Dialog” on page 825.

Terrain Objects in the Library

The Library Browser contains a variety of objects that can be placed in a plan’s terrain, including plants, exterior fixtures, accessories and roadway objects. See “The Library Browser” on page 691.

Displaying Terrain

The display of terrain objects in 2D and 3D views is controlled in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Like other objects, terrain objects are placed in Drawing Groups that affect whether they display in front of or behind other objects. You can modify a selected object’s place in the drawing order by clicking the View Drawing Group Edit Tools edit button. See “Drawing Group Edit Tools” on page 153.

You can customize appearance of Terrain Features, Roads and other terrain objects in plan view by changing their line and fill styles.

Plant images are represented in plan view by 2D CAD symbols. You can select a plant’s symbol in the Plant Image Specification dialog. See “Image Panel” on page 938.

Contour Lines

When elevation data has been drawn or imported into a plan, contour lines will display in plan views. See “Elevation Data Tools” on page 901.

Chief Architect can produce both primary and secondary contours. They are on two different layers so you can control their display separately. Contour line labels use the Text Styles assigned to the “Terrain, Primary Contours” and “Terrain, Secondary Contours” layers.

By default, all contour lines are set to be primary, but you can specify secondary contours, frequency and other attributes of contour lines in the Terrain Specification dialog. See “Contours Panel” on page 912.

Terrain and Road Labels

Labels for terrain objects - including the Terrain Perimeter, most Elevation Data objects, Terrain Features, Terrain Modifiers, Terrain Paths, and Roads - display in plan view when the “Terrain Labels” layer is turned on. Labels for all but Elevation Data, Terrain Modifiers, and Road Markings can display in cross section/elevation views, as well. See “Object Labels” on page 515.

The Automatic Labels for terrain objects are blank; however, you can specify a custom label using text in their specification dialogs.

In 3D Views

In order for objects such as Terrain Features and Roads to be visible in 3D views, they must be drawn within the Terrain Perimeter. Any portions of these objects drawn outside of the Terrain Perimeter will not be seen in 3D views. See “Terrain Feature Tools” on page 906.
A variety of tools are available to help you adjust the perspective of your 3D views. See “Editing 3D Views” on page 797.

Building the Terrain

When terrain is generated, Chief Architect gathers all elevation data that has been added to the model and creates a terrain surface. The program interpolates the data to produce smooth contours.

A terrain perimeter with no additional elevation data drawn within it generates terrain that is flat at the elevation 0' - 0", or sea level.

By default, the terrain is automatically built before a 3D view is generated and when a Sun Shadow is created. This process takes a variable amount of time, depending on the amount of elevation data and number of terrain features in the plan. The **Building Terrain** progress dialog displays as terrain is generated, sometimes only briefly, indicating the progress.

Editing Terrain Objects

Before a terrain object can be edited, it must be selected. All terrain objects can be selected in plan view. In addition, the Terrain Perimeter and Terrain Features can be selected in 3D views. See “Selecting Objects” on page 167.

A selected terrain object can be edited using its edit handles, edit tools and specification dialog. See “Specification Dialogs” on page 32.

Any time elevation data is changed, the terrain must be rebuilt. This can be done by selecting **Terrain > Build Terrain**, and occurs automatically when a 3D view is created.

Using the Edit Handles

Terrain objects can be moved, resized, and reshaped using their edit handles. How a selected object can be edited depends on what type of object it is. See “Editing Objects” on page 163.

- The Terrain Perimeter can be moved, resized, and reshaped like a polyline-based objects.
- Elevation Points can be moved in plan view using the Move edit handle.

Using the Edit Tools

A selected terrain object can be edited in a variety of ways using the buttons on the edit toolbar. The edit tools available for a terrain object depends on the type of object selected. See “The Edit Toolbar” on page 29.

- **Elevation Lines, Elevation Splines and Terrain Breaks** are edited like other line- and spline-based objects.
- The shape of a Raised Region, Lowered Region, Hill, Valley, and Flat Region can be edited like a spline.
- Terrain Features are edited like other spline- and polyline-based objects.

Using Dimensions

Like many other types of objects, terrain objects can be resized and moved using dimensions. For more information see “Moving Objects Using...”
Terrain Specification Dialog

The Terrain Specification dialog controls how your terrain is modeled, as well as its appearance. It can be accessed in any of three ways:

- Select Terrain > Terrain Specification.
- Select the Terrain Perimeter and click the Open Object edit button.
- Double-click the Terrain Perimeter using the Select Objects tool.

General Panel

1. Check Auto Rebuild Terrain to automatically rebuild terrain to reflect recent changes before generating a 3D view or a Sun Shadow. If this option is unchecked and the terrain is not up to date, the Rebuild Terrain icon displays near your mouse pointer. See “Building the Terrain” on page 910.

2. Specify how the Building Pad is generated beneath the structure. See “Foundations and the Terrain” on page 530.
 - To specify the distance between Floor 1 and the terrain at the building footprint center, uncheck Automatic and enter a value in the Subfloor Height Above Terrain field.
 - Check Automatic to have Chief Architect automatically lower the terrain relative to the first floor. See “Terrain Height vs Floor Height” on page 900.

3. Check Flatten Pad to flatten the area beneath the building. To create a walkout basement, uncheck this box.

4. Define the thickness of the Skirt added to the terrain. The skirt is only visible in 3D views and gives the viewer a sense of depth when viewing the terrain.
 - Flat specifies that the skirt be flat at its base. Chief Architect determines the lowest point in the terrain and then offsets this value by the user specified thickness value. The resulting value is used as a uniform elevation for the base of the skirt.
• **Follow Terrain** specifies that the skirt base maintains a consistent distance below the terrain. The distance is equivalent to the specified Thickness value.

4 The **Terrain Surface Smoothing** settings control the amount of curvature applied to terrain edges.

• **Low** produces terrain that has sharp peaks and abrupt changes in slope, while **High** results in terrain that flows continuously from point to point but may take longer to generate.

• Select **Linear** to apply no smoothing to the Terrain. Instead, flat triangular surfaces are created between elevation points. This option is only recommended when large amounts of closely spaced elevation data is present.

5 **Triangle Count** - Specify the number of surface triangles used to generate the terrain in 3D views. A lower count value will generate more quickly but have reduced quality.

• Specify a **Custom** triangle count value.

• Specify the maximum **Triangle Size** in the terrain surface. Smaller triangles produce better quality results in 3D but take longer to generate.

Chief Architect builds 3D terrain surfaces by splitting them into triangles. See “Terrain Surface Triangles” on page 901.

Triangles are computed roughly as follows:

\[
\text{Size of Triangle} = \frac{\text{Area of Terrain Perimeter}}{\text{Number of Triangles}}
\]

The Low (1000), Medium (2000), and High (4000) values work well for a terrain perimeter of approximately 20,000 sq ft (1858 m²). If your terrain perimeter varies greatly from this, consider defining the number of triangles using the **Custom** setting or the **Triangle Size** setting.

6 **Clipping** - Check **Hide Terrain Intersected by Building** to cut out the portion of the terrain that is intersected by the first floor footprint. Checking this box prevents the generation of contour lines inside the house.

If your foundation footprint differs from your first floor footprint, you may need to use the **Terrain Hole** tool for custom clipping instead. See “Terrain Feature Tools” on page 906.

Contours Panel

Chief Architect identifies two types of contour lines: Primary and Secondary. They are drawn on different layers, so you can control how they display in plan view. See “Contour Lines” on page 909.

1 Specify the **Frequency** at which contour lines are generated.

2 Define the **Interval** between contour lines, which is the change in elevation between contours. If
the interval is set to 12”, a contour line is computed for each elevation change of 12”.

- Specify the Offset value. When the Offset is 0, a contour line will be drawn at zero elevation and additional contours will generate based on the Interval value. If the Offset is changed to 5, a contour line will be drawn 5 units from zero elevation rather than at 0, and additional contours will generate from there.

- **Primary contour every____contours** - Specify the interval for primary contours. A value of 1 produces only primary contours, while a value of 5 defines every fifth contour line as a primary contour.

 2 If contour Smoothing is turned on, Chief Architect attempts to remove sharp bends and jagged sections from the 2D contour lines.

 3 Specify the number of Passes to perform when smoothing. The more passes, the smoother the contour lines become, but contours become less accurate.

 4 Control the display of Contour Labels in plan view.

- Check **Label Primary Contours** to label primary contour lines with their elevation data using the Units specified below.

- Check **Label Secondary Contours** to label secondary contour lines with their elevation data.

- Check **Highlight Negative Elevations** to display labels of contour lines with elevations below 0 in red. When unchecked, they use the color set in the Text Style assigned to their layer.

Specify the **Label Units** used by contour labels. Select either **Inches** or **Decimal Feet** (Millimeters or Meters for metric).

Polyline Panel

The POLYLINE panel states the length of the Terrain Perimeter’s **Perimeter**, its enclosed **Area**, and its **Volume**.

The settings on the this panel are available for a variety of other objects in the program. For information about these settings, see “Polyline Panel” on page 245.

Spline Panel

The SPLINE panel has a single option and is only available if the Terrain Perimeter has been converted to a spline. See “Convert to Spline” on page 202.

New Segment Angle

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline’s curvature smoother. Specify a larger angle to draw the spline faster.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel

The settings on the LINE STYLE panel are available for a variety of other objects in the program. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the Terrain Perimeter in plan view. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the MATERIALS panel let you specify the terrain surface and terrain skirt materials used in 3D views. These materials are not calculated in the Materials List. See “Materials Panel” on page 761.

Label Panel

The Terrain Perimeter label displays in floor plan and cross section/elevation views when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.
Elevation Point Specification Dialog

To open the Elevation Point Specification dialog, select an elevation point and click the Open Object edit button, or double-click on an Elevation Point using the Select Objects tool.

Use the Elevation Point Specification dialog to define the selected elevation point and control its appearance in plan view.

General Panel

Location - Specify the exact location of the elevation point.

- Specify the Elevation of the selected Elevation Point.

Display -

- In the Text field, type any notes that you would like to display beside the selected Elevation Point in plan view.

- Click the Insert Macro button to add a Text Macro such as `%elevation%` to the elevation point’s text, which displays in plan view. See “Text Macros” on page 400.

- Enter the Marker Radius, which is the size of the point marker, measured from the center to an edge.

Line Style Panel

The settings on the LINE STYLE panel are available for a variety of other objects in the program. For information about these settings, see “Line Style Panel” on page 235.

Text Style Panel

The settings on the TEXT STYLE panel control the appearance of the selected Elevation Point’s text. For more information, see “Text Style Panel” on page 399.

Elevation Line/Region Specification Dialog

To open the Elevation Line or Elevation Region Specification dialog, select one or more Elevation Line/Splines, or a polyline composed of elevation Lines/Splines, or an Elevation Region and click the Open Object edit button. You can also double-click an Elevation Line/Spline using the Select Objects tool.

The Elevation Line Specification dialog is used to define the selected Elevation Line/Spline and controls its appearance in plan view.

The settings in this dialog are the same as those in the Elevation Region Specification dialog. See
“Elevation Regions” on page 903.

Elevation Panel

- Specify the Elevation of the selected Elevation Line, Spline, or Polyline.
- Check Interior is Flat to maintain a flat surface at the specified Elevation. When unchecked, the perimeter of the region maintains the specified Elevation, but the interior elevation may vary depending on other elevation data in the drawing. Only available for closed Elevation Regions.
- Check Interpolate Tangent to Edge to flatten the terrain surface as it approaches the edges of the Elevation Region. This option is only available for closed Elevation Regions, and only when Interior is Flat is unchecked.

Polyline Panel

The POLYLINE panel states the Length of an open polyline or the Perimeter of a closed polyline. If multiple Elevation Line/Spline segments form a closed Elevation Region, its Area will be calculated. Elevation Lines/Splines do not have a thickness, so they have no Volume.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is an Elevation Spline. See “Splines” on page 249.

Flat Region Specification Dialog

To open the Flat Region Specification dialog, select a Flat Region and click the Open Object edit button, or double-click a Flat Region using the Select Objects tool. See “Flat Regions” on page 905.
The options in the **Flat Region Specification** dialog are similar to those a number of other dialogs in the program.

Polyline Panel

The POLYLINE panel states the length of the region’s **Perimeter** and its enclosed **Area**. Flat Regions do not have a **Volume** measurement. See “Polyline Panel” on page 245.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is a spline. See “Splines” on page 249.

![New Segment Angle]

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel

The settings on the LINE STYLE panel are available for a variety of objects in the program. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected object in plan view. See “Fill Style Specification Dialog” on page 155.

Label Panel

Labels for Flat Regions display in plan view when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.

Hill / Valley Specification Dialog

The **Hill/Valley Specification** defines the selected Hill or Valley and controls its appearance in plan view.

To open the **Hill/Valley Specification** dialog, select one or more Hill or Valley and click the **Open Object** edit button, or double-click the region(s) using the **Select Objects** tool.

Hill / Valley Panel

- Enter a **Height** for the selected Hill or Valley. This height is relative to the terrain surface that is generated from the Elevation Data in your plan. See “Terrain Modifier Tools” on page 905.

Polyline Panel

The POLYLINE panel states the length of the hill or valley’s **Perimeter** and its enclosed **Area**. Hills and Valleys do not have a volume measurement.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is a spline. See “Splines” on page 249.

![New Segment Angle]

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.
Selected Line/Arc Panel
The SELECTED LINE and/or SELECTED ARC panels are only available if the selected Hill or Valley has been converted to a polyline. See “Convert Spline to Polyline” on page 208.

The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel
The settings on the LINE STYLE panel are available for a variety of other objects in the program. See “Line Style Panel” on page 235.

Fill Style Panel
The settings on the FILL STYLE panel affect the appearance of the selected object in plan view. See “Fill Style Specification Dialog” on page 155.

Label Panel
Hill and Valley labels display in plan view when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.

Raised / Lowered Region Specification Dialog
To open the Raised/Lowered Region Specification dialog, select one or more raised or lowered regions and click the Open Object edit button, or double-click the region(s) using the Select Objects tool.

The Raised / Lowered Region Specification dialog is similar to the Hill / Valley Specification dialog. See “Hill / Valley Specification Dialog” on page 916.

Terrain Feature Specification Dialog
To open the Terrain Feature Specification dialog, select a Terrain Feature or group of Terrain Features and click the Open Object edit button, or double-click the Terrain Feature(s) using the Select Objects tool.

Most of the panels in this dialog are similar to those for a variety of other objects in the program, including Water Features and Stepping Stones.

Garden Beds are also a type of Terrain Feature and have an additional Distributed Plant panel in their specification dialog. Garden Beds also have a preview pane on the right side of their specification dialog.

General Panel

![General Panel](image)
• Specify the top **Height** of the Terrain Feature, relative to the terrain surface, using a positive or negative number.

• Specify the feature’s **Thickness**.

If a feature’s height above the terrain is greater than its thickness, the program will fill in the resulting gap.

• Check **Make Hole** to specify the selected Terrain Feature as a Terrain Hole. See “Terrain Holes” on page 906.

• Check **Clip Overlapping Terrain Features** to suppress the 3D display of any part of the selected Terrain Feature intersected by other Terrain Features with a lower Height value. Clipping is useful for creating features that contain other features such as planters or swimming pools.

Distributed Plant Panel

This panel is only available when the selected Terrain Feature is a Garden Bed. For information, see “Distributed Object Panel - Distribution Region” on page 753.

• Check **Show Region** to display the edges of the garden bed in plan view.

Polyline Panel

The POLYLINE panel states the length of the garden bed’s **Perimeter**, its enclosed **Area**, and its **Volume**. See “Polyline Panel” on page 245.

Spline Panel

The SPLINE panel has a single option and is only available when the selected object is a spline. See “Splines” on page 249.

![New Segment Angle](5.0°)

New Segment Angle - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

Garden Bed Specification Dialog

To open the **Garden Bed Specification** dialog, select a Garden Bed or group of Garden Beds and click the **Open Object** edit button or double-click the Garden Bed(s) using the **Select Objects** tool.

Selected Line/Arc Panel

The **SELECTED LINE** panel is available when the selected edge is a line as opposed to an arc or when the selected object is a spline. See “Line Panel” on page 234.

The **SELECTED ARC** panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel

The settings on the **LINE STYLE** panel are available for a variety of other objects in the program. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel affect the appearance of the selected object in plan view. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected object in 3D views. See “Materials Panel” on page 761.

Label Panel

Terrain Feature labels display in floor plan and cross section/elevation views when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.

Components Panel

The information on the **COMPONENTS** panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Because a Garden Bed is a type of Terrain Feature, the settings in this dialog are essentially the same as those in the **Terrain Feature Specification** dialog. See “Terrain Feature Specification Dialog” on page 917.
Garden Beds also include the Distributed Objects panel found in the **Distribution Region** Specification dialog. See “Distribution Region/Path Specification Dialogs” on page 752.

Terrain Break Specification Dialog

To open the **Terrain Break Specification** dialog, select a Terrain Break or group of Terrain Breaks and click the **Open Object** edit button or double-click the Terrain Break(s) using the **Select Objects** tool. See “Terrain Breaks” on page 904.

General Panel

- Define the **Transition Distance**, which is the distance from the edge of the terrain break to where the break stops affecting the terrain.

Polyline Panel

The **POLYLINE** panel states the **Length** of an open polyline or the **Perimeter** of a closed polyline. If multiple Terrain Break segments form a closed polyline, its **Area** will be calculated. Terrain Breaks do not have a thickness, so they have no **Volume**. See “Polyline Panel” on page 245.

Selected Line/Arc Panel

The **SELECTED LINE** panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

Terrain Path Specification Dialog

To open the **Terrain Path Specification** dialog, select one or more Sidewalks, Streams, Terrain Walls or Terrain Curbs and click the **Open** button. See “Terrain Breaks” on page 904.

The **SELECTED ARC** panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Spline Panel

The **SPLINE** panel has a single option and is only available when the selected object was converted to a Terrain Break from a spline. See “Splines” on page 249.

- **New Segment Angle** - Specify the angle between line segments that are used to draw the spline. Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

Line Style Panel

For information about the **LINE STYLE** panel, see “Line Style Panel” on page 235.

Fill Style Panel

The **FILL STYLE** panel is only available when multiple Terrain Break segments enclose an area. The settings on this panel affect the appearance of the closed shape in plan view. See “Fill Style Specification Dialog” on page 155.

Object edit button or double-click the terrain path(s) using the **Select Objects** tool.

Most of the panels in this dialog are similar to those for a variety of other objects in the program.
General Panel

1. **Size** - Enter the **Width** of the object and the **Height** above the terrain. If the Height value is a negative number, the object sinks into the terrain.

2. When one terrain path joins another, you can **Flare** the intersection.
 - Check **Start** to create a flare at the starting end of the selected terrain path, then specify the **Radius** of that flare.
 - Check **End** to create a flare at that end of the terrain path, then specify the **Radius** of that flare.

 ![Sidewalk flares with 24” Radius]

Polyline Panel

The **POLYLINE** panel states the length of the Terrain Path’s **Perimeter**, its enclosed **Area**, and its **Volume**. See “Polyline Panel” on page 245.

Spline Panel

The **SPLINE** panel has a single option and is only available when the selected object is a spline path. See “Splines” on page 249.

 - **New Segment Angle** - Specify the angle between line segments that are used to draw the spline.

 Specifying a smaller angle makes the spline smoother. Specify a larger angle to draw the spline faster.

 Selected Line/Arc Panel

 The **SELECTED LINE** panel is available when the selected edge is a line as opposed to an arc. See “Line Panel” on page 234.

 The **SELECTED ARC** panel is available when the selected edge has been converted into an arc. See “Arc Panel” on page 241.

 See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel

The settings on the **LINE STYLE** panel are available for a variety of other objects in the program. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the **FILL STYLE** panel affect the appearance of the selected object in plan view. See “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the **MATERIALS** panel affect the appearance of the selected object in 3D views. See “Materials Panel” on page 761.

Label Panel

Terrain Path labels display in floor plan and cross section/elevation views when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.
Importing Elevation Data

Elevation data can be added to a plan using the tools and techniques described in this chapter or it can be imported from a file. Chief Architect can import elevation data saved in DXF/DWG, GPS Exchange (.gpx) and a variety of text file formats (.txt, .csv, .prn, .xyz, .auf and .nez). If your terrain data is not saved in one of these file formats, there are third party programs available that can convert to these formats.

DXF/DWG Files

If you have a model of your terrain created on another program that contains contour lines and elevation data, that information can be imported directly as elevation data into Chief Architect as a .dxf or a .dwg file. See “Importing DWG/DXF Elevation Data” on page 925.

Text Files

Elevation data can be saved in text files as x, y, and z coordinates where x and y define the location of a point on a Cartesian grid, and z defines the elevation for that point. Each data point must be on a separate line in the text file. Importable text files can come from surveyors, other software programs, or you can create your own using a GPS system. Elevation data saved in text files can be imported using the **Import Terrain Assistant**.

GPS Exchange Files

Elevation data in standard format .gpx files created using a GPS system can also be imported using the **Import GPS Data Assistant**. See “Import GPS Data Assistant” on page 924.

GPS data may include three types of points - Way, Track, and Route. Chief Architect can only import a .gpx file if it includes one or more Way Points, and cannot use Route Points at all. If a .gpx file does not include any Way Points, it will not be imported, and if it includes any Route Points, they will be ignored.

Chief Architect supports the import of data in standard .gpx files that adhere to the GPX 1.1 Schema. Files that do not follow this standard cannot be imported.

Import Terrain Assistant

The **Import Terrain Assistant** allows you to import elevation data saved in text (.txt) file format into a plan. Each data point in this format has information about its X-axis (East to West location), Y-axis (North to South location), and Z-axis (elevation). It might also have a brief description. In order to import elevation data from a text file, you need to know how the data in the file is organized.

To launch the **Import Terrain Assistant**, select File> Import> Terrain Data. Click Next.
Select File

1 Select a file to import.

- Click the **Browse** button to locate a file on your computer. See “Importing Files” on page 48.
- If a file has been selected, its full pathname displays here for reference; if a file has not been selected, the directory of the last file imported displays. If the pathname is not that of a valid .txt file, this text will display in red.

2 Select the organization of the data.

Elevation information can be organized in one of six different ways, and can be separated by either a comma (comma delimited) or a space (space delimited).

- **XYZ** - Information in this format begins with the X coordinate, followed by the Y coordinate and the Z coordinate.
- **#XYZ** - Information in this format begins with a number that belongs to each data point followed by the X coordinate, the Y coordinate, and the Z coordinate.
- **#XYZ Description** - Information in this format begins with a number that belongs to each data point followed by the X coordinate, the Y coordinate, the Z coordinate, and a description.
- **YXZ** - Information in this format begins with the Y coordinate followed by the X coordinate and the Z coordinate.
- **#YXZ** - Information in this format begins with a number that belongs to each data point followed by the Y coordinate, the X coordinate, and the Z coordinate.
- **#YXZ Description** - Information in this format begins with a number that belongs to each data point followed by the Y coordinate, the X coordinate, the Z coordinate, and a description.

Click **Next** to continue.

Filter Data

1 The imported data contains 15 elevation points.
2 Restrict the imported data to these ranges:
 - X values between 1.0 and 3.9
 - Y values between 2.0 and 4.9
 - Z values between 3.0 and 5.9
3 Reduce the amount of data imported.
 - Import 15 of 15 elevation points.
The number of elevation points that the text file contains displays here for reference.

Building terrain with a lot of elevation data can take a long time. If your text file has more than 1000 or 2000 elevation points, consider filtering it using the settings that follow.

You may also want to use the Linear Smoothing option in the **Terrain Specification** dialog. See “General Panel” on page 911.

1. **Restrict the imported data to these ranges:**
 One way to filter the data used is to define a range for each axis: X, Y, and Z. Data within these ranges is imported, while data outside these ranges is not.

 In the following diagram, the outer rectangle and the points within it represent all of the data contained in a given text file. The smaller rectangle represents a subset of this data, defined by ranges on the X and Y axes.

2. **Reduce the amount of data imported.**
 Another way to filter the imported data is by excluding elevation points.

 Enter the total number of points to be imported. The points selected for import are found evenly distributed in the original file.

 Click **Next** to continue.

Scale Data

1. **The total number of data points to be imported**
 and the ranges of their coordinates are described here.

2. **Select the Units** of measurement used for each axis.

3. **Map** a data point in the file to the origin in Chief Architect to position the terrain data relative to your plan. See “3D Drafting” on page 25.

4. **Change the scale of the terrain.**
 - Multiply the coordinates of each axis by a specific number to decrease or increase the relative size or relief of your terrain.

5. **Rotate North Counterclockwise:**
 - Specify an amount to rotate the terrain data counterclockwise, or to the left.
Click **Next** to finish.

Import GPS Data Assistant

The **Import GPS Data Assistant** allows you to import terrain data from the standard `.gpx` file format. See “GPS Exchange Files” on page 921.

Select **File> Import> GPS Data** to open the **Import GPS Data Assistant**, then click **Next** to continue.

Select File

![Select File](image_url)

1. **Select a file to import.**

 - Click the **Browse** button to locate a `.gpx` file on your computer. See “Importing Files” on page 48.
 - If a file has been selected, its full pathname is reported here for reference; if a file has not been selected, the directory of the last file imported displays. If the pathname is not that of a valid `.gpx` file, this text will display in red.

Import Data As

![Import Data As](image_url)

1. Specify which items you want to import by checking the box to the left of the **Name**. Items with unchecked boxes are not imported.

2. Specify what you would like the selected item to **Import As** from the drop-down list.

 - Only Way Points have elevation data associated with them. To import this data, import them as “Elevation Points”.
 - Select “Marker” to import either Way Points or Track Points as location markers. Markers have no elevation data associated with them.

1. **Due to the lack of accuracy in some GPS systems, exact distances using the Import GPS Data Assistant are not guaranteed.**

1. **Note: Not all GPS programs use the standard .gpx file format; however, only files using the standard format can be imported.**

1. **Click Next** to continue.
• Select “Polyline” to create an open CAD polyline based on the position of Way Points or Track Points. The points themselves are not imported. Polylines have no elevation data associated with them.

• Select “Terrain Perimeter” to create a closed Terrain Perimeter polyline based on the position of either Way Points or Track Points. The points themselves are not imported. A Terrain Perimeter has no elevation data associated with it. See “Terrain Perimeter” on page 900.

Click Next to continue.

Transform Coordinates

1 Lower Elevation Data by:
 • Specify the amount that you would like to lower all imported elevation data.

2 Rotate North Counterclockwise:
 • Specify an amount to rotate the terrain data counterclockwise, or to the left.

3 Map this point to the origin.
 • Specify a point in the imported terrain data, defined by degrees Latitude and Longitude, that you would like to locate at the origin in the Chief Architect plan.

Click Next to finish.

If you do not see the imported terrain, select Window> Fill Window.

Importing DWG/DXF Elevation Data

Select File> Import> Drawing (DWG/DXF) to open the Import Drawing Assistant, which you can use to import elevation data in .dwg/.dxf format. See “Import Drawing Assistant” on page 883.

By default, the Import Drawing Assistant imports entities as regular CAD objects; however, you can specify that any layer in the drawing be converted to either a Terrain Perimeter or Elevation Data. If a layer is converted to Elevation Data, any points and lines on that layer are converted to Elevation Points and Lines, and any elevation data associated with them is preserved.

• If an imported line has vertices with the same Z values, an Elevation Line is created.

• If the vertices have differing Z values, an Elevation Point is created for each vertex.

• Imported points are converted to Elevation Points.

• Other imported entities (solids, faces, etc.) are imported normally.

To avoid unexpected results when importing a drawing, only convert layers with elevation information to Elevation Data.
If a Terrain Perimeter does not exist in the plan or if a layer in the .dwg/.dxf file is not converted to a Terrain Perimeter, a Terrain Perimeter is created around the extents of the Elevation Data when it is imported.

Converting CAD Objects to Terrain Data

CAD lines, splines, and polylines - either imported or drawn using Chief Architect’s CAD Tools - can be selected and converted to terrain data using the Convert Polyline edit tool.

In plan view, select a CAD line, spline, or polyline and click the Convert Polyline edit button to open the Convert Polyline dialog. See “Convert Polyline” on page 205.

A Terrain Perimeter must exist before any other types of terrain object can be created. If no Terrain Perimeter is present in the current plan, this will be the only terrain item available in the Convert Polyline dialog.

When you click OK, the terrain object’s specification dialog opens, allowing you to specify elevation data or other attributes.
Chapter 38: Roads, Driveways and Sidewalks

Roads and sidewalks are modeled in 3D like other terrain objects in Chief Architect. Because they have much in common with terrain objects and rely upon terrain data to be viewed in 3D, it is helpful to be familiar with terrain modeling before using these tools. See “Terrain” on page 899.

Chapter Contents
• Road and Sidewalk Defaults
• Road, Driveway and Sidewalk Tools
• Displaying Road Objects
• Editing Road Objects
• Adding Road Objects to the Library
• Road Specification Dialog
• Median Specification Dialog
• Driveway Specification Dialog
• Road Marking Specification Dialog

Road and Sidewalk Defaults

Default Settings can be accessed by selecting Edit> Default Settings. Click the + beside Roads, Sidewalks and Driveways to display the subheadings. See “Default Settings” on page 65.

The settings in the Road Defaults, Driveway Defaults, Road Marking Defaults, and Sidewalk Defaults dialogs determine the initial settings when the road and sidewalk tools are used. It is a good idea to check these settings before placing any roads or sidewalks in your plan.

Road Defaults

You can access the Road Defaults dialog from the Default Settings dialog, or by double-clicking the Road Tools button.

The settings in this dialog are the same as those in the Road Specification dialog. See “Road Specification Dialog” on page 931.

Driveway Defaults

You can access the Driveway Defaults dialog from the Default Settings dialog, or by double-clicking the Driveway button.

The settings in this dialog are the same as those in the Driveway Specification dialog. See “Driveway Specification Dialog” on page 933.

Road Marking Defaults

You can access the Road Marking Defaults dialog from the Default Settings dialog, or by double-clicking the Road Marking button.
The settings in this dialog are the same as those in the **Road Marking Specification** dialog. See “Road Marking Specification Dialog” on page 933.

Sidewalk Defaults

You can access the **Sidewalk Defaults** dialog from the **Default Settings** dialog, or by double-clicking the **Sidewalk** button.

Road, Driveway and Sidewalk Tools

Road objects can be drawn in plan view, camera views and overviews, but only when a Terrain Perimeter exists in the plan. See “Terrain Perimeter” on page 900.

When road objects are first placed into your plan, their initial dimensions and properties are controlled by their default settings. See “Road and Sidewalk Defaults” on page 927.

Straight and Spline road objects:

- Are typical line- and spline-based objects, and can be edited as such.
- Are flat along their widths, which makes it easy to create roads on sloping terrain.
- Can be joined end-to-end to form intersections and networks.
- Have a consistent width that can be defined in their specification dialogs. See “Road Specification Dialog” on page 931 and “Terrain Path Specification Dialog” on page 919.

Polyline road objects, on the other hand, are actually Terrain Features which follow the contours of the terrain rather than cut into them. They are drawn as rectangles but can be edited to any shape. See “Terrain Feature Tools” on page 906 and “Editing Closed Polyline-Based Objects” on page 180.

Roads have curbs, and Sidewalks and Driveways cut out curbs and gutters wherever they meet a Road or a Road Polyline.

The settings in this dialog are the same as those in the **Terrain Path Specification** dialog, but only affect sidewalks and not other types of terrain paths. See “Terrain Path Specification Dialog” on page 919.

The **Convert Polyline** edit tool can be used to convert a CAD polyline into a number of types of road object. See “Convert Polyline” on page 205.

Once road objects have been placed, they can be edited individually or as a group. See “Editing Road Objects” on page 930.

Road Tools

Select **Terrain> Road> Straight Road**, then click and drag to draw a line within the Terrain Perimeter to draw a Straight Road.

The ends of multiple road sections can be connected together. Roads are edited along their center line and can be edited much like other line-based objects. See “Editing Line-Based Objects” on page 171.

Select **Terrain> Road> Spline Road**, then click and drag to draw a curved road composed of spline segments.

Spline roads are drawn and edited like other spline-based objects. See “Editing Spline-Based Objects” on page 186.

Select **Terrain> Road> Polyline Road**, then click and drag to draw a rectangular polyline which can then be edited to any shape.

Select **Terrain> Road> Median**, then click and drag within a road to draw a rectangular
polyline that cuts a hole in a road, revealing the terrain material beneath. If the road has a curb, the Median receives one as well.

A **Cul-de-sac** is a road object with a special, rounded shape that can be placed at the end of a Road object. Select Terrain> Road> Cul-de-sac and click on the end of a road to place a cul-de-sac at that location. Cul-de-sacs cannot be connected to the edge of Road Polylines.

Select Terrain> Road> Road Marking, then click and drag within a road to draw a rectangular region with a different material than the road surface.

Select Terrain> Road> Road Stripe, then click and drag within a road to draw a stripe of road marking material on the road surface. Multiple road stripes can be connected together.

Driveway Tools

Select Terrain> Driveway> Straight Driveway, then click and drag a line within the Terrain Perimeter. Multiple driveway sections can be connected together.

Driveways are edited like other line-based objects. See “Editing Line-Based Objects” on page 171.

Use the Spline Driveway tool to create a curved driveway. Select Terrain> Driveway> Spline Driveway. Spline driveways are drawn and edited like CAD splines. See “Splines” on page 249.

Select Terrain> Driveway> Driveway Polyline, then click and drag within the Terrain Perimeter to draw a rectangular polyline which can then be edited to any shape.

Driveway polylines are edited just like CAD polylines. See “Editing Closed Polyline-Based Objects” on page 180.

Sidewalk Tools

To create a sidewalk with no curves, select Terrain> Sidewalk> Straight Sidewalk, then click and drag a line within the Terrain Perimeter.

Sidewalks are edited along their center line like line-based objects. See “Editing Line-Based Objects” on page 171.

Select Terrain> Sidewalk> Spline Sidewalk, then click and drag to draw a curved sidewalk composed of spline segments.

Select Terrain> Sidewalk> Sidewalk Polyline, then click and drag within the Terrain Perimeter to draw a rectangular polyline which can then be edited to any shape.

Select a Road or Median and click the Auto Generate Sidewalk edit button to open the Auto Generate Sidewalks dialog.

- **Left/Right Side of Road** - Check one or both boxes to generate a sidewalk on the selected road object.
- **Check All Connected Roads** to generate a sidewalk along all other roads connected to the selected road object.
• **Offset From Road** - Specify a gap between the generated sidewalk and the selected road object.

Displaying Road Objects

Roads and sidewalks display in floor plan and 3D views based on the settings for their layers in the **Layer Display Options** dialog. See “Layers” on page 142.

In 3D Views

In order for Road objects to be visible in 3D views, they must be drawn within the Terrain Perimeter.

Editing Road Objects

Road objects can be selected individually and as a group in 2D and 3D views and edited using the edit handles, the edit toolbar and their specification dialogs.

Terrain Walls and **Terrain Curbs** are also examples of Road objects. See “Terrain Wall and Curb Tools” on page 908.

Using the Mouse

The edit handles available for a selected road object depend on the type of object selected.

- **Straight Roads**, **straight Driveways**, **straight Road Stripes**, **straight Terrain Walls**, **straight Terrain Curbs**, and **Straight Sidewalks** are edited along their centerline like a line or open polyline. See “Editing Line-Based Objects” on page 171.

- **Spline Roads**, **Spline Sidewalks**, **Spline Terrain Walls**, and **Spline Terrain Curbs** are edited along their centerline like CAD splines. See “Splines” on page 249.

- **Polyline Roads**, **Cul-de-sacs**, **Medians**, **Road Markings**, **Polyline Driveways** and **Polyline Sidewalks** are edited along their perimeter, like standard polylines. The width is determined by the polyline’s shape. See “Editing Closed Polyline-Based Objects” on page 180.

- **Medians** are also edited like polylines.

In the Specification Dialog

Road objects can be customized in their specification dialogs. See “Road Specification Dialog” on page 931, “Terrain Feature Specification Dialog” on page 917, and “Terrain Path Specification Dialog” on page 919.

Using the Edit Tools

A selected road object can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

Convert to Polyline Object

A selected Straight or Spline Road, Sidewalk or Driveway can be converted into a Polyline Road, Sidewalk or Driveway by clicking the **Convert to Polyline Object** edit button.

Polyline Roads, Sidewalks and Driveways display the same edit handles as closed polylines, allowing you to edit their shapes as much as needed.

Adding Road Objects to the Library

You can create your own road objects and save them to the library. Select any combination of elevation points, elevation lines, terrain features, roads, sidewalks, road markings, or even the terrain perimeter itself and send them to the library as one unit.
When a group of terrain objects from the library is placed into a plan, each object becomes independent and can be edited individually. See “Adding Library Content” on page 700.

Road Specification Dialog

To open the Road Specification dialog, select a Straight Road, Spline Road, Polyline Road, Median or Cul-de-sac and click the Open Object edit button.

The settings in this dialog are also found in the Road Defaults dialog. See “Road and Sidewalk Defaults” on page 927.

Many of the settings in this dialog are similar to those in the Terrain Path Specification dialog. See “Terrain Path Specification Dialog” on page 919.

General Panel

1. **Size** - Specify the **Width** and **Height** of the road relative to the terrain. The **Width** option is not available for culs-de-sac and non-centerline roads.

2. When one road joins another, you can **Flare** the intersection.
 - Check **Start** to create a flare at the starting end of the selected road, then specify the **Radius** of that flare.
 - Check **End** to create a flare at the end of the selected road, then specify the **Radius** of that flare.

Flaring is not available for culs-de-sac or non-centerline roads.
Curb Panel

- Check **Has Curb** if you want the selected road to include a curb.
- Click **Select Curb Profile** to apply a different curb profile to the selected road.
- Click **Default Curb Profile** to use the profile set in the Road Defaults dialog. In the Road Defaults dialog, clicking this button will reset the straight-sided system default curb profile.
- Enter **Height** and **Width** values for the curb.
- Check **Cut Curb for Driveways and Sidewalks** to cut the curb for driveways and sidewalks.
- A preview of the selected profile displays to the right of the settings.

Polyline Panel

The POLYLINE panel states the length of the road’s **Perimeter**, its **Area** and its **Volume**. Not available in the Road Defaults dialog. For more information, see “Polyline Panel” on page 245.

Selected Line/Arc Panel

The SELECTED LINE panel is available when a Straight Road is selected. For more information, see “Line Panel” on page 234.

The SELECTED ARC panel is available when the curved segment of a Straight Road is selected. See “Arc Panel” on page 241.

Spline Panel

The SPLINE panel is available when a Spline Road is selected. Specify the angle between the line segments used to draw the spline. For more information, see “Spline Panel” on page 245.

Line Style Panel

This panel is the same as the LINE STYLE panel in many other specification dialogs. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the FILL STYLE panel affect the appearance of the selected object in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the MATERIALS panel affect the appearance of the selected object in 3D views. For information about these settings, see “Materials Panel” on page 761.

The material selected here is not calculated in the Materials List. See “Materials Lists” on page 943.

Label Panel

Road labels displays in floor plan and cross section/elevation views when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.

Median Specification Dialog

Select a median and click the **Open Object** edit button to open the **Median Specification** dialog.
The settings in this dialog are similar to those in the Road Specification dialog.

Driveway Specification Dialog

Select a driveway and click the Open Object edit button to display the Driveway Specification dialog.

The settings in this dialog are also found in the Driveway Defaults dialog and are similar to those in the Road Specification dialog. See “Road Specification Dialog” on page 931.

Road Marking Specification Dialog

Select a Road Marking or Road Stripe and click the Open Object edit button to open the Road Marking Specification dialog.

The settings in this dialog are also found in the Road Marking Defaults dialog and are similar to those in the Road Specification dialog. See “Road Specification Dialog” on page 931.

General Panel

The General panel is only available for Road Stripes.

Polyline Panel

The Polyline panel states the length of the road marking’s Perimeter, its Area, and its Volume. Not available in the Road Marking Defaults dialog. For more information, see “Polyline Panel” on page 245.

Selected Line/Arc Panel

The Selected Line panel is available when the straight segment of a road marking is selected. See “Line Panel” on page 234.

The selected ARC panel is available when the curved segment of a road marking is selected. See “Arc Panel” on page 241.

Line Style Panel

This panel is the same as the Line Style panel in many other specification dialogs and affects the appearance of the selected object in plan view. See “Line Style Panel” on page 235.

Fill Style Panel

The settings on the Fill Style panel affect the appearance of the selected object in plan view. For information about these settings, see “Fill Style Specification Dialog” on page 155.

Materials Panel

The settings on the Materials panel affect the appearance of the selected object in 3D views. For information about these settings, see “Materials Panel” on page 761.

The material selected here is not calculated in the Materials List. See “Materials Lists” on page 943.

Label Panel

Road Marking labels displays in plan view when the “Terrain Labels” layer is turned on and use the Text Style assigned to that layer. See “Terrain and Road Labels” on page 909.

For more information, see “Label Panel” on page 516.
Chapter 39: Plants and Sprinklers

The Plant Tools and sprinklers from the Library Browser allow you to create planting designs and irrigation systems in your terrain.

The Terrain Tools are discussed in their own chapter. See “Terrain” on page 899.

Plant Tools

- Select Terrain> Plant to add plants to your landscaping plan. Plants can also be placed in a plan directly from the library. See “Placing Library Objects” on page 704.

- Plant objects are actually images, which provide realism while avoiding high 3D surface count. Once created, plant images can be selected and edited much like other image objects. See “Editing Images” on page 855.

- Select Terrain> Plant> Plant Chooser to open the Plant Chooser dialog and find plants based on their characteristics and requirements. See “Plant Chooser Dialog” on page 936.

- Select Terrain> Plant> Create Plant Image to create a plant image. Once a plant image is created, it can be added to the library for future use. See “Creating Images” on page 854.

- Select Terrain> Plant> Grow All Plants to open the Grow Plants dialog.

Click and drag the slider bar and select a growth period from zero to twenty years. This only works for plants that have a mature height and mature age specified in the Plant Image Specification dialog. See “Plant Information Panel” on page 939.

- Select Terrain> Plant> Show Hardiness Zones to access regional climate zone maps. See “Hardiness Zones” on page 937.

Garden Beds

Garden Beds are special Terrain Features with material and height attributes typical of planting beds. In addition, you can choose to distribute copies of a plant image within a Garden Bed. See “Garden Bed Tools” on page 907.
Plants Library Catalogs

In the Library Browser, browse to Chief Architect Core Catalogs> Plants to access a selection of plant images and symbols. Select the library object you want, then click in any view to place it in the plan. See “The Library” on page 691.

A selection of Bonus Catalogs of plants is also available for download. See “Chief Architect Bonus Catalogs” on page 697.

In addition, you can add single plants and blocked groups of plants to the library. See “Adding Library Content” on page 700 and “Architectural Blocks” on page 725.

Plant Schedules

The Plant Schedule tool allows you to create customizable plant schedules and plant labels that display schedule numbers. See “The Schedule Tools” on page 506.

Plant Chooser Dialog

Select Terrain> Plant> Plant Chooser or click the Plant Chooser button at the bottom of the Library Browser window to open the Plant Chooser.

Use this dialog to search the library for plant images and symbols that match your search parameters. You can search using any or all of the options in the Plant Chooser.

The search parameters in this dialog correspond to the settings on the PLANT INFORMATION panel of the Plant Image Specification dialog. See “Plant Information Panel” on page 939.

Type the Name of a plant that you would like to find.

Specify the plant’s Common Name, Scientific Name, or its Variety Name.
• A **Pronunciation** field is also provided. In the Plant Image Specification dialog, it is populated with a phonetic pronunciation guide for the plant’s scientific name.

2 Check one or more boxes to indicate selected plant **Type** to search for.

3 Check one or more boxes to specify the selected **Sub-Type** to search for.

4 Specify the plant **Needs** to search for. These include the **Sun**, **Water**, **Soil pH**, and **Hardiness Zone** range. See “Hardiness Zones” on page 937.

5 **Flowers and Foliage** -

• Specify the **Flower Color** to search for. Multiple colors can be selected.

• Specify the **Leaf Color** to search for. Multiple colors can be selected

• Specify the **Bloom Time** to search for, which is the season when the plant produces flowers.

6 Specify the plant **Height** at maturity to search for. This is used with the Grow Plants feature. See “Plant Tools” on page 935.

• An average mature height range can be entered using the **From** and **To** drop-down lists.

• A specific **Height at Maturity** to search for can be entered in the text field.

• A specific **Starting Age**, in months, can be entered in the text field.

• A specific **Age at Maturity**, in months, can be entered in the text field.

7 Check one or more boxes to search for plants with **Special Characteristics**.

8 Select which types of plant **Object Type** to search for. 3D Plants are symbol objects, while Plant Images are two dimensional images.

9 Click the **Search** button at the bottom of the dialog to search for plants that meet your search criteria. The search results display to the right.

10 Your search results display here.

• The **Number of Items** that match your search criteria is stated.

• Specify whether you want the search results to use the **Common Name** or **Scientific Name**.

• Click on the name of a plant in the list to see its location in the Library Browser.

11 Click the **View Item** button to see more information about the selected plant in the Plant **Information** dialog. See “Plant Image Specification Dialog” on page 937.

Hardiness Zones

Select **Terrain> Plant> Show Hardiness Zones** to view a selection of regional **Hardiness Zone Maps**. Click the drop-down list at the top left to select various regions.

Plant Image Specification Dialog

Select one or more plant in a plan view or 3D view and click the **Open Object** edit button to open the Plant Image Specification dialog.

This dialog can also be accessed by selecting **Terrain> Plant> Create Plant Image**.
The PLANT INFORMATION and PLANT DESCRIPTION panels are also found in the Plant Information dialog, which can be accessed from the Plant Chooser dialog. See “Plant Chooser Dialog” on page 936.

Image Panel

1. **General** -
 - The path and name of the selected plant’s Image File displays here.
 - Click Browse to specify the saved location on your computer of the image that represents the plant in 3D views.
 - A number of 2D Plant Symbols are available to represent the image in plan view. Select one from the drop-down list or click the Library button to choose a CAD block from the Library Browser.

2. Specify the Size/Elevation of the plant image, as seen in 3D views.
 - Specify the Height and Width of the image.
 - When Retain Aspect Ratio of is checked, if you change either the Height or Width, the other value changes to maintain this ratio. If this is unchecked and you resize the plant image, it may become distorted.
 - Click Reset Original Aspect Ratio of to reset the image’s original aspect ratio and remove any distortion caused by resizing.
 - Select the Elevation Reference from the drop-down list. This determines where the next two settings are measured from and also affects their setting labels.
 - Specify the to Top distance, measured from the Elevation Reference to the top edge of the image.
 - Specify the to Bottom distance, measured from the Elevation Reference to the bottom edge of the image.

3. Specify the location of the selected plant image’s Center Point.
• Position the selected plant image in reference to the plan coordinates by specifying its X Coordinate and YCoordinate.

4 Specify the Block Line/Fill Style of the selected plant image’s 2D symbol in plan view. Only available when a CAD block from the library is selected as the image’s 2D Plan Symbol.

• Select Use Image Settings to use the image’s line style, which is set by layer, and its fill style, which is “No Pattern”.

• Select Use Block Settings to use the 2D CAD block’s line and fill styles. See “Custom 2D Symbols” on page 252.

5 Options -

• Check Reverse Image to reflect the appearance of the image about an imaginary vertical line through its center.

• Check Image Always Faces Camera to prevent the plant image from rotating with the camera.

• Check Include in Schedule to include the selected plant in the Plant Schedule. See “Schedules and Object Labels” on page 505.

6 If the selected plant image has been copyrighted, its Copyright Information displays here.

7 A preview of the selected plant image displays here. The Glass House Rendering Technique is not available for plant images. See “Dialog Preview Panes” on page 32.

Transparency Panel

The settings on the Transparency panel of this dialog are similar to those on the same panel of the Image Specification dialog. For more information, see “Transparency Panel” on page 857.

Plant Information Panel

The settings on the Plant Information panel correspond to the search parameters in the Plant Chooser. See “Plant Chooser Dialog” on page 936.

When multiple plants with differing attributes are selected, some button icons may be replaced by an X symbol signifying “No Change”.
Plant Description Panel

A detailed **Description** of the plant displays in this text field.

Information in the **Lighting Comments** fields describes the plant’s light requirements.

Hardiness Zone Comments are given here. See “Hardiness Zones” on page 937.

Layer Panel

For information about the Layer panel, see “Layer Panel” on page 149.

Fill Style Panel

The Fill Style panel controls the appearance of the selected plant’s 2D Plant Symbol in plan view. By default, plant images’ fill style is None (Transparent). For information about the settings on this panel, see “Fill Style Specification Dialog” on page 155.

If the plant’s 2D Plan Symbol does not form a closed shape or is a CAD block is selected from the library, the settings on the Fill Style panel will have no effect on the appearance of the plant in plan view. If you wish, you can create a custom CAD block with the desired fill pattern. See “CAD Blocks” on page 251.

Label Panel

Plant labels display in plan view when the “Plants, Labels” layer is turned on and use the Text Style assigned to that layer. See “Object Labels” on page 515.

Components Panel

The information on the COMPONENTS panel can be used in the materials list. For more information, see “Components Panel” on page 959.

Object Information Panel

The information entered on the OBJECT INFORMATION panel can be used in Plant Schedules and the materials list. For more information, see “Object Information Panel” on page 519.
Plant Specification Dialog

Select a 3D plant symbol and click the Open Object edit button to open the Plant Specification dialog. This dialog is the same as that for a variety of symbol objects in the program. See “Symbol Object Specification Dialogs” on page 710.

Sprinkler Tools

Use the Sprinkler Tools to design a sprinkler system in your plan.

Select Terrain> Sprinkler> Sprinkler Head to open the Select Library Object dialog. Browse to a sprinkler type in the library, click OK, then click in the drawing area to place as many as you need. Once drawn, sprinkler heads can be selected and edited. See “Sprinkler Specification Dialogs” on page 941.

Select Terrain> Sprinkler> Sprinkler Line to draw sprinkler lines in your plan. Sprinkler lines are 2D objects and are drawn and edited much like CAD Lines. See “Line Tools” on page 231.

Select Terrain> Sprinkler> Sprinkler Spline to draw curved sprinkler lines in your plan. Sprinkler splines are 2D objects and are drawn and edited like CAD Splines. See “Splines” on page 249.

Displaying Sprinklers

The display of Sprinkler Heads, Lines and Splines can be controlled in the Layer Display Options dialog. See “Layer Attributes” on page 142.

Sprinkler Specification Dialogs

To open the Sprinkler Specification dialog, select a sprinkler or group of sprinklers and click the Open Object edit button. You can also double-click the sprinkler(s) using the Select Objects tool.

The Sprinkler Specification dialog an example of a Symbol Object Specification dialog. See “Symbol Object Specification Dialogs” on page 710.

Sprinkler Lines and Sprinkler Splines also have a specification dialog which is very similar to the Polyline Specification dialog. See “Polyline Specification Dialog” on page 244.

Plant Schedules

The Plant Schedule tool allows you to produce customizable plant schedules as well as plant labels that display schedule numbers. Plant schedules can be customized to include a wide range of information, from appearance to care requirements. See “The Schedule Tools” on page 506.
Chapter 40: Materials Lists

Chief Architect can calculate a Materials List in three ways: for All Floors, From Area, or for Room. In addition, a polyline or multiple polylines can be used to define areas in a plan a Materials List can be generated from.

Materials Lists can be created, edited, and printed directly from the program. They can also be exported as text, .xml, or .html files for use in other programs.

The Materials List Tools

Select Tools> Materials List to access the Materials List tools.

A Materials List is like a snapshot of the current plan at the time that the list is made. Any changes made to the model after a Materials List is generated are not included in that list. Create a new Materials List if you would like it to include these changes.

It is not necessary to wait until the plan is complete to generate a Materials List. In fact, you can create a series of Materials Lists reflecting costs at various stages of a project.

When you close a Materials List window, the program will ask if you want to save the Materials List. Type a name and click Yes to save the list or click No to close the list without saving it. See “Saving and Managing Materials Lists” on page 955.

Chapter Contents

- The Materials List Tools
- Creating an Accurate Materials List
- Structural Member Reporting
- Organizing Materials Lists
- Materials List Specification Dialog
- Editing Materials Lists
- Materials List Formulas
- Materials List Polylines
- Materials List Polyline Specification Dialog
- Saving and Managing Materials Lists
- Printing and Exporting the Materials List
- Conditioned Area Totals
- The Master List
- Object Components

The Materials List's calculations are based on assumptions that may not match your building style. Chief Architect makes no representation as to the accuracy or reliability of the Materials List generated by Chief Architect. Always compare the Materials List with a manual take-off before providing a quote or ordering materials for a job.

Calculate from All Floors

Select Tools> Materials List> Calculate Materials for All Floors to generate a Materials List for the entire model.

Materials lists calculated from all floors can be lengthy, and only a portion of the list may display on your screen at one time. Use the scroll bars to scroll through the complete list. Move the pointer to cells in the list and click to make changes.
Calculate From Area

In plan view only, select Tools> Materials List> Calculate From Area to produce a Materials List for the portion of a plan that is included within a temporary rectangular Materials List Polyline.

The Calculate from Area tool includes categories of objects and floor levels based on settings in the Materials List Polyline/Area Defaults dialog. See “Materials List Polyline/Area Defaults” on page 953.

Calculate Materials From Selection

Select one or more objects and click the Calculate Materials From Selection edit button to create a Materials List that calculates only the selected object(s) and their components.

When the selected object is a room, its moldings and wall, floor, and ceiling finish materials are counted, as is its subflooring; but doors, windows, and structural materials like framing and other structural materials are not.

Calculate Materials in Room

To create the Materials List for a room, select the room and then select Tools> Materials List> Calculate Materials for Room.

Calculate Materials in Room is also available on a selected room’s edit toolbar. See “Editing Rooms” on page 318.

A Materials List calculated from a room is created for only the contents of that room: wall materials are not included. An object will be counted in the Materials List if its center point is located inside of the room.

All objects associated with a Distribution Path or Region will be listed in a schedule if the center point of the path or region is located inside of the room. If the center point of the path or region is not located in the room, none of its objects will be listed. See “Distributed Objects” on page 752.

Creating an Accurate Materials List

In order to take full advantage of Chief Architect’s Materials List capabilities, there are several things to keep in mind.

Materials List Polyline

You can also produce a Materials list for a defined area of a plan in plan view using a Materials List Polyline. Materials List Polylines are advantageous because they can be edited to any shape, saved, and used as many times as needed. There are also several ways to create them. See “Materials List Polylines” on page 953.

Calculate Structural Materials for Deck

The structural materials for a selected deck can be calculated in a Materials List by clicking the Calculate Structural Materials for Deck edit button. See “Decks” on page 323.

Master List

Select Tools> Materials List> Master List to open the Master List, a list of previously used materials and any added information such as price or manufacturer. See “The Master List” on page 957.

Materials List Management

Select Tools> Materials List> Materials List Management to open a list of saved Materials Lists associated with the current plan. See “Saving and Managing Materials Lists” on page 955.

Materials List Preferences

A number of settings that affect the appearance and contents of Materials Lists are found in the Preferences dialog. See “Preferences Dialog” on page 79.

• The Materials List panel lets you specify which Categories are initially included in new Materials Lists.

• The Report Style panel lets you specify which columns are initially included in new Materials Lists, as well as modify the appearance of all Materials Lists.

• The Master List panel lets you specify the current Master List file and the columns used in it.

• The accuracy of your Materials List is directly related to the accuracy of your model. Floor and ceiling heights, wall lengths, and structural set-
tings all directly affect Materials List calculations.

- It takes more than just making your drawing look right to generate an accurate Materials List. If, for example, you use CAD lines to draw an item on a floor plan, that item will not be included in the Materials List. A better way would be to use a symbol or structural element. See “Architectural vs CAD Objects” on page 129.

- Specify Object Information and Components information before creating a Materials List. Ideally, specify this information in objects’ defaults dialogs or in the Library Browser before placing the objects in the plan.

- If you use custom materials, make sure their material definitions are set up correctly. See “Creating Materials” on page 764 and “Materials and the Materials List” on page 766.

- Bear in mind that using generic objects like geometric shapes from the library to represent objects that aren’t available in Chief Architect can result in items being calculated in the Materials List in a manner that you might not expect.

Object Information and Components

Code, Comment, Manufacturer, and Supplier information can be specified for many objects before a Materials List is created. See “Object Information Panel” on page 519.

Price, Extra, Markup, Labor, and Equipment information can also be specified in an object’s specification dialog. See “Components Panel” on page 959.

You can add this information to some objects before they are created in their defaults dialogs. See “Default Settings” on page 65.

You can also add this information to objects placed from the library. See “Editing Library Objects” on page 708.

Material Definitions

The material assigned to structural components like walls, floors and ceilings, roofs, and slabs determines how each component is calculated in the Materials List. See “Calculation Methods” on page 767.

Framing in the Materials List

You can specify whether framing materials are calculated by lineal foot, as a cut list, or as a buy list in the Structural Member Reporting dialog.

For more information about how framing appears in the Materials List, see “Framing and the Materials List” on page 650.

Custom Formulas

Calculations in the Materials List are based on the properties of the objects in the model and the materials assigned to those objects. If the default calculations do not meet your needs, you can replace them with custom formulas. See “Materials List Formulas” on page 952.

Structural Member Reporting

The Structural Member Reporting dialog allows you to specify the default method used to calculate framing members in the Materials List. There are four options to choose from:

- **Lineal Length** calculates the framing materials of the different structural components of the plan in linear feet.

- **Cut List** calculates the framing materials of the different structural components of the plan by counting the individual pieces present in the model.

- **Buy List** calculates the framing materials of the different structural components of the plan by counting individual pieces and matching them to a list of board sizes that you specify.

- **Mixed Reporting** calculates framing materials using a combination of lineal lengths and piece counts and is recommended for saved Materials Lists in legacy plans.

When a Materials List is active, you can use the Lumber Reporting Method Control drop-down list in the toolbar to choose which method the Materials List uses. This control is not available in the Master List.

Structural Member Reporting supports multiple saved defaults, which means that you can set up different Buy Lists for different purposes. See “Multiple Saved Defaults” on page 67.

When a Materials List is created, the Currently Active Default specified in the Saved Structural Member Reporting Defaults dialog will be used.
Note that while an existing Materials List’s Reporting Method can be changed, the defaults used to create a Buy List cannot. To use a different Buy List, change your Active Default and generate a new Materials List.

Structural Member Reporting Dialog

To open the *Structural Member Reporting* dialog, select *Edit> Default Settings*, then select “Structural Member Reporting” from the tree list and click the *Edit* button. See “Default Settings vs Preferences” on page 65.

In the *Saved Structural Member Reporting Defaults* dialog, which opens next, select a default in the list and click the *Edit* button.

You can also open this dialog by selecting *Tools> Materials List> Structural Member Reporting* or by clicking the *Structural Member Reporting* button, which can be added to your toolbars. See “To add a button to a toolbar” on page 109.

The name of the Saved Default being edited is stated in the dialog box title bar.

Choose a *Materials List Report Method*. The selected method will affect subsequently created Materials Lists, but not any that may already exist.

- Select *Mixed Reporting* to calculate framing materials using a combination of lineal lengths and piece counts.
- Select *Total Lineal Length* to calculate framing materials in linear feet.
- Select *Cut List* to calculate framing materials by counting the individual pieces present in the model.
- Select *Buy List* to calculate framing materials by counting individual pieces and matching them to items in the list of *Buy List Board Sizes*, below.
- Check *Consolidate Unhandled Boards* to handle short board segments by combining them so they can be cut from lengths found in the *Buy List Board Sizes* list. When this is checked, three additional options are available:
• Check **Assemble Wall Plates** to handle wall plates using board sizes from the table below.

• Check **Assemble Deck Planking** to handle deck planking using board sizes from the table below.

• Check **Assemble Rim Joists** to handle rim joists using board sizes from the table below.

• Select the **Length Units** that you want to use from the drop-down list. The selected unit(s) are used in the Structural Member Reporting dialog as well as in the Materials List when either **Cut List** or **Buy List** is the selected method of reporting. Not available when **Mixed Reporting** or **Total Lineal Length** is selected.

2 The **Buy List Board Sizes** table is only active when **Buy List** is selected above. An effective Buy List include all types of framing materials that you typically use, as well as each of the different lengths that you expect to purchase.

• Click on a line item to select it.

• Click the **Edit** button to open the **Board Specification** dialog for the selected line item in the table.

• You can also double-click on a line item to open its **Board Specification** dialog.

• Click the **New** button to open the **Board Specification** dialog for a new line item in the table.

• Click the **Delete** button to remove the selected line item from the table.

Items in the **Boards to buy** table are listed in order of priority. If an item in a Materials List could be cut out of more than one item in this table, the program will select the item with the highest priority. Specify the **Priority** of the selected line item in the table.

• Click the **Increase Priority** button to move the selected item one line up in the table. Only available when a line item is selected and it is not first in the list.

• Click the **Decrease Priority** button to move the selected item one line down in the table. Only available when a line item is selected and it is not last in the list.

Buy List tables can be saved as .json files and shared between plans.

• Click the **Import** button to import a saved Buy List table into the currently active Structural Member Reporting saved default.

• Click the **Export** button to save the Buy List table as a .json file which can be imported into other plans.

3 Specify the **Kerf Width**, which is the width of the material lost to the saw blade when a framing member is cut.

Board Specification Dialog

Click either the **New** or the **Edit** button in the **Structural Member Reporting** dialog to open the **Board Specification** dialog, where you can define a line item for the **Boards to buy** table. You also double-click on a line item in the table to modify it.

• Specify the **Actual Thickness** - as opposed to the nominal thickness - of the selected item in the Buy List table.

• Specify the **Actual Depth** - as opposed to the nominal depth - of the selected item in the Buy List table.

• Specify the **Length** of the selected item in the Buy List table.

• Select the **Type** of structural member from the drop-down list. See “Structure Types” on page 650.

• Check **Treated** if the selected item is a treated lumber product.

• Click **OK** to close the dialog and add the information specified here to a line item in the Buy List table.

Organizing Materials Lists

There are two basic ways to control what items are calculated in the Materials List:
• By specifying which layers in the plan are included in the list.
• By specifying which categories and subcategories are used.

In addition, you can control how much information about each item is included by specifying which columns to display.

In addition, you can use the Lumber Reporting Method Control drop-down list in the toolbar to choose which method the Materials List uses. See “Structural Member Reporting” on page 945.

There are some parts of a model that cannot be excluded from the Materials List. Floor and ceiling platforms are prime examples. If you need to generate a Materials List for only part of a plan, such as an addition, consider making a copy of the plan file. In the copy, delete the as-built portion of the plan and then generate a Materials List.

Materials Lists and Layers

You can control which objects are included in a Materials List before it is created in the Layer Display Options dialog. The inclusion of objects in the Materials List is controlled by layer using the Mat column: an “M” in this column indicates that objects in a layer are included in the Materials List. Click in the cell to add or remove the “M.” See “Layer Display Options Dialog” on page 144.

Categories

The line items in the Materials and Master Lists are organized into a set of predefined categories, such as Electrical and Framing, which display in the ID column.

You can specify which category each item belongs to in the Materials List and Master List. In addition, many objects can be assigned to a category prior to generating a Materials List in their specification dialog. See “Components Panel” on page 959.

Unlike other categories that calculate materials or objects, the General category lists information about the building’s thermal envelope. See “Conditioned Area Totals” on page 957.

To specify a line item’s category

1. Create a Materials List, open the Master List, or open an object’s specification dialog and go to the Components panel.
2. Click in the cell in the ID column for a line item.
3. Select the desired category from the drop-down list that becomes available.
The categories that are available cannot be altered; however, you can specify which categories are included in the Materials List in either of two ways:

- Globally, in the Preferences dialog. See “Materials List Panel” on page 100.

Subcategories

By default, the Subcategory column of the Materials List is empty for all line items. You can add text to any Subcategory cell by clicking in the cell and typing.

Items can be assigned to a subcategory in the Materials List and, for many items, in their object’s specification dialog in the same manner that they can be assigned to a category. See “Components Panel” on page 959.

Materials List Columns

Each column in the Materials List reports a different category of information about objects in the list. You can specify most of this information for a variety of objects prior to generating a Materials List. See “Object Components” on page 959.

There are two ways to specify which columns are included in the Materials List as well as the order in which they display:

- Globally, in the Preferences dialog. See “Report Style Panel” on page 100.
- For individual lists in the Materials List Specification dialog.

A table of all of these columns and their capabilities is available in the Materials List chapter of the program’s Help. See “Getting Help” on page 37.

Details Dialog

For information about one or more selected line items in a Materials List, click the Details edit button. The Details dialog displays all Materials List columns for reference, which can be helpful when not all columns are in use in the Materials List. It also lists the Source Object of the selected line item or items.

This dialog will also open when multiple objects located on more than one floor are selected in a Materials List and you click the Find Object in Plan edit button. See “Find Object in Plan” on page 511.

This dialog will also open when multiple objects located on more than one floor are selected in a Materials List and you click the Find Object in Plan edit button. See “Find Object in Plan” on page 511.

When one or more line items located on the same floor are selected, click the Find button at the bottom of the dialog to view their location in a plan view window.

Materials List Specification Dialog

When a Materials List or the Master List is open, select Tools>Display Options to open the Materials List Specification dialog for the current list.

The Master List Specification dialog is similar to this dialog, but only the Columns panel is available. See “The Master List” on page 957.

Categories Panel
The Categories listed here appear in the ID column of the Materials List in the order they are presented here.

- Check the box beside the name of each category that you want to display in the currently active Materials List.
- Click the Select All button to display all categories in the active Materials List.
- Click the Clear All button to suppress the display of all categories in the active Materials List.
- Multiple rows can also be selected together using Shift and Ctrl keys. See “Shift and Ctrl Select” on page 170.

Columns Panel

- Check the box beside each column you want to include in the Materials List. To suppress a column’s display, remove the check mark next to its name. Columns appear in the Materials List in the order that they display in this list.
- **Move Up** - Click on a column name, then click this button to move that item up one place in the list.
- **Move Down** - Click this button to move the selected column down in the list.

Options Panel

- Check **Restrict to Floor** to limit the current Materials List to objects on a single floor, then select that floor number from the drop-down list. When unchecked, the Materials List includes all floors.
- If you plan to buy materials from multiple suppliers, you can create a Materials List for each. Check **Restrict to Supplier**, then choose a supplier from the drop-down list. The resulting materials list will include only materials to be purchased from that supplier.

Suppliers can be added to this list in the specification dialog for various objects. See “Components Panel” on page 959.

Editing Materials Lists

Materials lists can be edited in a variety of ways. You can adjust the width of a column by clicking and dragging the bar on the right side of the column name.

If a line item has an arrow to the left of its name in the ID column, it represents multiple individual objects. Click the **Expand** edit button to display these individual objects as separate line items; click the **Collapse** edit button to hide them. You can also click the arrow to the left of the name to expand or collapse the line items.

Open Row Object(s)

Click the **Open Row Object(s)** edit button to open the specification dialog of the object or objects associated with the currently selected line item(s). See “Open Row Object(s)” on page 508.

Find Object in Plan

To find out where a line item in the Materials List is located in the model, select its row or
any cell in its row and click the **Find Object in Plan** edit button. See “Find Object in Plan” on page 511.

Adding Information

You can enter information in the Price, Supplier, Code, Comment and Manufacturer columns for each line item.

Adding price or other information for any item is straightforward. Simply click in the cell and type the desired information. When the information is correct, you can add it to the Master List. See “Adding to the Master List” on page 958.

You can switch between several existing suppliers or manufacturers for a given item by double-clicking on the right side of the cell in an appropriate column. A drop-down arrow displays to the left of the cell. Click it to view a list of suppliers or manufacturers for that item and select one.

When a Materials List is calculated, you can have the program search the Master List for Price, Supplier, and Code information for each item by selecting **Tools> Update From Master**. The information used is marked as “Default” in the Master List.

Changing Information

Although the information in some columns cannot be saved to the Master List, you can change the information in any column in an individual Materials List. As with added information, click in a cell to select the existing text, then type in the desired text.

To move an item in a Materials List to a new category, select the cell in the **ID** column and choose a new category from the drop-down list that becomes available. You can also select a subcategory by clicking in the cell in the **Sub Category** column. See “Categories” on page 948.

Changing Count Units

The material for a given object component will be counted either by piece; linear feet or meters; square feet or meters; or cubic yards or meters. The same method and unit used in the Count column will be used in the Extra column.

When the Count is linear, area, or volume, you can choose a different unit of measurement:

- Double-click in a cell in the Count column to select and edit it, then choose a unit of measurement from the drop-down list to the right of the selected cell.

- You can also click the **Number Formatting** button when a Count cell is selected to specify the units and accuracy of the value in the selected field. The specified unit is also used in the Extra field for that row. See “Number Formatting Dialog” on page 952.

Materials List Formulas

Calculations in the Materials List are based on the properties of the objects in the model and the materials assigned to those objects. If the default calculations do not meet your needs, you can replace them with custom formulas. You can also add formulas to cells that do not have automatic calculations. See “Materials List Formulas” on page 952.

Count and Formula Tool Tips

Whenever you mouse over a cell in the Materials List that is either in the Count column or contains a formula of any kind, a Tool Tip will display, providing information about the cell’s contents. When the Count is a total length, area, or volume, it may be rounded. The Tool Tip will show the value with greater accuracy.

Total Cost

By default, the Total Cost for a line item is calculated using the Count, Price, %Markup, Labor and Equipment columns to calculate the cost. The formula used is:

\[
(Count + Extra) \times Price \times (1 + (\%\;Markup/100)) + ((Count + Extra) \times Labor) + ((Count + Extra) \times Equipment)
\]

If a column does not appear, 0 is used for the value of that column with the exception of Count and Price, which are always used in the calculation even if they are not shown.

Copying Information

Portions of a Materials List can be copied and then pasted into a Text object or into a word processing program or spreadsheet program using the standard Windows Copy (Ctrl + C), Cut (Ctrl + X), and Paste (Ctrl + V) commands. See “Copying and Pasting Text” on page 386.
Changing the Font

The font used for Materials Lists and the Master List can be specified in the Preferences dialog. See “Font Panel” on page 83.

Materials List Formulas

Calculations in the Materials List are based on the properties of the objects in the model and the materials assigned to those objects. See “Define Material Dialog” on page 769.

If the default calculations do not meet your needs, you can replace them with custom formulas. Materials List formulas use Ruby syntax, which allows you to use basic arithmetic as well as construct more complex macros. See “Creating User Defined Macros” on page 1001.

To insert a custom Materials List formula

1. Double-click in any editable cell in the Materials List or on the Components panel of an object’s specification dialog to select and edit it. See “Components Panel” on page 959.
 • The cells in some columns allow you to choose an item from a drop-down list.
 • Most cells are editable text fields that have a contextual toolbar of editing tools above them when selected.
 • When the cell is in the Count column, click the Number Formatting button to specify the units and accuracy of the value in the selected field. You can also select a Count unit from a drop-down list to the right of the cell. The specified unit is also used in the Extra field for that row.

2. In the inline text field, you can:
 • Type the desired custom text that you need. The resulting text does not perform calculations and is static.
 • Press the = key, then type or insert the desired custom formula. The = character at the beginning tells the formula to treat the text that follows as a formula instead of regular text.

3. If the cell has been previously edited, you can click the Revert to Default button to restore the original, automatically generated content.

4. When multiple identical items are listed as a single line item:
 • Select Apply Formula to Line Item to apply the specified formula to the current row. When this option is selected, values in the other cells in the same row can be accessed, but not the properties of the object(s) themselves.
 • Select Apply Formula to Source Object to apply the specified formula to each individual object and display the total in the current cell. When this option is selected, the object(s)’ properties can be used.

 Note: When Apply Formula to Source Object is used, the reported value will only update when the formula is edited.

5. Click the Insert Macro button to insert one or more User Defined text macros and/or Materials List column macros into the inline text field.

Fields with custom macros report values with accuracy of up to two decimal points, even in columns that report whole numbers when calculated automatically.

Number Formatting Dialog

Double-click in a cell in the Count column of the Materials List and click the Number Formatting button to open this dialog and specify the units, formatting, and accuracy of the value in that cell.

The settings in this dialog are also found in the Dimension Defaults dialog. See “Primary Format Panel” on page 344.

Custom Formula Macros

You can create custom macros in the Edit Text Macro dialog and then insert them into the inline text field. See “Edit Text Macro Dialog” on page 1009.

• Macros created for use in Materials List formulas need to have Evaluate checked in the Edit Text Macro dialog.
• Formulas that reference the object’s properties need to have “Owner Object” selected as the Context.
• Formulas that reference information in other cells in the current row need to have “Materials List Line Item” selected as the Context.

Materials List Polylines

A Materials List Polyline lets you create a Materials List that only includes objects within its area. The materials list Categories and floor levels included in the Materials List can be set in advance in the Materials List Polyline/Area Defaults dialog.

To create a Materials List Polyline

1. In plan view, select Tools> Materials List> Materials List Polyline and draw a rectangular polyline.
2. Select the Materials List Polyline and click the Open Object edit button.
3. On the Materials List panel of the Materials List Polyline Specification dialog, specify which categories and floor levels you want to include in the materials calculation, along with how you want objects within the polyline to be selected. See “Materials List Polyline Specification Dialog” on page 953.
4. Edit the polyline’s position and shape as needed. See “Editing Closed Polyline-Based Objects” on page 180.
5. With the Materials List Polyline still selected, click the Calculate Materials List edit button. A Materials List is created for objects within the polyline.

Materials List Polyline Specification Dialog

To open the Materials List Polyline Specification dialog, select one or more Materials List Polylines and click the Open Object edit button.

The settings in this dialog are also found in the Materials List Polyline/Area Defaults dialog.

Materials List Panel

The settings on the Materials List panel of the the Materials List Polyline/Area Defaults dialog affect both Materials List Polylines and Materials List Area temporary marquees. See “Calculate From Area” on page 944.
Specify the Included Floors/Categories in a Materials List generated from the selected Materials List Polyline. The table lists all Materials List categories in its rows and all floor levels in the current plan in its columns.

- A check mark in a field indicates that the category of object on a particular floor will be included in the Materials List. Click to add or remove the check mark.
- Click on the name of a Category to select that row, or click on a floor level name to select that column. Multiple categories or floor levels can also be selected, as can multiple fields. See “Shift and Ctrl Select” on page 170.
- Uncheck Include All Floors to show only the floor level that the selected Materials List Polyline is located on in the table.
- Click the Toggle Selected button to add or remove a check mark from the selected field(s), row(s), or column(s).
- Click the Toggle Category(s) button to add or remove check marks from the selected row(s).
- Click the Toggle Floor(s) button to add or remove check marks from the selected column(s).

The Included Objects options control which objects are included in the Materials List based on their position relative to the selected Materials List Polyline.

- Choose Include Intersected Objects to include any objects whose bounding boxes are intersected by or located within the polyline.
- Choose Include Contained Objects to include only objects located entirely within the polyline.
- Choose Include Objects by Center to include only objects whose center points are located within the polyline.
- If multiple polylines with different settings are selected, No Change may be an additional option. Select this to retain the polylines’ original settings.

The POLYLINE panel states information about the polyline’s shape, including the total length of its Perimeter, its enclosed Area, and the Number of...
Lines that make up its perimeter. See “Line Style Panel” on page 235.

Selected Line/Arc Panel

The SELECTED LINE panel is available when the selected cloud edge is a line as opposed to an arc. See “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected segment of the cloud edge is an arc as opposed to a line. See “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel

For information about the settings on this panel, see “Line Style Panel” on page 235.

Saving and Managing Materials Lists

Select Tools> Active View for tools that allow you to manage the current Materials List. See “View Windows” on page 119.

To save an open Materials List, select Tools> Active View> Save Active View. If the Materials List has not been previously saved, the Save Materials List dialog will open, allowing you to type a short, descriptive name for the list. You will also be prompted to save a Materials List when you close its window.

You can also use Tools> Active View> Save Active View As to create an exact copy of the currently active materials list. Regardless of whether the current materials list is saved or not, you will be prompted to give the new view a name.

Saved Materials Lists can be accessed, renamed, duplicated, and deleted in the Project Browser. See “Project Browser” on page 56.

Once a Materials List has been saved, it is also listed in the Materials List Management dialog.

Materials List Management Dialog

Click on the name of a saved Materials List in the list on the left to select it.

- **Edit** - Open the selected Materials List. You can also double-click an item in the list.
- **Copy** - Create a copy of the selected Materials List. Type a new name for it in the Save Materials List dialog.
- **Rename** - Open the Rename Materials List dialog and type a new name for the list.
- **Delete** - Remove the selected Materials List from the current plan.

Printing and Exporting the Materials List

To print a Materials List, select File> Print while the Materials List window is active. See “Print View Dialog” on page 995.

A Materials List can also be exported into one of several different file formats that can be opened by various programs. In a Materials List...
window, or in the Master List, select File > Export Materials List to open the Export Materials List dialog.

Export Materials List Dialog

1. Specify the **File Type** that you would like to export to.
 - Select **Tab Delimited (TXT)** to create a text file with a tab between each field entry in the Materials List, and a carriage return between each row.
 - Select **Comma Delimited (CSV)** to create a text file with a comma between each field entry in the Materials List and a carriage return between each row.
 - Select **Excel (XML)** to create a file that can be opened by Microsoft Excel.
 - Select **HTML** to create an html file that you can view with a web browser.

 Additional export options are available here.
 - Uncheck **Include Column Headers** to prevent column headings from appearing in the first row of the exported file. Column headers are always included in HTML files.
 - Uncheck **Include Hidden Columns** to only export columns currently displayed in the active Materials List. When this is checked, all columns are exported, regardless of whether they are currently displayed.

2. Check **Open in Default Spreadsheet or Editor** to open the exported file with the program specified on your computer when you finish exporting.
 - When XML or HTML is selected above and **Export with Colors** is selected above and **Export with Colors** is checked, the Color Theme or Custom Colors used in the Materials List are exported. When unchecked, the default system colors are exported. See “Report Style Panel” on page 100.

3. Specify how **Units** of measurement are exported. Currency information is always exported, regardless of the option chosen here.
 - Select **Include Units with Amounts** to include units in the same column as the associated value.
 - Select **Include Units in a New Column** to report units as text in a new column.
 - Select **Do Not Include Units** to not export units at all.

4. **Third Party Formats** -
 - Select **No Formatting** to export the materials list data using the formatting used in the Chief Architect Materials List.
 - Select **BuilderTREND** to export the materials list data for use in BuilderTREND software. When this is selected, the only File Type available above is Comma Delimited (CSV).

When you click OK, the Write Materials Export File dialog will open. This is a typical File Save dialog. See “Exporting Files” on page 44.

Estimating Software

You can export a Materials List to a word processor or spreadsheet program to arrange it in your estimating format. You can also export the Materials List to a number of commercial estimating programs in whose databases you can keep your current pricing, labor costs, and markups and generate reports based on this data.

Before purchasing an estimating software program, be sure that the program supports the direct import of Chief Architect Materials Lists.

Any questions regarding estimating software packages and how they interact with Chief Architect should be directed toward the company providing the estimating software. Chief Architect is unable to provide any technical support for third party programs.
Conditioned Area Totals

Conditioned Area is the space within a building that is heated and/or air conditioned, and a Thermal Envelope is a three dimensional boundary built around the Conditioned Space that separates it from the unconditioned space around it. Thermal Envelopes are composed of floor platforms, ceiling platforms, walls, doors, and windows.

When a Materials List is created, Chief Architect calculates the total areas of the components that make up a structure’s Thermal Envelope and lists them in the General category of the Materials List. See “Categories” on page 948.

Doors are always categorized as doors rather than as windows. This is the case even when a door is specified as a Glass Door or when it is part of a mullied unit.

Chief Architect does not check plans for compliance with building or energy codes; however, you can export relevant thermal envelope data from a plan file for use in REScheck™. See “Export to REScheck” on page 897.

Building Orientation

Walls, doors, and windows are categorized as north-, south-, east-, or west-facing for the purposes of conditioned area totals. These directions are based on the orientation of the plan’s North Pointer. If no North Pointer is used, north is assumed to be straight up on screen in plan view. See “North Pointer” on page 823.

• If a wall is oriented at 45º or less to north in a plan, it will be categorized as a “North” wall. Any doors and windows in this wall will also be categorized as “North”.

• Similarly, walls, doors, and windows oriented within 45º of south, east, or west will be classified as “South”, “East” or “West”, respectively.

The orientation of a curved wall is based on the direction of its chord. See “Drawing Arcs - Arc Creation Modes” on page 237.

The General Category

The General category of the Materials List lists information about the Thermal Envelope of the current plan. The total linear length of each wall type used in the plan is also calculated in the General category. Walls with different heights are each listed separately. See “Wall Type Definitions” on page 292.

The Master List

The Master List saves price, supplier, manufacturer, and other information about items in your Materials Lists and allows you to apply that information to items in future Materials Lists. Select Tools> Materials List> Master List to open the Master List.

Chief Architect allows you to have more than one Master List. Only one can be active, however, and only the active list is updated with new information. You can specify which Master List is active in the Preferences dialog. See “Master List Panel” on page 102.
The Category drop-down list at the top left corner of the window lets you select one particular category for display, or all categories.

As with individual Materials Lists, you can specify which Columns display in the list. See “Materials List Specification Dialog” on page 949.

Use the Find field near the bottom of the window to search for text in the Master List.

The search starts from the currently selected cell and moves to the right, then moves down to the next row starting at the left column, and so on, until it finds an instance of the text you entered.

Adding to the Master List

You can edit line items in a Materials List and then add them to the Master List for future use.

To use Update to Master

1. Create a Materials List and change or add information in any editable column of a line item.
2. Select the line item by clicking on its line number on the left side of the list. When selected, then entire line becomes highlighted.
3. Select multiple adjacent rows by holding down the Shift key while clicking.
4. Select Tools> Update to Master. The information in the selected line is saved in the Master List.

Once Master List information exists for a particular item, you do not need to enter it again until you want to update it.

Update from Master

Similarly, items in a Materials List can be updated to include information in the Master List.

To use Update from Master

1. When a Materials List is active, click on a row number to select the row.
2. Select Tools> Update from Master to have the program search the Master List for a record for the selected line item. If an identical record is available, its information is included in the Materials List.
 • Multiple rows can be selected by clicking on one row number, then holding down the Shift key and clicking on additional row numbers.
 • Select all rows by clicking the cell at the top left corner of the Materials List, above the row numbers.

If the Master List contains more than one record for an item, the program references the last one entered. You can override this by defining one specific entry as the default. This is achieved by clicking on the check box in the Def column.

The Master List is almost identical to a Materials List, but has a few additional controls to help with viewing.
Editing the Master List

In the Master List, existing line items can be modified or deleted.

Often, the Master List will include items that you may not want to include in all Materials Lists.

- Check boxes in the Use column indicate whether each item is included in the Materials List. If Use is unchecked, the item is not included. This is useful in cases where several line items will be purchased as a single unit.
- This Quantity column is used to specify how many of an item must be found before information from the Master List is applied to it in a Materials List. If at least this many of the item are found, price, supplier, and other information is used. Quantity is useful for applying a quantity discount.
- When more than one line item is available for a specific component or accessory, the Default column indicates which item is to be used. Click this column to specify this item as the default. This is useful when a line item has been updated to the Master List more than once with different price, supplier or other information.

To delete a row from the Master List, click on the row number at the far left. The entire row highlights.

Select Edit> Delete, click the Delete button, or press the Delete key on your keyboard.

Object Components

Many architectural objects in the program, from walls to cabinets to images, have components associated with them that are calculated in the Materials List and can be listed in schedules. For example, base cabinets have cabinet box and countertop components.

In addition to their components, some objects also have subcomponents. Cabinet boxes, for example, have doors, drawers and hardware.

Components and subcomponents are specified on the COMPONENTS panel of many object specification dialogs.

You can also add and edit information for objects and their accessories in the Materials and Master Lists. See “Editing Materials Lists” on page 950.

Components Panel

Select one or more objects of the same type and click the Open Object edit button to open their specification dialog.

The information on the COMPONENTS panel can also be edited for objects in the User Catalog of the Library Browser. See “Editing Library Objects” on page 708.

The information on the COMPONENTS panel is the same as the Materials List line item(s) for the selected object.
The selected object’s components and their attributes are listed in two tables.

1. The selected object’s components and subcomponents are listed here.
 - Subcomponent names are indented to help distinguish them from main components.
 - Click on a line item to select it and display its Materials List information to the right.

The buttons above the table allow you to manage this list.

- When a component is selected, click the **Add Line Item** button to add a new component to the list. When a subcomponent is selected, a new subcomponent is created instead.
- Click the **Remove Line Item** button to remove the selected line item from the list.
- Click the **Restore Automatic Line Items** button to return to the list any previously removed components or subcomponents. Only available when line items have been removed. User-created line items that have been removed are not affected by this option.

2. The left column is a list of column headings found in the Materials List. See “Materials List Columns” on page 949.

3. The **Formula** for each Materials List column can be specified in the middle column. See “Materials List Formulas” on page 952.

4. The **Value** resulting from each formula is shown for reference in the right column.

Additional information about how values are calculated may display below the table for some objects: notably, rooms and terrain features.

Note: The Label can be edited on the Label panel of the object’s specification dialog. See “Label Panel” on page 516.
The Chief Architect layout facility provides a set of easy to use tools for creating printed construction documents. You can create your own title block and border, then arrange multiple views, details, notes, and more on a page for printing. Working drawings or blueprints can be created in almost any paper size.

Each layout can contain many pages, and each page can contain multiple views, details, images, CAD objects, text, or contents and revision tables.

For detailed information about printing in Chief Architect, see “Printing and Plotting” on page 983.

Layout Preferences and Defaults

You can specify the background color of the drawing area in layout files on the COLORS panel of the Preferences dialog. See “Colors Panel” on page 82.

To access the layout defaults for the current layout file, select Edit> Default Settings. The options in the Default Settings dialog are similar to those found in this same dialog in a plan file, although there are fewer choices in the list. See “Default Settings” on page 65.

Drawing Sheet Setup

The settings in the Drawing Sheet Setup dialog are file-specific and are particularly important considerations in layout files. See “Drawing Sheet Setup Dialog” on page 986.

Layout Page Display Options

Select Tools> Layer Settings> Display Options to open the Layout Page Display Options dialog.
This dialog is similar to the Layers Display Options dialog, but controls only the display of objects drawn on the layout page, such as CAD objects, text, dimensions, and imported objects. The display of layout view boxes is also controlled by the Layout Page Display Options - but not the objects within those views.

For information about how to use this dialog, see “Layer Display Options Dialog” on page 144.

For information about controlling the display of objects in views sent to layout, see “Displaying Layout Views” on page 969.

Page Templates

In addition to the default settings available in layout files, you can create one or more Page Templates. Page Templates let you create features like a title block and border and then apply those features to any of the pages of your layout that you wish. See “Layout Page Templates” on page 979.

Layout File Templates

You can customize layout default settings and Page Templates for future layouts and create a template. See “Template Files” on page 73.

The Layout Tools

There are a variety of tools available to send views to layout and edit them, as well as manage layout pages and links.

Many of the tools available in layout are described in the Printing chapter. See “The Printing Tools” on page 985.

Sending Views to Layout

Select File> Send to Layout to open the Send to Layout dialog and send the current view to the specified layout page. See “Sending Views to Layout” on page 965.

In plan view, select a saved cross section/elevation view symbol and click the Send Camera’s View to Layout edit button. See “Saving and Printing 3D Views” on page 805.

Select Tools> Layout> Referenced Plan Files to see a list of the files that are referenced by the layout. See “Referenced Plan Files Dialog” on page 976.

Editing Layout Views

A selected layout view can be edited much like other box-based objects. See “Editing Box-Based Objects” on page 184. In addition, a variety of edit tools allow you to control the appearance of each view.

Select a layout view and click the Open View edit button to open the view that was originally sent to layout. This tool is only available for dynamic views. See “Editing Dynamic Views” on page 971.

Select a layout view and click the Rescale Layout edit button to open the Change Scale dialog and apply a different scale. See “Rescaling Views” on page 971.

Select a layout view and click the Relink File edit button to open the Choose Layout File Reference dialog and relink the selected layout view. See “Relinking Layout Views” on page 977.

Select a layout view and click the Layout Box Layers edit button to open the Layer Display Options dialog for the selected view. See “Displaying Layout Views” on page 969.

Managing Layout Pages

Layout pages can be managed via the Tools menu as well as using the contextual menu in the Project Browser. See “Layout Page Management” on page 978.

Select Tools> Layout> Edit Page Information to open the Layout Page Information dialog. See “Layout Page Information” on page 980.

Select Tools> Layout> Insert Page Before to add a new layout page, moving the current page and all following pages up one page, as long as there is nothing on page 1000.
Creating a Layout File

Select Tools> Layout> Insert Page After to add a new layout page, leaving the current page where it is but moving all following pages up one page, as long as there is nothing on page 1000.

Select Tools> Layout> Delete Page to delete the current layout page, moving all following pages down one page, as long as nothing is on the current page.

Select Tools> Layout> Exchange With Next Page to switch the current layout page with the following page. Not available on Layout Page 1000.

Select Tools> Layout> Exchange With Previous Page to switch the current layout page with the page preceding it. Not available on Layout Page 0.

You can also specify the page that an object or group of objects displays on in its specification dialog. See “Line Style Panel” on page 235.

Creating a Layout File

To open an existing layout file, select File> Open Layout. Browse to a directory and select the layout file to open. See “Opening and Importing Files” on page 47.

As with plan view windows, when a layout file is open, it is listed at the bottom of the Window menu as an open view. Layout files are also listed in the Project Browser. See “Project Browser” on page 56.

In order to create a layout file, you must open a new file and then save it.

Choose File> New Layout to create a blank layout file. A layout file is created with the name untitled.layout. New layout files open to the first regular, non-Template page and use the default and layer settings associated with your layout template. See “Template Files” on page 73.

Select File> Save to save the layout file. It is important that you save the layout in the same directory as the plan file from which views will be or have been sent to the layout pages. See “File Management” on page 39.

Although it is possible to use multiple plan files with a layout, it is generally best to associate only one plan file with a layout and to use the same file name for both. If more than one plan file is used, all should be saved in the same directory as the layout file.

When you save your layout, take a moment to also save the plan file associated with it.

When a view is sent to layout, the plan and layout files become linked. If you rename or move either file, this link will be broken and the view will not display. See “Managing Layout Links” on page 975.

CAD and Text in Layout

CAD objects, text objects, as well as dimensions can be incorporated into your layout by both including them in your views sent to layout and by drawing them on the layout page.

Select Tools> Layout> Layout Page Table to place a Layout Page Table. See “Layout Page Tables” on page 981.

Select Tools> Layout> Layout Revision Table to place a Revision Table. See “Revision Tables” on page 982.

Viewing Layout Files

Select Window> Swap Views to switch between the current view and the view that was current before it. See “Working in Multiple Views” on page 124.

Select Tools> Layout> Update Layout Views to access tools that let you update semi-dynamic layout views. See “Keeping Layout Views Current” on page 967.

On the Layout Page

CAD and text can be drawn directly on any layout page, allowing you to create a title block, border, as well as notes and other annotations. A variety of Layout Info text macros with information about
page number, revisions, and more can be inserted into text objects on layout pages. See “Text Macros” on page 400.

You can draw dimension lines on the layout page to help position CAD and text objects, as well. Dimensions that locate objects in a view sent to layout, however, should be drawn in the original view. See “Dimensions” on page 341.

CAD, text, and dimensions created in layout can be selected, edited, and deleted just as they can in other views. See “Editing Text” on page 383 and “CAD Objects” on page 225.

To move a text or CAD object to another page, change the Page number in its specification dialog. See “Line Style Panel” on page 975.

Any text or CAD objects that you would like to display on multiple pages of your layout file - for example, a title block and border - should be drawn on a page specified as a Page Template. See “Layout Page Templates” on page 979.

In Views Sent to Layout

CAD, text, and dimensions in views sent to layout are scaled just like other objects in the view. If you want text in a layout view to print at a particular size, specify its size based on the scaling you will use when you send the view to layout. See “Character Size” on page 373.

If you rotate a view on the layout page, any text in that view will rotate as well, provided that its Text Style is using the Rotate with Plan setting. See “Text Styles” on page 398.

If you wish to use Global Text Macros that provide information about a view, such as its drawing scale or the plan’s file name, make sure that the text object is in the view sent to layout - not on the layout page.

A number of macros with information about the layout view can also be added to a layout view’s label as Object Specific Macros. See “Layout Box Borders and Labels” on page 969.

Callouts in Plan Views

In plan views, callout shapes are used to refer the reader to a different location for more information about a particular feature shown in the view. There are four types of callout, each created in a different way:

- A standard Callout refers to a detail drawing. Callout text is not linked to anything and must be specified by the user. See “Callouts” on page 391.

- A Note callout is linked to a specific line item in a Note Schedule with written notes on particular topic. See “Notes, Note Types, and Note Schedules” on page 395.

- An object label callout is linked to a Schedule for that particular object type in the plan file. See “The Schedule Tools” on page 506.

- A Cross Section/Elevation callout represents the location of a saved cross section or elevation view in the plan file. By default, these callouts include dynamic information about the location of the view in layout. See “Callout Labels” on page 789.

Pictures, Metafiles, and PDFs in Layout

Picture files, metafiles, and PDF files can be included in views sent to layout or imported directly onto a layout page. See “Displaying Pictures, Metafiles, and PDF Boxes” on page 866.

Like CAD and text objects, imported pictures, metafiles, and PDFs can be included on Page Templates. See “Layout Page Templates” on page 979.

Views can also be sent to layout as pictures embedded in the layout file. See “Static Views” on page 968.

A picture, metafile, or PDF file imported onto the layout page can be selected and edited using its edit handles, edit tools and specification dialog. See “Editing Pictures, Metafiles, and PDF Boxes” on page 866.

![Warning]

Embedded pictures and pdf files increase layout file size. Limit the number of large and/or multiple pictures.
Sending Views to Layout

Layout files can contain many different views and details sent to it from one or more plan files. To send the active view from a plan file to layout, select File > Send to Layout.

You can also send one or more saved, closed cross section/elevation views to layout by selecting the camera symbol and clicking the Send Camera's View to Layout edit button. See “Saving and Printing 3D Views” on page 805.

To send a view to layout

1. Prepare the view so that the desired layer, default, and other settings are in use. See “Dynamic Views” on page 967 for more details.

Send To Layout Dialog

1. From the drop-down list, Choose the Layout file you would like to send the selected view to. All open layout files are available, as is “New Layout”. If the program finds a layout file with the same name as the current plan file, it will be listed as well.

2. Specify the desired Send Position for the view. These options are available for all types of views.
 - Send to Layout Page # - Enter a page number to send the view to.

If there are layer settings that you use often, you can create custom layer sets. See “Layer Sets” on page 147.

2. Select File > Send to Layout. In the Send to Layout dialog, the available options vary depending on the type of view being sent to layout.

3. Click OK to send the view to the specified layout page. Depending on the type of view and size of the model, you may see a progress indicator in the Status Bar. See “The Status Bar” on page 33.
• Check **Snap to Active CAD Point** to snap the view you are sending to layout to the active CAD Point. See “Point Tools” on page 229.

• Check **Show Layout Page** to go to the selected layout page when you click OK.

Which **Send Options** are available depends on the type of view being sent to layout.

• **Select Entire Plan/View** to send to layout the extent of the plan that is visible when you click Fill Window. This option is available for Vector Views, Wall Details, and cross section/elevation views.

• **Select Current Screen** to send only what is shown on screen to layout. This option is available for Vector Views and Wall Details.

• **Select Current Screen As Image** to send only what is shown on screen to layout as an embedded image. See “Picture File Box Specification Dialog” on page 860. This option is available for all views, and is the only option available for rendered and Ray Trace views.

When **Link Saved Plan View** is checked, the view being sent to layout is dynamically linked to the Saved Plan View currently in use. The name of that view is stated in parentheses for reference. Uncheck this box to use the current floor, layer set, Reference Floor settings, and the currently active Default Set, but not the Saved Plan View. Not available if the view being sent to layout is not a Saved Plan View. The Saved Plan View can also be specified in the view’s **Layout Box Specification** dialog. See “Plan View Panel” on page 973.

The **Camera View Options** are available for cross section/elevation, camera views, and overviews sent to layout - provided that **Current Screen as Image** is not selected, above.

• **Select Live View** to make the view dynamically linked to the plan file.

• **Select Update on Demand** to update the view only when prompted. See “Keeping Layout Views Current” on page 967.

• **Select Always Update** to update the view any time a change is made to the model. This option ensures that the view is always current but may cause program slowness.

• **Select Plot Lines** to send a Vector View to layout that uses automatically generated Plot Lines to represent surface edges and material pattern lines in the model. See “Plot Line Views” on page 968.

• Check **Color Fill** to include colors that correspond to the materials used in the model.

• Check **Use Edge Line Defaults** to use the line weight and color set in the view’s **Layout Box Specification** dialog for all object edge lines. See “Camera View Panel” on page 974. When unchecked, the view uses layer-and/or object-specific settings, per the **Surface Edge Lines** settings in the **3D View Defaults** dialog. See “3D View Defaults Dialog” on page 782.

• Check **Use Pattern Line Defaults** to use the line weight and color set in the view’s **Layout Box Specification** dialog for all material pattern lines. See “Camera View Panel” on page 974. When unchecked, the pattern line weight and color settings set in the **Define Material** dialog are used. See “Pattern Panel” on page 769.

The Edge and Pattern Line Defaults settings are included for legacy files and are not the recommended method of specifying this information. See “Edge and Pattern Lines” on page 143.

Select a radio button to specify the method of **Scaling** for the view sent to layout.

• **Select Fit to Sheet (No Scale)** to send the view to layout at approximately half the size of the layout drawing sheet. Once on the layout page, the view can be resized.

• Specify the **exact scale** for the view in layout. The view can be rescaled later from layout if necessary. Both Imperial and metric units of measurement are available and can be selected independently.

When views are sent to layout at different scales, line weights and line styles are subject to the same scaling. See “Line Weights and Scaling” on page 992. In most cases this is not desirable. When **Use Layout Line Scaling** is checked, the lines in views sent to layout appear the same as lines drawn directly on layout. This option is not available for rendered views.
Keeping Layout Views Current

It is not uncommon for changes to be made to a plan after views have been sent to layout. In order to make sure that your layout file is up-to-date, it is important to recognize that there are four types of layout views:

- **Dynamic Views**, which update automatically every time changes are made to the original view in the plan.
- **Semi-Dynamic Views**, which fully update when printed or prompted by you.
- **Static Views**, which do not reference the plan and cannot be updated: only replaced.
- **Plot Line Views** have elements that are Dynamic or Semi-Dynamic and others that are Static.

Semi-Dynamic and Plot Line Views can be updated using the Update Layout View tools. Select Tools> Layout> Update Layout Views. In addition, a selected view can be updated using the Update View edit tool.

Dynamic Views

Dynamic views reference the original view in the plan and update automatically whenever changes are made to that view, including:

- Changes to the model.
- Changes to annotations in the view.
- Changes to the layer set used by the layout view. See “Layout View Layer Sets” on page 969.
- Changes to the settings of any of the Active Defaults in use in the view.
- Changes to any of the Saved Plan Default Specification settings.

In order for a view to be Dynamic, it must be sent to layout using either the Entire Plan/View or Current View Send Option. In addition, camera views must have Update Always specified. See “Send To Layout Dialog” on page 965.

While convenient, Dynamic views require use of your computer’s resources and may slow program performance. Consider sending cameras, overviews, and cross section/elevations to layout as Semi-Dynamic views.

Saved and Unsaved Plan Views

For the most part, plan views sent to layout are Dynamic; however, a number of elements are Static unless they are modified in the Saved Plan View they are associated with, and that view is then saved. See “Plan Views” on page 120.

These elements are also Static if the layout view links to an unsaved plan view. When this is the case, however, most of them can be specified in the **Layout Box Specification** dialog. See “Plan View Panel” on page 973.

- The default **Display in Plan View** and **Display of Openings in Non-Displayed Parts of Walls** settings for pony walls are saved with each Saved Plan View and are a permanent part of the layout view unless the Saved Plan View is saved after the settings are modified. See “Pony Wall Defaults” on page 264.
- The floor level shown in a view sent to layout does not change if you move to a different floor in the plan. See “Multiple Floors” on page 537.
- The **Reference Display** setting in a view sent to layout is unaffected if the Reference Display is turned on or off in the plan. See “The Reference Floor” on page 543.
- The **Color** setting in a view sent to layout is unaffected if Color is toggled on or off in the original view. See “Color On/Off” on page 154.
- The **Active Defaults** that are in use when a plan view is sent to layout are not affected when you switch to different defaults in the plan. See “Using Active Defaults” on page 71.
- The layer set used by a layout view does not change if you switch layer sets in the plan. See “Layout Layer Sets” on page 152.
- In all cases, the **Rotate Plan View** angle is a permanent part of the layout view. In order to modify this angle in a view sent to layout, you must delete the view from the layout page and resend it. See “Rotate Plan View” on page 121.

There are several ways to specify whether a plan view sent to layout links to a Saved Plan View or not:

- Make active the Saved Plan View or an unsaved view prior to sending it to layout.
- Specify the desired Saved Plan View or choose “None” in the **Layout Box Specification** dialog.
- Select a layout view or views and click the **Create Saved Plan View** edit button. If a Saved Plan View is active and the view is not a Camera View, the selected view will be sent to layout as a Semi-Dynamic view.
Plan View with the same attributes as the selected view already exists, you will be given a choice to link to it or to create a duplicate in the plan file. If one does not exist, you can create a new one and specify its name.

- Select a layout view or views and click the **Unlink Saved Plan View** edit button.

For information about controlling the display of dynamic views in layout, see “Displaying Layout Views” on page 969.

Semi-Dynamic Views

Camera views, overviews, and cross section/elevation views can all be sent to layout as Semi-Dynamic views. Semi-Dynamic views reference the original view in the plan but no information about the model or the view’s layer settings update unless you prompt the layout view to update.

When a cross section/elevation view has been sent to layout, CAD objects, text, and dimensions in that view are fully Dynamic - even if the view is set to **Update on Demand**. See “Detailing Cross Section/Elevation Views” on page 789.

In order for a view to be Semi-Dynamic, it must be sent using either the **Entire Plan/View** or **Current View** Send Option and have **Update on Demand** specified. See “Send To Layout Dialog” on page 965.

There are several ways to update a Semi-Dynamic view:

- Select it and click the **Update View** edit button;
- Select **Tools> Layout> Update Layout Views> Update All Views**; or
- Select **Tools> Layout> Update Layout Views> Update All Live Views**.

- Update on Demand views also update automatically when you print the layout page that they are on.

Views set to **Update on Demand** may experience a loss in quality as you zoom and pan on the layout page. To restore a view’s resolution, simply update it.

Static Views

Static views are like a snapshot of the model taken at a specific time: they do not update when the plan changes. If changes to the plan need to be shown in a Static view, that view must be deleted and resent to layout.

All views sent to layout using the **Current Screen as Image** option are Static. They are treated as imported images embedded in the layout file. See “Picture File Box Specification Dialog” on page 860.

Because Ray Trace views are themselves static images of the model, **Current Screen as Image** is the only option available when sending one to layout. See “Ray Tracing” on page 839.

Plot Line Views

Camera views, overviews, and cross section/elevation views using the Vector View Rendering Technique can be sent to layout as Plot Lines. See “Rendered and Vector Views” on page 780.

In Plot Line views, the lines in the layout view that represent the 3D model are automatically generated copies of those in the original view, allowing them to maintain the line weights that were specified in the plan. See “Line Weights” on page 992.

- Plot Line views are Semi-Dynamic in that they are linked to the original view and can be updated.
- Plot Line views are Static in that they will not update automatically when printed: they can only be updated manually by you.
- The Plot Lines themselves are also Static: they can be edited using the **Edit Layout Lines** tool, but if the view is updated, these lines are deleted and replaced. For this reason, you should only use the **Edit Layout Lines** tool after the model has been finalized. See “Editing Layout Lines” on page 971.
- Any CAD objects, text, or dimensions drawn in a cross section/elevation view sent to layout will not be copied and represented by Plot Lines. These objects are fully Dynamic and will update immediately in the layout view if changes are made to them. See “Detailing Cross Section/Elevation Views” on page 789.
- The **Color** setting in a Plot Line view is unaffected if Color is toggled on or off in the original view in the plan. See “Color On/Off” on page 154.
- Image objects are not included in Plot Line views. See “Images” on page 854.
Plot Line views do not automatically update when printed, nor can they be set to update automatically. In order to update a Plot Line view, you must do one of the following:

- Select it and click the Update View edit button;
- Select Tools > Layout > Update Layout Views > Update All Views; or
- Select Tools > Layout > Update Layout Views > Update All Plot Line Views.

Displaying Layout Views

Just as some elements in a view window do not print, they are not included when a view is sent to layout: for example, the Reference Grid and camera symbols in plan view. See “Print Preview” on page 989.

Although camera symbols are not included in views sent to layout, camera callouts are when the “Cameras” layer is turned on in the view. See “Camera Labels and Callouts” on page 791.

Displaying Layout Views

In addition, if a camera view sent to layout using the Plot Lines option and the camera view is later closed while the layout sheet is open, you will be asked to choose whether to update the view on the layout page.

- If the layout view is up-to-date with the 3D model or if you do not want your changes to be seen in the layout view, select No.
- To update the view on the layout page and replace all the Plot Lines, choose OK.

The layer set referenced by a Dynamic layout view is saved with the plan rather than the layout file.

To use the Layout Box Layers tool

1. Select a layout view.
2. Click the Layout Box Layers edit button to open the Layer Display Options dialog for the selected view. See “Layer Display Options Dialog” on page 144.
 - If this edit button is not available, the view is not dynamic.
 - The layer set for the layout view displays at the top of the dialog.
 - The settings for the currently selected layer display below.
3. You can make changes to settings of the current layer set.
 - Changes made to this layer set affect all other views that use it, not necessarily the selected layout view alone.
4. Alternatively, you can select a different layer set for the layout view from the Layer Set drop-down list.
5. Be sure to Save your changes in the plan file before closing the layout.

Layout Box Borders and Labels

A border will display around each layout box when the “Layout Box Borders” layer is set to display in
the Layout Page Display Options dialog. See “Layout Page Display Options” on page 961.

Layout boxes can also display labels when the “Layout Box Labels” layer is set to display. See “Object Labels” on page 515.

Automatic layout box labels display basic information about the original view in the plan. For example, plan view sent to layout from Floor 1 will have an automatic label that says, “1st Floor”. A camera view sent to layout will have a label that states the camera’s name. Layout box labels have their own edit handles and can be customized to include text as well as Object Specific Text Macros. See “Text Macros” on page 400.

Missing Layout Views

If a view on the layout page can be selected but cannot be seen, its link to the plan from which it was sent may have been broken. See “Managing Layout Links” on page 975.

Editing Layout Views

To edit a layout view, first select its layout box using the Select Objects tool. Once selected, the view box can be edited using its edit handles, edit toolbar or specification dialog. See “Layout Box Specification Dialog” on page 973.

Using the Edit Handles

Layout view boxes can be edited like closed polyline-based objects. See “Editing Closed Polyline-Based Objects” on page 180.

Plan views and CAD Details can be rotated. Both the layout box and the view inside it rotate. Cross section/elevation and 3D views sent to layout cannot be rotated.

In the Specification Dialog

Layout view boxes can be customized in their specification dialog. See “Layout Box Specification Dialog” on page 973.

Using the Edit Tools

A selected layout view or views can be edited in a variety of ways using the buttons on the edit toolbar. See “The Edit Toolbar” on page 29.

A few edit tools are unique to layout boxes:

- The Rescale Layout View edit tool allows you to specify the selected view’s scale. See “Rescaling Views” on page 971.
- The Relink File edit tool lets you change the plan file that a dynamic view is linked to. See “Relinking Layout Views” on page 977.
- The Create Saved Plan View edit tool allows you to associate a selected layout view or views to a Saved Plan View in the plan that it is linked to. If a Saved Plan View with attributes identical to the selected view(s) exists, you will be asked to choose to link to it or create a new Saved Plan View. See “Plan Views” on page 120.

- The Unlink Saved Plan View edit tool disassociates the selected layout view(s) from a Saved Plan View and instead lets you specify the floor level and Default Set that the view shows. See “Plan View Panel” on page 973.
- The Layout Box Layers edit tool to specify which layer set and layer settings the selected view uses. See “Layout Page Display Options” on page 961.

Using Dimensions

Like other CAD based objects, layout views can be moved and resized using dimensions. See “Moving Objects Using Dimensions” on page 365.

Moving Views to a Different Page

To move a view from one layout page to another, select the view, click the Open Object edit button, and change the Page on the LINE STYLE panel of the Layout Box Specification dialog. See “Layout Box Specification Dialog” on page 973.

Copying Views

Just like many objects, views sent to layout can be copied and pasted onto different layout pages or even into different layout files.

As a general rule, though, if multiple copies of a view are needed, it is best to send the view to layout as many times as necessary because each view can then be controlled independently.
Bear in mind, too, that if a layout has views copied from a different layout file and is later moved to a different location on your computer, the link to the original plan file may be broken. See “Keeping Layout Views Current” on page 967.

Editing Dynamic Views

Select a Dynamic or Semi-Dynamic view and click the Open View button to open the original view that was sent to layout. You can also double-click a view of either type in layout to open the original view. See “Opening Layout Views” on page 975.

Resizing Scaled View Boxes

Scaled views retain their scale regardless of how you resize the border. If the border is increased in size, blank spaces may be created; if the border is made smaller, the view may become cropped.

Resizing Non-Scaled View Boxes

If the view was sent to layout using the Fit to Sheet setting, or if a view is set to Fit to Drawing Sheet in the Change Scale dialog, resizing may have one of two results:

- Drag a corner edit handle using the Alternate Edit Behavior to resize both the border and the image proportionally. See “Alternate” on page 164.
- If you use any other Edit Behavior or if you drag a side edit handle, the perimeter of the layout box changes but the view inside it stays the same size. If you make the border smaller, the view may become cropped.

Rescaling Views

To change the scale of a floor plan, CAD Detail, or cross section/elevation view sent to layout, select the view and click the Rescale Layout View button. The Change Scale dialog opens.

- Choose No Scale to remove any specific scale factor associated with the selected view.
- Select the second option to specify a scale for the view. When its scale is changed, the layout view will resize. In most cases, you should specify a scale for plan views, CAD Details, and cross sections/elevation views. Typical scales are \(\frac{1}{4} \text{ in} = 1 \text{ ft} \) and \(1 \text{ m} = 50 \text{ m} \).
- When a view is sent to layout at a scale other than that of the original view, line weights and line styles are affected. In many cases, this is not desirable. Check Use Layout Line Scaling to make lines in the selected view appear the same as lines of the same weight drawn on the layout page. See “Line Weights and Scaling” on page 992.

Editing Layout Lines

Individual object edge and material pattern lines in a Vector View sent to layout using the Plot Lines option can be selected, edited, and drawn using the Edit Layout Lines tool. Changes made using this tool have no effect on the 3D model. See “Rendered and Vector Views” on page 780.

Bear in mind that automatically generated Plot Lines are not dynamically linked to the model: if the layout view is updated, these lines are deleted and replaced. For this reason, you should only use the Edit Layout Lines tool after the model has been finalized. See “Keeping Layout Views Current” on page 967.

CAD lines drawn in cross section/elevation views sent to layout cannot be edited using the Edit Layout Lines tool. Only Plot Lines generated by the program can be edited using this tool. See “CAD and Text in Layout” on page 963.
Selecting Layout Lines

To select a line in a layout view, click the Edit Layout Lines button and click on the line. You can select additional lines in the same layout view using the marquee select or group select methods. See “Selecting Objects” on page 167.

Adding New Layout Lines

Add a line to a layout Vector View by clicking the Edit Layout Lines button, selecting a layout view, and drawing a new line within the layout box. Once drawn, this line can be edited like any other layout line and maintains its position in relation to the layout view it was drawn in.

Editing Layout Lines

When a layout line is selected, you can use the edit handles to change its size, angle, and position, as with standard CAD lines. A selected layout line can also be deleted like a standard CAD line; however, many of the edit tools that are available for standard CAD objects are not available for layout lines.

Angle Snaps, Object Snaps, and Grid Snaps are all available in layout. See “Snap Settings” on page 129.

Layout line properties can be changed in the Layout Line Specification dialog.

Layout Line Specification Dialog

Use the Edit Layout Lines tool to select one or more lines in a Vector View sent to layout, then click the Open Object edit button to open the Layout Line Specification dialog.

The dialog lets you to change the properties of the selected line(s) without changing the properties of all lines in the view.

Specify the selected line or lines’ Line Type.

• Select Edge Line to specify the selected line(s) as defining the edges of the surface of 3D objects.
• Select Pattern Line to specify the selected line(s) as pattern lines for materials such as brick, siding, and shingles.
• When multiple lines are selected, No Change may be available.

Specify the Line Weight of the selected layout line(s). See “Line Weights” on page 992.

• Type the desired Weight, or thickness, of the selected line(s) in the text field.
• Check Use Default Weight to use the default value set in the view’s Layout Box Specification dialog. See “Camera View Panel” on page 974.

Specify the Line Style of the selected line(s). See “Line Styles” on page 157.

• Select a line style from the drop-down list or click the Library button and choose one from the Library.
• Check Use Default Style to use the default style set in the Layout Box Specification dialog.

Specify the Line Color of the selected line(s).

• Click the Color bar to select a line color. See “Color Chooser/Select Color Dialog” on page 160.
• Check Use Default Color to use the default color set in the Layout Box Specification dialog.
Layout Box Specification Dialog

Select a layout view and click the **Open Object** edit button to open the **Layout Box Specification** dialog.

Plan View Panel

The **PLAN VIEW** panel is only available when the selected view is a plan view. See “Dynamic Views” on page 967.

Most of the settings on this panel are only available when the layout view is not linked to a saved Plan View. See “Plan Views” on page 120.

1. Specify the **Number Height** for **Dimensions** in the selected view. This setting is only available for views sent to layout from plan view and CAD Details. It affects the size of dimension numbers in the layout view but not in the original view in the plan file.

 The **Number Height** setting is included for legacy files and is not the recommended method of specifying dimension size. See “Dimension Labels” on page 360.

2. Specify the **Plan View** settings used in the selected view.
 - Select the **Linked Saved Plan View** shown in the layout view from the drop-down list.
 - Select the **Current Floor** shown in the layout view from the drop-down list.
 - Select the **Current Default Set** from the drop-down list. The options available are limited to the Default Sets saved in the view’s plan file. The Current Default Set does not affect the layout view’s appearance, but will determine what Default Set is active if you use the **Open View** edit tool to return to the original view. See “Default Sets” on page 975.
 - Uncheck **Show Color** to turn color off in the selected view. See “Color On/Off” on page 154.

3. The **Reference Display** settings control the display and appearance of the Reference Floor in the selected view. These settings are only active when the Linked Saved Plan View is “None”, above. When the view is linked to a saved plan view, they report the status of that view’s Reference Display but cannot be changed. These settings are also found in...
the Change Floor/Reference dialog. See “The Reference Floor” on page 543.

Camera View Panel

The CAMERA VIEW panel is only available when the selected view is a Live View or Plot Lines view. See “Dynamic Views” on page 967.

1. The Camera View Options are available for Dynamic and Semi-Dynamic cross section/elevation, camera views, and overviews sent to layout. See “Keeping Layout Views Current” on page 967.
 - Select Live View to make the view dynamically linked to the plan file.
 - Select Update on Demand to update the view only when prompted. See “Keeping Layout Views Current” on page 967.
 - Select Always Update to update the view any time a change is made to the model. This option ensures that the view is always current but may cause program slowness.
 - Select Plot Lines to use automatically generated Plot Lines to represent surface edges and material pattern lines in the model. See “Plot Line Views” on page 968.
 - When Plot Lines is selected, check Color Fill to include colors that correspond to the materials used in the model.

2. Specify the Edge Line Defaults for a selected cross section/elevation view. Note that edge lines only use these values if Use Edge Line Defaults was checked when the selected view was sent to layout. See “Send To Layout Dialog” on page 965.
 - Specify the default Line Weight, or thickness, for all edge lines in the view.
 - Specify the default Line Color for all edge lines in the view.

3. Specify the Pattern Line Defaults for a selected cross section/elevation view. Pattern lines only use these values if Use Edge Line Defaults was checked when the selected view was sent to layout.
 - Specify the default Line Weight, or thickness, for all pattern lines in the view.
 - Specify the default Line Color for all pattern lines in the view.

The Edge and Pattern Line Defaults settings are included for legacy files and are not the recommended method of specifying these line styles. See “Edge and Pattern Lines” on page 143.

Polyline Panel

The POLYLINE panel states the length of the countertop’s Perimeter, its Area, and its Volume. See “Polyline Panel” on page 245.
Selected Line/Arc Panel
The SELECTED LINE panel is available when the selected edge is a line as opposed to an arc. For more information, see “Line Panel” on page 234.

The SELECTED ARC panel is available when the selected edge has been converted to an arc. For more information, see “Arc Panel” on page 241.

See, too, “Selected Edge” on page 168 and “Change Line/Arc” on page 201.

Line Style Panel
The settings on the LINE STYLE panel let you to set the properties of the selected layout box’s border and to specify what layout page it is located on.

For more information, see “Line Style Panel” on page 235.

Fill Style Panel
For information about the FILL STYLE panel, see “Fill Style Specification Dialog” on page 155.

Label Panel
Layout box labels display in layout when the “Layout Box Labels” layer is turned on and use the Text Style assigned to that layer. See “Layout Box Borders and Labels” on page 969.

For more information about the settings on this panel, see “Label Panel” on page 516.

Opening Layout Views

Dynamic and Semi-Dynamic views sent to layout refer to an original view in a plan. From the layout page, you can access that original view by selecting a layout box, then clicking the Open View edit button. The original view can also be opened by double-clicking the layout view using the Select Objects tool.

Changes made in this view update in the original layout view. Be aware that depending on the changes you make, other views may also be affected.

Layer Sets
Notice the name of the current layer set that displays in the Active Layer Set Control drop-down list. Changes made to this layer set affect not only the current view, but also the associated layout view and any other views that use this layer set. See “Layer Sets” on page 147.

It is important to remember that when a plan view is accessed by opening a dynamic layout view, that view uses the same layer set as the layout view.

Managing Layout Links
Chief Architect allows you to review the plan files linked to a current layout, change existing links from one plan file to another, and reestablish links to plan files that have been moved or renamed.

Default Sets
Plan views, cross section/elevation views, and CAD Details sent to layout each have a set of Active Defaults associated with it. When you send one of these view types to layout, these defaults become associated with the layout view; and when you open the original view of one of these types of layout views, its defaults will become active automatically. See “Multiple Saved Defaults” on page 67.

You can specify which defaults are associated with a plan view sent to layout by specifying the view’s Current Default Set in the Layout Box Specification dialog. See “Plan View Panel” on page 973.

Note that the Current Default Set associated with a layout view always uses the layer set assigned to the layout view, regardless of how the Default Set itself may be defined.

Protecting Layout Links
Careful file management is needed to avoid missing files and disrupted layout links. See “File Management” on page 39.
The following guidelines can help prevent layout links from being broken:

- Save plan files in the same folder as the layout, or in a sub-folder in that folder.
- Custom graphics included in a plan or layout should be embedded in the file or saved in the same folder as the layout.
- Plan files used to save CAD details or other information should be copied and saved in the same folder as the layout.
- Plan files should never be renamed. If a new name is desired, make a copy of the file and rename the copy. Changes made in the copy do not affect views sent to layout from the original plan.
- Avoid sending cross section/elevations to layout more than once. Changes made to the view can affect layout views in unintended ways.
- Layout files should never be moved. If a layout file must be moved, the entire folder it is saved in should be moved or copied and then moved.
- Use **File> Backup Entire Plan** to create an independent copy of the original layout. Avoid use of “Save As.” See “Backup Entire Plan or Project” on page 53.
- Do not delete any layer sets that are used by a view that was sent to layout. See “Layer Sets” on page 147.
- If you relink a layout view to a new plan, be sure to save the plan file so the layer sets are updated.

Finding Missing Files

When a layout file is opened, the program performs a breadth-first search for dynamically linked views. This means that it:

- Looks first in the same folder as the layout.
- Looks next in the folders located closest to the layout’s folder.
- If a missing file is not found, it expands its search further from the location of the layout file until the files with the linked views are located.
- If a missing file is not found, a second breadth-first search will be performed, searching all zipped files found in the first search.

If a file remains missing after the program performs a search of your system, a Warning message will indicate that the program could not successfully open all of the layout’s associated plan files. When you click OK, the **Referenced Plan Files** dialog will open, allowing you to relink the layout to its missing associated files.

You can also open this dialog at any time by selecting **Tools> Layout> Referenced Plan Files** while a layout file is open.

Referenced Plan Files Dialog

The **Plan Files Present** section lists all files with intact links to the layout.

The **Plan Files Not Found** section lists the names of files with disrupted links to the layout. Any files listed here have been moved, renamed, or deleted and cannot be found by the program. Intervention is required to find these files and reestablish their links to the layout.

Select a missing file and click the **Browse** button just above the **Plan Files Not Found** field to open the

976
Managing Layout Links

Browse For Missing File dialog, which is a typical **Open** dialog. See “Opening and Importing Files” on page 47.

- Locate the missing file in your system’s directory structure. When the missing file is selected, click **Open** to link it to the layout.
- You can also redirect an intact link to from a File Present in Layout to a different file in the same manner.

Be sure to choose **File> Save** in the layout file when the missing files have been located to save their links to the layout file.

Results of Missing Files

If all missing files are correctly redefined, the layout opens when you click **OK**.

If an error message displays, one or more of the missing files could not be replaced by the redefined file. Click **OK** to continue. The layout opens, but with the following characteristics:

1. Any plan views or CAD Details associated with the missing file(s) are blank. Only the border displays if the “Layout Box Borders” layer is set to display. See “Layout Page Display Options” on page 961.
2. Any elevations or cross sections associated with the missing file(s) show the automatically generated lines, but any added CAD objects are absent.

Relinking Layout Views

You can change the file that a dynamic layout view is linked to by selecting the view and clicking the **Relink File** edit button to open the **Choose Layout File Reference** dialog. This dialog is a typical Open File dialog: select the file that you want to link to and click **Open**. See “Opening and Importing Files” on page 47.

In the Windows version of the software, this dialog opens to the linked file’s specified directory and populates the Filename field with that file’s name. If you want to relink all references to this file, use the **Referenced Plan Files** dialog.

Missing Layer Sets

The layer set associated with each view in a layout is saved with the plan file from which the view was sent. Just as it is important to not move, rename, or delete the plan file, it is important that you not rename or delete a layer set used by a layout view. See “Opening and Importing Files” on page 47.

If a layer set used by a layout view cannot be found when the layout is opened, the **Missing Layer Set** dialog will display.

1. The **Layout Box Information** describes the layout view that is missing a layer set, indicating:
 - The **Layout Page** where the view in question is located;
 - View Information, which describes the contents of the view in question,

2. The **Layer Sets** options allow you to replace the missing layer set.
 - The **Plan Filename** of the plan file that the layer set is missing from.
• Select a replacement layer set from the Available Layer Sets drop-down list.

Layout Page Management

Layout files are organized into separate pages numbered 0 through 1000. There are a variety of tools that let you navigate and organize the pages of a layout file.

In the Project Browser

All pages in a layout file that are in use are listed in the Project Browser, including Page Templates and all pages with content and/or Page Information. See “Project Browser” on page 56.

Typically, blank layout pages are not listed in the Project Browser; however, if a new page is inserted using the contextual menu in the Project Browser, that new, blank page will be listed.

The three types of pages can be distinguished by the icon to the left of their names:

- Default Page Template
- Page with Content
- Blank Page

The contextual menu for a layout page in the Project Browser allows you to view it, edit its Layout Page information, move it relative to other pages, or delete it. See “Contextual Menus” on page 30.

Pages are listed in order of their page number. You can change a page’s number, and thus its location in the layout file, by clicking and dragging it in the Project Browser. See “Project Browser” on page 56.

The Current Page

The current layout page is indicated at the center of the Layout Page Up/Down buttons. When a layout file is first created, the current page is page one.

The current layout page is the default target of any view sent to layout. If sent to the wrong page, a view may be moved from one page to another. To do this, select the view you want to move, then click the Open Object edit button to open the Layout Box Specification dialog. You can change the page number on the LINE STYLE panel. See “Layout Box Specification Dialog” on page 973.

• Click the Define button to open the Layout Page Display Options dialog, where you can make changes to the selected layer set.

To navigate between layout pages

• Click the arrow buttons on either side of the Layout Page button.

• Click the Current Page number between the arrows to open the Go To Layout Page dialog. Enter a page number and click OK.

• Select Page Up or Page Down from the Tools> Layout> menu.

• Press Shift + N (up one page) or Shift + M (down one page) on the keyboard.

• Double-click on a page in the Project Browser.

Adding and Deleting Pages

To begin work on a new page, simply send a view to that page, or navigate to it and begin drawing.

To insert a layout page in front of or behind the current page, select Tools> Insert Page Before or Insert Page After. Any pages that follow the new page move up one, provided that nothing is located on page 1000.

You can also right-click on a page in the Project Browser and select either Insert Page Before or Insert Page After from the contextual menu.

To create an identical copy of the current page with the same content and Page Information as the original, select Tools> Layout> Duplicate Page. A duplicate is added immediately after the original and is active. You can also right-click on a page in the Project Browser and select Duplicate from the contextual menu.

To remove the current page from the layout file, select Tools> Layout> Delete Page. The current page and all information on it - including any views - will be completely removed. You can also
right-click on a layout page in the Project Browser and select Delete Page.

Page Templates assigned to other pages cannot be deleted, and neither can page zero. See “Layout Page Zero” on page 979.

Exchanging Pages

Select Tools > Layout > Exchange With Next Page to switch the current layout page with the following page. Not available on Layout Page 1000.

Select Tools > Layout > Exchange With Previous Page to switch the current layout page with the page preceding it. Not available on Layout Page 0.

Layout Page Information

The Edit Page Information tool lets you specify any layout page as a Page Template or add information about it which can then be included in layout and revision tables.

Layout Page Numbering

Each layout page has a number from 0 through 1000 which is used to identify its position in the layout document.

While this basic numbering convention cannot be changed, you can create your own page numbering convention using the Label setting in the Layout Page Information dialog. See “Layout Page Information” on page 980.

To do this, begin by typing a prefix of your choice followed by a pound (#) sign in the Label field - for example, “A-#”. The program will replace the # with a numeral 1 on the first page with that particular prefix in its Label, and will increase the number by one on every page that follows if it too has the identical prefix in its Label.

Although you can specify a Label for your page Templates, regular pages do not inherit this information from their specified Template: it must be added to each page individually.

Custom page numbering using the Layout Page Label can be added to any page - including Page Templates - by inserting the %layout.label% macro into a text object.. See “Text Macros” on page 400.

There is also a selection of additional text macros that can be used to insert dynamic page numbering information:

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%page%</td>
<td>Layout Page Number - States the absolute page number of the current layout page.</td>
</tr>
<tr>
<td>%page.print%</td>
<td>Printed Page Number - States the printed page number of the current page. Blank pages are not included in this count.</td>
</tr>
<tr>
<td>%numpages%</td>
<td>Number of Printed Pages - States the total number of printed pages in the layout.</td>
</tr>
<tr>
<td>%lastpage%</td>
<td>Last Used Layout Page - States the absolute page number of the last printed page.</td>
</tr>
</tbody>
</table>

Note: The printable area varies from printer to printer. For best results, inset layout borders 1/2" to 3/4" from the paper edge.

You can assign a Page Template to any layout page, or specify any page as a Page Template, in the Layout Page Information dialog.

For more information about creating a title block and border for your layout template, see “Creating a Border and Title Block” on page 514 of the Tutorial Guide.

Layout Page Zero

In Chief Architect X5 and prior, Layout Page Zero was the only available Page Template. In Version X12, it functions in much the same way by default: it
is specified as a Page Template with the title “Default Page Template”, and it is assigned to all pages. Because of its special purpose, page zero cannot be deleted.

Layout Page Information

The Edit Page Information tool opens the Layout Page Information dialog, which you can use to add title, revision, and other information to the current layout page. This information can then be used to create layout and revision tables, as well as used in text macros.

You can also use this tool to specify the current page as a Template, or to assign a Template to the current page.

The Layout Page Information dialog can be opened in several ways:

• Select Tools> Layout> Edit Page Information.

• Click the Edit Page Information toolbar button.

• Right-click on a layout page in the Project Browser and select Edit Page Information from the contextual menu.

Layout Page Information Dialog

The Page Information options let you add information to layout pages that can be shown in a Layout Page Table or added to text using a macro. The Label and Title will also display in the Project Browser.

• Choose the Selected Page, which is the page selected for editing in this dialog, from the dropdown list. Not available when the dialog is opened via the Project Browser contextual menu.

• Specify the selected page’s Label. If a cross section/elevation view is sent to this layout page, this Label can display in the camera’s callout label in plan view. See “Camera Labels and Callouts” on page 791.

• If you type a pound sign # in the Label field, it will be replaced by the current layout page number on the layout sheet. See “Layout Page Numbering” on page 979.

• Specify the selected page’s Title.

• Specify the selected page’s Description.

• Specify the selected page’s Comments.
• Check Include in Layout Table to include the above information about the selected page in a Layout Table. If Use as Page Template is checked, this box will be unchecked automatically.

The Page Template Options let you associate the selected layout page with a template, or specify it as a template. See “Layout Page Templates” on page 979.

• Check Use as Page Template to specify the selected page as a template that can be assigned to other pages, but not printed. This box cannot be unchecked if the current page is the Page Template assigned to other pages.

• Assign a Page Template to the selected page by choosing one from the drop-down list. Not available when Use as Page Template is checked.

The Page Revisions settings let you manage the revisions associated with the selected page. Revisions can be shown in a Revision Table or added to text using a macro. See “Revision Tables” on page 982.

• A table listing any revisions associated with the selected page displays for reference. Click on a line item in the table to select it.

• Click the New button to open the Layout Revision Specification dialog and add a new revision to the selected page.

• Click the Edit button to open the Layout Revision Specification dialog and edit the selected revision.

• Click the Delete button to remove the selected revision from the table.

• Click the Move Up or Move Down button to adjust the position of the selected revision in the table accordingly.

Revision Specification Dialog

Select Tools> Layout> Add Layout Revision to open the Revision Specification dialog. You can also click the New or Edit button in the Layout Page Information dialog to open this dialog.

1 Revised Pages - Specify which pages the selected revision applies to. Only available when a new revision is being created.

2 Revision Information -

• Specify the revision’s Label.

• Specify the Date that the revision was made. The program populates this field with the current date automatically.

• Specify who the revision was Revised By. The program populates this field with your Designer Information by default. See “Designer Information” on page 57.

• Specify a Description of the revision.

• Check Include in Revision Table to include this revision in a Layout Table for the selected page.

Layout Page and Revision Tables

Title, revision, and other information can be added to each layout page and used to create tables of contents and revision schedules.

Layout Tables are similar to schedules and can be edited much the same way that schedules can. See “Editing Schedules” on page 508.

Layout Page Tables

Select Tools> Layout> Layout Page Table, then click on a layout page to place a Layout Page Table that that location. Layout Page Tables list all pages in the current file that have Layout Page Information specified, are set to be included in Layout Page Tables, and have data on them. See “Layout Page Information” on page 980.

If you place a Layout Page Table on a Page Template, it will display on every page in the current layout that uses that template and will list all pages that have data and are set to be included in Layout Page Tables.
Revision Tables

Select **Tools > Layout > Layout Revision Table**, then click on a layout page to place a Layout Revision Table that location. Layout Revision Tables list all revisions associated with the current page.

Unlike Layout Page Tables, Layout Revision Tables are page-specific. If you place a Layout Revision Table on a Page Template, it will display on every page that uses that template, but it will only list revisions associated with the current page. See “Layout Page Templates” on page 979.

Printing Layout Files

Printing layout files is similar to printing a view in a plan file. Select **File > Print > Print** to open the Print dialog. See “Print View Dialog” on page 995.

As in plan views, printing options for layouts are set in the Drawing Sheet Setup dialog. These options apply to all pages of the layout file. See “Drawing Sheet Setup Dialog” on page 986.

If a page does not have any data on it, it will not print. Only pages with one or more views sent to them or Text, CAD, or Dimensions drawn on them are printed.

Pages specified as Page Templates do not print unless the template is the current page and you specifically choose the **Current Page Print Range** option. See Print View Dialog.

Printing to Scale

A layout file’s drawing scale is specified in the Drawing Sheet Setup dialog. While you can specify any drawing scale that you wish, in nearly all circumstances, you will want the scale to be **1 in = 1 in** or **1 mm = 1 mm** for all layout files.

The views sent to your layout pages have already been assigned a scale, and if you select a scale other than one-to-one for the layout, these views will be scaled a second time when printed.

Exporting Layout Files

Layout pages can be exported to **.dxf/.dwg** files much like any other vector-based view. The main difference is in the scale of the output, which is in scaled paper units rather than model units. If a 50” line in a plan would be scaled to 1” inch when printed, it is exported as a 1” line instead of its length before prior to scaling. See “Exporting 2D DXF/DWG Files” on page 889.
Chief Architect provides a variety of printing options, from printing scaled plan views and 3D perspectives, to a set of templates that can be assembled into a 3D model.

To create working drawings, you can use the program’s Layout facility. Multiple views of the model can be arranged on pages along with a border and title block. For more information, see “Layout” on page 961.

Chief Architect also allows you to save your drawings in .pdf file format that can then be sent to a printing service.

Introduction to Printing

Chief Architect offers printing options to suit a variety of needs. It is helpful to be familiar with these options and choose the one that makes the most sense for the project at hand.

Output Options

Printing From Layout - For professional quality documents with a title block, border, and multiple views of the model, printing from layout provides the best results. For more information, see “Layout” on page 961.

Printing Directly From a View - You may prefer to print individual drawings directly from a view. See “Print Tools” on page 986.
Printing to PDF - Plans can be printed to a .pdf file and printed remotely. See “Printing to a PDF File” on page 991.

Export to STL - Exports an .stl file that can be printed on a stereolithography machine, or 3D printer. See “STL Format” on page 896.

Terminology

Drawing Sheet Size - The dimensions of the final printed output. This may or may not be the same as the printer paper size. If the sheet and paper sizes are the same, only one page is required per sheet. See “Drawing Sheet Setup Dialog” on page 986.

Paper Size - The dimensions of the paper to be printed on. Specifying a paper size that is smaller than the Sheet Size allows large drawings to be printed across multiple pages.

Check Plot - A test printing, typically at a smaller scale, made before final output to large paper format. For more information, see “Check Plots” on page 991.

Printing Problems

If you encounter difficulties when trying to print, see “Troubleshooting Common Technical Issues” on page 422.

Printers and Plotters

There are many different types of printers and plotters. In general, a printer is smaller, normally outputting 8½ x 11” (Letter or ANSI A size), 8½ x 14” (Legal Size) or sometimes as large as 11 x 17” (Tabloid or ANSI B size).

Plotters are typically used to output larger sheets of paper such as 17 x 22” (ANSI C), or 18” x 24” (ARCH C).

Printer Drivers

A printer driver is a program that allows a printer to communicate with the rest of the computer system. Drivers are usually created by the printer manufacturer, are typically updated regularly, and can usually be downloaded free of charge from the manufacturer’s web site.

In addition to interpreting between the printer and the rest of the system, printer drivers save default page size, orientation, margin size, and other information that Chief Architect refers to unless you specify otherwise. See “Print View Settings” on page 985.

If you experience printing problems, consider installing updated drivers for your printer. Visit your printer manufacturer’s web site for more information.

Clearing Printer Information

Some information specific to individual printers and plotters, such as available paper sizes, is saved with each plan and layout file. You can select File> Print> Clear Printer Info to clear the printer-specific information stored with the plan or layout file.
Printing Defaults

You can print to any printer or plotter that is supported on your operating system and can specify the current printer at any time in either the Drawing Sheet Setup or Print View dialog.

Drawing Sheet Setup

When any orthographic view is active, you can specify its Drawing Sheet size, margins, orientation, printed Drawing Scale, and more in the Drawing Sheet Setup dialog. Select File > Print > Drawing Sheet Setup to open this dialog. See “Drawing Sheet Setup Dialog” on page 986.

The settings in the Drawing Sheet Setup dialog are view-specific. This means that in a plan file, they can be set up one way for plan views and a different way for each cross section/elevation view and CAD Detail. When a new view is created, its initial settings are derived from the current plan view settings.

The Drawing Scale set in the Drawing Sheet Setup dialog acts as the default scale for the active view’s Print, Printed Size Input, and Send to Layout dialogs. See “Send To Layout Dialog” on page 965.

The settings in the Drawing Sheet Setup dialog can be customized and saved in your template plans and layout files. See “Template Files” on page 73.

Print View Settings

When you are ready to print an orthographic view, select File > Print > Print. The initial settings in the Print View dialog are drawn from the Drawing Sheet Setup for the view. The system’s default printer is selected and if possible, the paper size and orientation are set to match those of the Drawing Sheet.

Once a view has been printed, most of the settings in the Print View dialog are saved and will be applied to all views of the same type, in all Chief Architect files. View types with separate Print View settings are:

- Plan view
- Cross Section/Elevation views
- Layout
- Materials Lists
- CAD Details
- Time Tracker Logs

If you prefer that the Print View settings not be retained in this manner, uncheck Remember Print Settings after Printing in the Drawing Sheet Setup dialog.

Displaying Objects

You can control the display of objects when printing directly from a view in the Layer Display Options dialog. See “Layer Display Options Dialog” on page 144.

Objects must be visible in order for them to print; however, not all items that are visible will print. See “Print Preview” on page 989.

To control the display of objects in an orthogonal view sent to layout, select the view, click the Layout Box Layers edit button, and make any needed changes in the Layer Display Options dialog. See Layout View Layer Sets.

To control the display of objects in a camera view sent to layout, turn layers on/off in the view before it is sent to layout. You may find it helpful to create a custom layer set for printing directly from a view. See “Layer Sets” on page 147

Print Preview

To get a sense of whether your current settings will meet your needs when printed, you can use the Print Preview toggle to view the printed output on screen before any paper is used. See “Print Preview” on page 989.

The Printing Tools

Select File > Print to view the Print Tools submenu. These tools fall into four categories.

Print Setup Tools

Scale to Fit - Automatically selects a scale that fits your plan to the drawing sheet. See “Printing to Scale” on page 990.

Center Sheet - Automatically centers the drawing sheet on your drawing. See “Center Sheet” on page 990.

Print Preview - Shows on screen how the current view will appear printed, based on the current scale and other settings. See “Print Preview” on page 989.

Print Tools

Print - Prints the current plan view, Vector View, CAD Detail, or layout sheet to a specified scale. See “Print View Dialog” on page 995.

Print Image - Prints the current view including images, textures, and backdrop. Views printed with Print Image are not scaled. See “Print Image Dialog” on page 998.

You can also select File> Export> Export PDF to open the Export PDF dialog. See “Print View Dialog” on page 995.

Display Toggles

A number of toggles allow you to turn various aspects of the display on or off. See “Interface Toggles” on page 26.

Color - Turn the on-screen display of color on or off in all views except perspective views. See “Color” on page 989.

Line Weights - When this is on, line weights appear on screen as they will print. See “Line Weights” on page 989.

Drawing Sheet - Turn this on for a preview of your plan relative to the current Drawing Sheet. See “Drawing Sheet” on page 989.

Reference Grid - The Reference Grid does not print, so you can turn this off to get a better sense of what the view will look like printed. See “Reference Grid” on page 989.

Additional Print Tools

Customize Sheet Sizes - Allows you to create custom sheet sizes. See “Customize Sheet Sizes Dialog” on page 988.

Clear Printer Info - Clears the printer information associated with the current page setup.

Drawing Sheet Setup Dialog

Select File> Print> Drawing Sheet Setup to open the Drawing Sheet Setup dialog.

The Drawing Sheet Setup dialog is only available when a plan view, cross section/elevation view, CAD Detail, or layout is active.

The settings in this dialog are specific to the current view and are saved with the .plan or .layout file. See “Printing Defaults” on page 985.
Specify the **Orientation** and **Size** of the **Drawing Sheet**, which is the final printed output.

- Click the **Customize** button to open the **Customize Sheet Sizes** dialog. See “Customize Sheet Sizes Dialog” on page 988.

Check **Show Drawing Sheet in View** to turn on the display of the Drawing Sheet in orthographic views. See “Drawing Sheet” on page 989.

Specify the **Drawing Scale** for the active view. This scale is applied only when the view is printed.

The scale is specified in two parts, which by default are 1 ft = 1 ft or 1 m = 1 m for layout views, and ¼ inch = 1 ft or 1 m = 50 m for all other views. Both imperial and metric units of measurement are available and can be selected independently.

The units of measurement available here can be controlled in the **Preferences** dialog. See “Unit Conversions Panel” on page 90.

The **Drawing Scale** acts as the default scale for the active view’s **Print**, **Print Size Calculator**, and **Send to Layout** dialogs.

Specify the **Printer for View** which is the printer for the active view in the current file. These settings are global, affecting all plan and layout files.

- Uncheck **Remember Print Settings after Printing** to enable the Choose button, below. When this is checked, the printer is selected in the **Print View** dialog. See “Printing Defaults” on page 985.
- Click the **Choose** button to select a printer and edit its paper settings in the **Default Printer for View** dialog.

The **name** of a **Printer** displays to the left of the Choose button for reference.

- If the **Remember** box is checked, the last printer used in the current view type is shown; if no
printer has been used in the current view, “None” will display.

- If the Remember box is unchecked, the system’s default printer will be shown.

If you have questions about your printer’s settings, consult its documentation.

4 Specify the **Drawing Margins** which define the extents of the printable area of the active view’s Drawing Sheet.

- Click the **Populate from Printer** button to set the margins based on the selected printer’s default settings. See “Printers and Plotters” on page 984.
- Specify the width of the **Top**, **Bottom**, **Left**, and **Right** margins.

5 The **Advanced Line Weight Options** allow you to specify the active view’s line weight scale. A layout file’s line weight scale should always be the same as that of any plan views associated with it. See “Line Weights and Scaling” on page 992.

- Check **Use 1 for all line weights (Home Designer compatibility)** to have the program maintain a consistent line thickness and dash size when the drawing scale is changed. When checked, the Line Weight Scale is based on a 1/4 inch = 1 foot drawing scale and 1 = 1/300 inch line weight scale. Plans originally created in any of the Home Designer programs have this checked by default; however, this option is not available for layouts and is not normally recommended. See “Line Weights” on page 992.

- Select the **Line Weight Scale**. See “Line Weights and Scaling” on page 992. This setting should always be the same for both a given layout file and any plan views associated with it.

A line weight **Preview** illustrates how changes to the line weight scale affect the printed size of various line weights at the current Drawing Scale.

Default Printer for View Dialog

To open the **Default Printer for View** dialog, click the **Choose** button in the **Drawing Sheet Setup** dialog.

- Select a **Printer** from the drop-down list.
- Choose the **Orientation** of the paper used by the selected printer.
- Select a **Paper Size** from the drop-down list. The options available will depend on the selected printer.
- Select a **Paper Source** from the drop-down list. The options available will depend on the selected printer.

Customize Sheet Sizes Dialog

To open the **Customize Sheet Sizes** dialog, select **File> Print> Customize Sheet Sizes**, or click the **Customize** button in the **Drawing Sheet Setup** dialog.

Several options are available:
• Click **New** to create a new sheet size.
• Select a sheet size and click **Copy** to create a duplicate sheet size.
• Click **Delete** to remove the selected sheet size.
• Select a sheet size and click **Edit** to open the **Edit Paper Size** dialog and change its description, dimensions, and units of measurement.

• Click **OK** to close the dialog. Any new sheet sizes created are now available in the **Drawing Sheet Setup** dialog.
• The data for this dialog is stored in the “sheet-Sizes.sheet” file in the program’s Data folder.

Clearing Printer Information

Select **File > Print > Clear Printer Info** to clear the printer-specific information stored in the **Drawing Sheet Setup** dialog.

This is useful for creating plan and layout templates without an associated printer. See “Template Files” on page 73.

Print Preview

Print Preview and its related display toggles allow you to get a sense of what the current view will look like when it is printed.

Print Preview

Select **File > Print > Print Preview** for an on-screen representation of how the current view will appear when printed. Print Preview is only available in views that can be scaled. See “Printing to Scale” on page 990.

When **Print Preview** is on, the Drawing Sheet and line weights are displayed, and the toggle buttons **Drawing Sheet** and **Line Weights** are overridden.

Objects such as camera symbols, CAD points, and the Snap and Reference Grids that do not print do not display in **Print Preview**. Text and dimension objects appear on-screen as they will on the printed page.

When **Print Preview** is enabled, color will display depending on whether **Print in Color** is selected in the **Print View Dialog** on page 995.

The Reference Display does print if it is visible. See “The Reference Floor” on page 543.

Color

The **Color** toggle turns the on-screen display of color on or off in all views. When Color is toggled off, views print in either black and white or greyscale depending on your **Preferences** setting. See “Colors Panel” on page 82.

Reference Grid

The **Reference Grid** is an on-screen grid composed of regular squares that can be used to convey a sense of scale while drawing. It does not print, and its size can be specified in the **General Plan Defaults** dialog. See “General Plan Defaults Dialog” on page 77.

Line Weights

Select **View > Line Weights** for an on-screen representation of line weights and line styles. Turning **Line Weights** on or off does not affect the final printed output.

When **Line Weights** is turned on, you can **Zoom In** to see the location of lines and dashed lines as they will appear on the printed page.

When **Line Weights** is off, dashed lines look the same, regardless of the zoom factor.

Line Weights can also be turned on or off in the **Preferences** dialog. See “Appearance Panel” on page 80.

Drawing Sheet

The **Drawing Sheet** is a representation of the size and orientation of the final printed output. It is different from the printed page size, which
means that you can print a large Sheet to multiple smaller pages. Select View> Drawing Sheet to show the Drawing Sheet on screen.

The Drawing Sheet size and orientation are specified in the Drawing Sheet Setup dialog. See “Drawing Sheet Setup Dialog” on page 986.

When the Drawing Sheet is set to display, a blue border representing the margins of the printable area will also display for reference. If the margins have been set to populate from the selected printer, this border may not display on all edges of the drawing sheet. See “Printer Drivers” on page 984.

When Drawing Sheet is on, the drawing sheet behaves as an object.

- When selected at its border the sheet has edit handles, allowing it to be moved. See “Editing Objects” on page 163.
- You can also resize the sheet using its edit handles; however, for best results, it is recommended that you instead select an available sheet size in the Drawing Sheet Setup dialog. See “Drawing Sheet Setup Dialog” on page 986.

- Dimension lines can locate the edges of the sheet and can be used to position other objects relative to it. See “Moving Objects Using Dimensions” on page 365.

The drawing sheet cannot be rotated or copied.

Center Sheet

Select File> Print> Center Sheet to center the drawing sheet on the drawing. This moves the sheet relative to the drawing but does not affect the coordinates of objects in the drawing. The location of the drawing sheet is independent for each floor of the model.

Printing to Scale

Several different print scaling options are available. The type of view that you are printing determines which options you may choose from.

Orthogonal Views

Plan views, Orthographic 3D views, CAD Details, and layout pages are orthogonal views, which means:

- Your line of sight is at a right angle to all objects in the view.
- Objects do not appear to decrease in size as their distances from the viewer increase.

Orthogonal views can be printed to scale; however, Orthographic 3D views can only be printed to scale when the Vector View Rendering Technique is used.

The scale set in the Page Setup dialog is inherited by the Print and Send to Layout dialogs. This scale can be overridden on an individual basis in either of these dialogs. See “Print View Dialog” on page 995 and “Sending Views to Layout” on page 965.

Select File> Print> Scale to Fit in an orthogonal view to select a suitable scale and re-center the drawing sheet so that everything fits on the sheet.

Imperial drawing scales are typically noted in inches per foot. Larger scales, such as 1 inch = 50 feet or 1:200m, are often used for property layouts.

Once a view has been sent to layout, there are a variety of additional scaling options. See “Rescaling Views” on page 971.

Perspective Views

Camera views and Perspective overviews display the model much the way the eye would see it and cannot be scaled.

- Objects in the view may be at any angle relative to your line of sight.
- Objects seem to decrease in size as their distances from the viewer increase.

Perspective views can only be printed using the Print Image tool. See “Print Image Dialog” on page 998.

While perspective views cannot be scaled, you can control the printed size of the view. If Fit to Paper is selected in the Print View dialog, a percent value can be set that defines how much of the printed page to fill. See “Print View Dialog” on page 995. 50% causes the print to be 50% of both the height and
width of the paper, including the non-printable border.

For example, if printing to an 8½ x 11 page with a 1" non-printable border in each direction:
- 100% would print an area 8½ x 11. This is not recommended, as part of the output could fall outside the printable area.
- 50% would print an area 4¼ x 5½.
- Each printer may vary slightly.

Check Plots

A check plot is a test print that allows you to print at a reduced scale on smaller, less expensive paper so you can check that the drawing will print as expected. The drawing scale is temporarily adjusted to a specified fraction of its true value. Both drawing scale and line weights are subject to this scale adjustment.

For example, if a layout has a border designed to fit on a Drawing Sheet of 24” x 36”, a check plot at 1/2 scale would allow it to fit on a 12” x 18” page. A view sent to that layout at a Drawing Scale of 1/4” = 1’ would be scaled at 1/8” = 1’ when printed at 1/2 scale.

To create a check plot

1. Select File> Print> Print View. In the Print View dialog:
 - Click the Check Plot at radio button, then choose the desired scale fraction from the drop-down list.
 - The Paper Size will automatically adjust to fit the selected Check Plot Scale.

Printing Across Multiple Pages

When printing directly from a plan view, cross section/elevation view, or layout it is possible to print at a scale that does not fit the drawing on one page.

When printing to a paper size that is smaller than the sheet size, a 2% overlap is used. Crop marks print where the paper needs to be cut between pages. A solid line is drawn at the drawing sheet boundary on the sides that need to be cut.

To see on-screen what the drawing will look like when printed, select View> Drawing Sheet and then Window> Fill Window. Grey lines across the drawing sheet indicate where the page breaks will occur. See “Drawing Sheet” on page 989.

Printing to a PDF File

Portable Document Format, or .pdf files, are one of the most universally compatible and efficient file formats and can be viewed and printed on most computer platforms.

2. The next time you print a view, remember to choose To Scale or Fit to Paper again in the Print View dialog.

Printing Text, Dimensions, and Line Styles

As with other objects your drawings, text and dimension numbers are subject to scaling when views are sent to layout or printed. See “Scaling Text” on page 385.

Printed text size is also influenced by the selected font and the method used to specify its size. See “Character Size” on page 373.

Text may not print exactly as it appears on-screen. To get a better idea of how text and dimension characters will print, you may find it helpful to Zoom In on them.

For best printed results, using true-type or open-type fonts is recommended.

The line styles assigned to CAD and a variety of other objects are subject to scaling when printed as well. They are only subject to scaling when sent to layout, however, under specific circumstances. See “Line Weights and Scaling” on page 992.
You can save any view as a 2D .pdf file by selecting “Chief Architect Save as PDF” or any other PDF writer installed on your system as the Destination printer Name in either the Print View or Print Image dialog. See “Print View Dialog” on page 995 and “Print Image Dialog” on page 998.

You can also print to .pdf from any view by selecting File> Export> Export PDF. See “PDF Files” on page 863.

Line Weights

The weight of a line refers to its thickness on the printed page and is described in absolute terms as a fraction of a unit, often 1/100th of a millimeter or 1/1000 of an inch. In Chief Architect, line weights are assigned to objects, patterns, and layers using whole numbers that correspond to the numerator of this fraction.

You can specify the Line Weight Scale by defining the denominator and the unit used in this fraction in the Drawing Sheet Setup dialog. See “Drawing Sheet Setup Dialog” on page 986.

Your preferred line weights and line weight scale can be saved in your template plan and layout files. See “Template Files” on page 73.

The method for specifying an object’s line weight depends on the object and the type of view.

- Most objects’ line weights can be set by layer. See “Layer Display Options Dialog” on page 144.
- Some objects’ line weights can be set in their specification dialogs. See “Line Style Panel” on page 235.
- The line weights for walls in plan view are defined by wall type in the Wall Type Definitions dialog. See “Wall Type Definitions Dialog” on page 294.
- The line weights of material pattern lines, which are visible in Vector Views, can be set in the Define Material dialog. See “Define Material Dialog” on page 769.

When you print to .pdf, you will be asked to create a file name and choose a destination to save it in the Save as PDF File dialog. See “Saving, Exporting, and Backing Up Files” on page 42.

You can also import .pdf file into Chief Architect. See “Importing PDF Files” on page 863.

- The line weight for fill patterns is set for individual objects in their specification dialogs. See “Fill Styles” on page 155.
- The line weight applied to surface edges in Vector Views can be set in the Print dialog. See “Print View Dialog” on page 995.
- The end cap length of dashed lines in plan view is set in the Preferences dialog. See “CAD Panel” on page 93.
- An assigned line weight of 0 draws a line weight of 1 pixel, the thinnest line weight a printer allows. How thick this is varies from printer to printer. See “Printers and Plotters” on page 984.

Line Weights and Scaling

Line weights and line styles are subject to scaling when printed. You can see an on-screen approximation of what lines will look like when a view is printed by toggling on either Line Weights or Print Preview. See “Print Preview” on page 989.

When a view is sent to layout, line weights and styles may be further affected by the drawing scale selected for the layout view. This occurs when the layout view’s scale is different from the Drawing Scale of the original view.

For example, assume that you have an object in a view with a line weight of 20, and that the view’s Drawing Scale is 1 mm = 50 mm.

- If you send the view to layout at 1 mm = 25 mm scale, twice the original scale, the resulting printed line weight for this object will increase to 40 instead of 20.
- If you send the view to layout at 1 mm = 100 mm scale, half the original scale, the resulting printed line weight for this object will decrease to 10 instead of 20.

It is extremely important that every view sent to layout and the layout file share the same Line Weight Scale. When they do not, unwanted printed output will result.
Line weight scaling affects both line weights and line styles and can be particularly noticeable with dashed line styles. See “Line Style Specification Dialog” on page 159.

For example, assume that you have an object in a view with a dashed line style that has 10 mm dashes and 10 mm spaces, and that the view’s Drawing Scale is 1 mm = 50 mm.

- If you send the view to layout at 1 mm = 25 mm scale, twice the original scale, the resulting dashes and spaces will increase to 20 mm instead of 10 mm.
- If you send the view to layout at 1 mm = 100 mm scale, half the original scale, the resulting dashes and spaces will decrease to 5 mm instead of 10 mm.

You can specify the drawing scale for any orthogonal view by opening the Drawing Sheet Setup dialog while in that view. See “Printing to Scale” on page 990.

For any layout view, you can specify whether the original line weight is maintained or not in the Send to Layout and Change Scale dialogs. See “Send To Layout Dialog” on page 965 and “Rescaling Views” on page 971.

Note that in order to produce exact line weights, a Vector View must be sent to layout using the Plot Lines option. See “Plot Line Views” on page 968.

If Use Layout Line Scaling is enabled, line weights are no longer scaled and the dashed lines display at the same size as in the original view.

In the following image, the same plan view has been sent to layout twice, at two different scales. The view on the left was sent at the same scale as the original view, 1/8” = 1’. The view on the right was sent at 1” = 1’, or magnified eight times, to show an area of the plan in greater detail.

Because the view on the right was sent to layout at a scale other than that of the original, it is subject to layout line scaling.

The solid lines representing walls, cabinets and doors are rescaled to be eight times thicker than in the original view.

Similarly, the dashed lines representing the door jambs are rescaled so that the dashes and the spaces between them are eight times larger than in the original view.

Because the view in this example is scaled eight times larger in this case, the dashes and line weights look relatively small and fine when Use Layout Line Scaling is enabled. Were the view rescaled to be smaller instead, the line weights would look relatively large and thick.
Printers and Line Weight

Line weight and print scaling are subject to the limitations of the printer being used. For example, you will not be able to see the difference between a line that is 1/150th of an inch wide and one that is 1/300th of an inch wide when they are printed using a printer that prints 150 dots per inch (DPI).

That is, a CAD line with a line weight of 1 will look the same as a CAD line with a line weight of 4 when the Line Weight Scale is set at 1 = 1/600th of an inch and you print to a printer capable of 150 DPI.

Setting an object’s or group of objects’ line weight to zero causes the lines to print as thinly as possible.

Watermarks

A customizable watermark containing text or the image of your choice can be added to any plan view or layout. To toggle the watermark on or off in the current view, select View> Watermark.

In layout files, the watermark will display on all pages; however, in plan files, watermarks are view specific, which means that you can control which views include the watermark and which do not.

Watermarks also are file specific, so you can have a different watermark in each plan and layout file if you wish. If you want to use a particular watermark in all files, you can add it to your plan and layout templates. See “Template Files” on page 73.

The method for printing a view with a watermark varies depending on the view type:

- For most types of views, check Show Watermark in the Print View dialog. See “Print View Dialog” on page 995.
- For perspective cameras and overviews, toggle the watermark on before printing. See “Saving and Printing 3D Views” on page 805.

Note: Student, Academic, and Presentation versions of the software produce a non-editable watermark on all printed documents. A second one can be added if you wish.

Watermark Defaults Dialog

A watermark can be customized in the Watermark Defaults dialog. To open this dialog, select Edit> Default Settings and in the Default Settings dialog, click on “Watermark” and click the Edit button.

You can also open this dialog by clicking the Define button in the Print View dialog. See “Print View Dialog” on page 995.

When the Watermark Defaults dialog is open, the watermark will display in the view window behind the dialog and will update as changes are made to its settings.
Select a **Watermark Type** from the drop-down list.

The **Text** settings are available when “Text” is the Watermark Type selected above.

- Type the desired watermark **Text** in the text field.
- Click the **Color** bar to select a color for the watermark text. See “Color Chooser/Select Color Dialog” on page 160.
- Specify the **Print Size** of the watermark text, as measured from the baseline to top of the capital letter A in the selected Font.
- Select a **Font** from the drop-down list.

The **Image** settings are available when “Image” is the Watermark Type selected above.

- When an image **File** has been specified, its pathname displays here. You can type a different pathname if you wish.
- Click the **Browse** button to open the **Watermark Image File** dialog, which is a typical Open dialog. See “Importing Files” on page 48.
- Specify the **Ratio to Sheet**, which is how far the image extends across the sheet. Not available when “Fit to Sheet” Layout is selected, below.

General -

- Specify the **Layout** of the watermark from the drop-down list.
- Specify the watermark’s **Angle**, measured relative to a horizontal line pointing towards the right hand side of the screen.
- Use the **Transparency** slider bar or text field to control how transparent the watermark is.

The Marks Per settings are only available when “Tile” or “Border” is selected as the Layout, above.

- Specify the **Marks Per Row**, which is the number of instances of the watermark across the width of the Drawing Sheet.
- Specify the **Marks Per Column**, which is the number of instances of the watermark from top to bottom of the Drawing Sheet.

Preview -

- Check **Update Automatically** to have the watermark update in the current view as changes are made in the dialog.
- Check **Update** to update the watermark in the view behind the dialog. Not available if Update Automatically is checked above.
or Print Materials List dialog opens. The settings that are available will vary depending on which version of the dialog is open.

Select File > Export > Export PDF to open the similar Export PDF dialog.

Note: 3D views that are not Vector Views can be printed using Print Image.

If Remember Print Settings after Printing is checked in the Drawing Sheet Setup dialog, most settings in this dialog will be saved and applied globally to all views of the same type in all Chief Architect files. There are three exceptions: Sheets and Copies are always reset, and the Print Source is determined by whether or not the Drawing Sheet is toggled on. See “Print View Settings” on page 985.

Select the Name of the Printer that you would like to use from the drop-down list. To print to .pdf, select “Chief Architect Save as PDF” from the list, or choose a .pdf writer installed on your system. See “Printing to a PDF File” on page 991.

- Select the DPI, or Dots Per Inch, to use when printing, from the drop-down list. The available options may vary depending on the selected printer.

Select the Paper Orientation, Size, and Source. The available Size and Source options are controlled by the selected printer’s driver. See “Printer Drivers” on page 984.

- When possible, the program will automatically set the Size and Orientation to match those of the Drawing Sheet. See “Drawing Sheet Setup Dialog” on page 986.

- The Paper Size may be automatically adjusted if the Drawing Scale option is changed, below.

In layout files only, specify the Print Range. Only pages that have views or objects drawn
directly on them and are not specified as Page Templates will print. Page Templates and empty pages do not print. See “Layout Page Templates” on page 979.

- Select All to print the entire drawing.
- Select Current Sheet to print only the currently active layout page.
- Select Sheets to specify which layout pages to print, then type the page numbers you wish to print, separated by commas or by a dash. Not available in plan files.

Note: To produce collated multiple copies, specify the sheets in the desired order, separated by commas.

Specify the Print Source. Not available in the Print Materials List dialog.

Select Drawing Sheet to print the entire sheet even though you may be zoomed in on a portion of the view. This is selected by default when the Drawing Sheet is set to display in the current view.

Select Current View to print only that portion of the active view that is currently visible on screen. If you are zoomed out, any blank space outside of the printable objects in the view is ignored. This is selected by default when the Drawing Sheet is not displaying in the current view.

Specify the Drawing Scale of the printed output. Changes to these options may cause the Paper Size to change, above. Not available in the Print Materials List dialog or in camera views or overviews. See “Printing to Scale” on page 990.

- Fit to Paper prints the view on one page. The program uses whatever scale is necessary to fit the plan on one page.
- When Fit to Paper is selected, specify the percentage of the paper to be used. The default value is 95%.

Note: The Fit to Paper percentage value is global - affecting all views in all files, and is retained between sessions.

- Select To Scale to print at the scale specified in the Drawing Sheet Setup dialog. See “Drawing Sheet Setup Dialog” on page 986.
- To print a check plot, select Check Plot at and choose a scale adjustment from the drop-down list. See “Check Plots” on page 991.

Options -

- Specify the number of Copies you would like to print.
- Check Include Watermark to include a watermark in the printed output. Click the Define button to open the Watermark Defaults dialog. See “Watermark Defaults Dialog” on page 994.
- Check Print in Color to print in color or clear the check box to print in either grayscale or black and white. In the Print Materials List and Print Time Tracker Log dialogs, system default colors are used when this box is unchecked.
- To print in grayscale, check Obey Color On/Off Setting in the Preferences dialog before printing, then uncheck Print in Color. See “Appearance Panel” on page 80.
- To print in black and white, uncheck Obey Color On/Off Setting in the Preferences dialog before printing, then uncheck Print in Color. Lines and fill colors print as either black or white, depending on which is closer to the line or fill’s actual color.

Most black and white printers print a grey scale approximation of the colors if Print in Color is selected.

Advanced Options - Click the Open System Print Dialog button to close the Print View dialog and print using your operating system’s Print dialog instead. Not available when No Printer is selected.

Control the appearance of the print job Preview on the right side of the dialog.

- Specify the Page that displays in the Preview area.
- Click the buttons to Zoom In, Zoom Out, or Fit the selected Page to the extents of the Preview area.
- Uncheck Update Automatically to turn off the print job Preview and prevent it from updating as changes are made to the settings in this dialog.
- Click the Update button to update the print job Preview to reflect the current settings in this dialog. If Update Automatically is unchecked, clicking Update may force the Preview to be blank.

When Update Automatically is checked, a preview of the current print job displays here. The drawing sheet displays as a white rectangle, and if multiple sheets are required, you can scroll through.
them. If the print job is large, a progress dialog may display briefly as the preview draws or updates.

To help prevent unwanted printed output, information messages regarding page size, resolution, and scale may display here, depending on the settings in this dialog.

Print Image Dialog

Any view can be printed by selecting File > Print Image. This is the only way to print a Ray Trace or most 3D views. See “3D Rendering” on page 815.

The Print Image dialog is similar to the Print View dialog; however, the printing process is different. Print Image prints individual pixels as opposed to vectors (lines).

1. Select the Name of the Printer you wish to use from the drop-down list. To print to .pdf, select “Chief Architect Save as PDF” from the list, or choose a .pdf writer installed on your system. See “Printing to a PDF File” on page 991.
 • Select the DPI, or Dots Per Inch to use when printing, from the drop-down list. The available options may vary depending on the selected printer.

2. Select the Paper Orientation, Size, and Source. The available Size and Source options are controlled by the selected printer’s driver. See “Printer Drivers” on page 984.

3. Specify the number of Copies you would like to print.

4. Advanced Options - Click the Open System Print Dialog button to close the Print View dialog and print using your operating system’s Print dialog instead. Not available when No Printer is selected.

5. Control the appearance of the print job Preview on the right side of the dialog.
 • Specify which Page displays in the Preview area.
 • Click the buttons to Zoom In, Zoom Out, or Fit the selected Page to the extents of the Preview.
 • Uncheck Update Automatically to turn off the print job Preview and prevent it from updating as changes are made to the settings in this dialog.
 • Click the Update button to update the print job Preview to reflect the current settings in this dialog. If Update Automatically is unchecked, clicking Update may force the Preview to be blank.

6. When Update Automatically is checked, a preview of the current print job displays here. If the print job is large, a progress dialog may display briefly as the preview draws or updates.

7. To help prevent unwanted printed output, information messages regarding page size and resolution may display here, depending on the settings in this dialog.
Ruby is a popular, open-source programming language that can be used for a wide variety of purposes.

In Chief Architect, you can use Ruby 2.4.0 to create custom macros which can be used to produce object labels for specific needs and customized Materials List calculations. You can also type Ruby macro code bookended by percent signs into text objects and object labels.

Ruby is considered to be easy to use by its many users - not all of whom are software developers. If you’d like to learn more, visit: www.ruby-lang.org.

Creating User Defined Macros

You can create your own custom macros for a variety of purposes in Chief Architect, including:

- Shortcuts for strings of text that are used repeatedly throughout a project. For examples, see “Project Information” on page 57.
- Custom object labels. See “Object Labels” on page 515.
- Custom labels inserted into text objects, callouts, and markers in plan view. See “Referenced Object Context” on page 1004.
- Object Information that can be included in schedules and the Materials List. See “Object Information Panel” on page 519.

There are two broad categories of macro:

- Text macros are essentially shortcuts that replace long strings of text with an inserted macro. Text macros can include Global macros with general information about the current view or file, but they cannot perform calculations.
- Ruby macros, on the other hand, can include Name-Value Pairs, perform calculations, and even reference scripts written in Ruby. They do not, however, use regular text. In order to function, the information in each Ruby macro must have a defined Context: Owner Object, Referenced Object, or Materials List Line Item.

Name-Value Pairs and Publishers

At the heart of most Ruby macros are Name-Value Pairs, or NVPs, and Name-Value Publishers, or publishers. A publisher is simply an object that has...
attributes that can be reported by a Ruby macro, and an NVP is the name of such an attribute and its value. For example:
- A cabinet is an example of a publisher.
- The name of one of its attributes is height.
- 36” is the value reported by height in a basic macro in a plan using US units.

Most objects in Chief Architect have a selection of NVPs which can be used to report information about them in Ruby macros. See “To view a publisher’s Name-Value Pairs” on page 1002.

Working with NVPublishers

NVPublishers, or publishers, are objects in Chief Architect that have attributes that can be reported by a Ruby macro.

In plan view, a publisher can either be an Owner Object or a Referenced Object.
- An Owner Object reports its own attributes directly in a label or using Object Information in a schedule or materials list.
- A Referenced Object’s attributes are reported by a macro inserted into a text object that is connected to the publisher by a line with arrow. See “Referenced Object Context” on page 1004.

To view a publisher’s Name-Value Pairs

1. Select Tools > Ruby Console.
2. Select an object in your plan - for example a base cabinet. This is an Owner Object.
3. Type owner.names in the Input text field of the Ruby Console and press the Enter key.
4. An array of NVPs will display in the Output field. These values are all attributes of the selected object.
5. To view the array as a list, type puts owner.names and press Enter.

You can request the NVPs for a Referenced Object just as you can for an Owner Object: select the Referenced Object and open the Ruby Console. Then, instead of typing owner.names, type referenced.names (or puts referenced.names).

A Name-Value Pair can be used as a simple macro by bookending it with percent signs. For example, %height% will report the height of a wide variety of objects. See “To insert a macro” on page 400.

Creating and Evaluating Custom Macros

Custom Ruby macros are created in the Edit Text Macro dialog. See “Edit Text Macro Dialog” on page 1009.

Custom macros can be evaluated in the Ruby Console. See “The Ruby Console” on page 1010.

Related Objects

A given publisher may have NVPs that report information about objects associated with the publisher rather than about the publisher itself. For example, a base cabinet often has:
- An automatic countertop, which is a feature of the cabinet parametric object but is a publisher in its own right and has its own set of NVPs.
- Door and drawer panels, which are library symbols that are inserted into the cabinet. See “Inserted Objects” on page 705.
- Moldings, which are library items assigned to the cabinet.
- A room that the cabinet is located in.

These related objects are all publishers themselves and have their own NVPs.

To view an object’s related publishers

1. Use the Leader Line tool to create a Text Line with Arrow snapped to the object on the arrow end. See “Leader Line” on page 390.
2. In the Rich Text Specification dialog, type or insert the %object_properties% User Defined macro. See “To insert a macro” on page 400.
3. When you click OK, the text will report all NVPs, NVPublishers, and Collections associated with the object that the arrow is snapped to.

To include a related object’s NVPs in a macro, use this format:

related_publisher_name.nvp_name.

Related objects may also be nested more than one layer deep:

related_publisher_name.related_publisher_name.nvp_name.

Collections

Some objects can have more than one of a particular type of related object. For example, a cabinet may have multiple door or drawer panels. Each panel is an NVPublisher listed in a Collection. The layers of structural assemblies like walls are also listed in Collections.

There are two main ways to use Collections in a Ruby macro:

- Convert the Collection into an Array using the Enumerable method to_a. It is best to save the result as a local variable, using in this format:

 array = collection_name.to_a;
 array[index].nvp_name

- Use a different Enumerable method with a Ruby block. Use this format, in which “parameter_name” can be replaced with any name/identifier:

 collection_name.enumerable_method
 { |parameter_name| parameter_name.nvp_name }

For more information, see: https://ruby-doc.org/core-2.4.0/Enumerable.html.

Rooms

Like other objects, rooms are publishers with related objects and collections associated with them. They are unusual, however, in that if an otherwise independently placed object is positioned inside of a room, that object will have NVPs that report information about the room.

This means that a text object placed inside a room can serve as a custom label, using a macro to report dynamic information about the room.

It also means that architectural objects can report information about the room they are in in their labels, in schedules, and in the Materials List. Objects that are not located entirely inside one room - including doors, windows, and any other object that extends beyond the extents of a single room - do not have this ability.
There are two ways to view the NVPs associated with an object:

- The Ruby Console can report all NVPs associated with a selected object.
- The %object_information% macro can report all NVPs, NVPublishers, and Collections associated with an object.

Hashes

Ruby Hashes are collections of key-value pairs. In Chief Architect, they can be used to access the information in Custom Object Fields. See “Custom Object Fields” on page 510.

To include a Hash in a macro, use this format:

```
custom_fields["custom field name"]
```

Name Value Pairs and Defaults

A number of NVPs for various objects end in ‘_is_default’. These NVPs will return either ‘true’ or ‘false’, depending on whether the object in question is set to use the dynamic default for that attribute. See “Dynamic Defaults” on page 67.

Macros and Context

Ruby macros can be used in different contexts, but in order for the Name-Value Pairs in a macro to report the correct information, the macro needs to identify the context it is designed to be used in.

Non-Evaluated Text Macros

Non-evaluated text macros primarily act as shortcuts for strings of text that you use often in your work. They are dynamic, so if you need to modify a string, you can simply edit the associated macro instead of locating and changing every instance of the text in the plan or layout file.

Non-evaluated text macros cannot display dynamic information about a particular object or perform calculations, however.

To create a non-evaluated text macro

1. Open the Text Macro Management dialog and click the New button.
2. In the Edit Text Macro dialog:
 - Type the desired text.
 - Insert any Global text macros that you need. Non-evaluated User Defined macros can also be included.
 - Inserted macros should use the format: %macro_name%.
 - Leave the Evaluate check box unchecked.
3. Confirm that the macro is valid by checking its Expanded Macro Value in the Text Macro Management dialog.

The resulting macro can be inserted into the label for any object for which it is Valid.

Owner Object Context

The Owner Object context allows a macro to perform calculations and dynamically report information about an object in its label and Object Information.

To create an Owner Object macro

1. Select an object for which you would like to create a custom macro.
2. With the object selected, open the Text Macro Management dialog and click the New button.
3. In the Edit Text Macro dialog:
 - You can use any NVPs associated with the selected object in the macro. See “Working with Name-Value Pairs” on page 1003.
 - NVPs do not require special formatting, but macros inserted using the %macro_name% format cannot be used.
 - To include a Ruby macro within another Ruby macro, use this format: macros.macro_name.
 - Check Evaluate and select “Owner Object” from the Context drop-down list.
4. Confirm that the macro is valid by checking its Expanded Macro Value in the Text Macro Management dialog.

The resulting macro can be inserted into the label for any object for which it is Valid.

Referenced Object Context

When a Ruby macro is assigned the Referenced Object context, it can be inserted into text with an arrow pointing to the object it refers to and then perform calculations or report information about that object.
To create a Referenced Object macro
1. Select a text object with an arrow that is snapped to an object for which you would like to create a custom macro.
2. Open the Text Macro Management dialog and click the New button.
3. In the Edit Text Macro dialog:
 • You can use any NVPs associated with the object that the text arrow is pointed to.
 • NVPs do not require special formatting, but macros inserted using the %macro_name% format cannot be used.
 • To include a Ruby macro within another Ruby macro, use this format: macros.macro_name.
 • Check Evaluate and select “Referenced Object” from the Context drop-down list.
4. Confirm that the macro is valid by checking its Expanded Macro Value in the Text Macro Management dialog.

To use a Referenced Object macro
1. Insert the custom macros into a Text, Rich Text, Callout, or Marker object.
2. Draw a Text Line with Arrow between the text object and the object that your Referenced Object macro describes.

Materials List Line Item Context
A Materials List Line Item macro can be inserted into a cell in a materials list.

To create a Materials List Line Item macro
1. Open the Text Macro Management dialog and click the New button.
2. In the Edit Text Macro dialog:
 • You can use any Name-Value Pairs associated with the object that the macro is meant to describe.
 • Name-Value Pairs do not require special formatting, but macros inserted using the %macro_name% format cannot be used.
 • To include a Ruby macro within another Ruby macro, use this format: macros.macro_name.
 • Check Evaluate and select “Materials List Line Item” from the Context drop-down list.
3. Unlike other types of macros, its validity cannot be confirmed in the Text Macro Management dialog.

To use a Materials List Line Item macro
1. Select an object and click the Open Object edit button.
2. On the COMPONENTS panel of the specification dialog, select a component or subcomponent associated with the object.
3. Click in a Formula cell to select it, then click a second time to edit the cell.
4. Select Apply Formula to Source Object.
5. Click the Insert Macro button and insert a macro.

Macros can also be inserted in the Materials List in a similar manner. See “To insert a custom Materials List formula” on page 952.

Contextless Macros
Select “None” as the Context for a Ruby macro if you would prefer to define the Context within the macro’s Value.

To do this, type the Context before each NVP in the macro using this format:
• owner.name_value
• referenced.name_value
• line_item.name_value

Measurement and NumberFormatter Classes
Chief Architect uses two custom Ruby classes that clarify and allow control of the units and formatting used by measurements: Measurement and NumberFormatter.
Measurement Class

All Name-Value Pairs that return length, area, or volume values do so by reporting a Measurement. A Measurement includes both a numeric value and a unit. The program has a set of hard-coded default units that can be used, and Custom Unit Conversions are supported as well. See “Add Unit Conversion Dialog” on page 91.

The default unit used by a Measurement depends on its category as well as whether the file uses US (“Imperial”) or metric units:

<table>
<thead>
<tr>
<th>Category</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Inches or millimeters</td>
</tr>
<tr>
<td>Area</td>
<td>Square feet or square meters</td>
</tr>
<tr>
<td>Volume</td>
<td>Cubic feet or cubic meters</td>
</tr>
<tr>
<td>Unitless</td>
<td>None</td>
</tr>
<tr>
<td>Anything else</td>
<td>Items without precedent are represented in a power of inches or cm.</td>
</tr>
</tbody>
</table>

Although Measurements have a unit, it is not reported unless you create a custom format. See “NumberFormatter Class” on page 1006, below.

Measurement-Specific Methods

The Measurement class is not derived from the Numeric class but has many of the same methods. It also has a small set of custom methods:

<table>
<thead>
<tr>
<th>Measurement-Specific Method</th>
<th>Return</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>compatible_with?(other: Measurement)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>convert_to(unit: Symbol</td>
<td>String)</td>
<td>Float</td>
</tr>
<tr>
<td>new([value: Float] = 0.0, [unit: Symbol</td>
<td>String] = "")</td>
<td>Measurement</td>
</tr>
<tr>
<td>type()</td>
<td>String</td>
<td>The “category” of measurement: “Linear”, “Area”, “Volume”, “Unitless”, or “Derived”.</td>
</tr>
<tr>
<td>unitless?()</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Conversion Methods

The following units in Chief Architect have hard-coded methods to convert a Numeric to a Measurement and vice versa:

- Linear: inch, in, foot, ft, yard,yd, mm, cm, dm, m
- Area: Prefix “sq_” to any of the above
- Volume: Prefix “cu_” to any of the above

<table>
<thead>
<tr>
<th>Conversion Method</th>
<th>Return</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>to_measurement([unit: Symbol</td>
<td>String] = "")</td>
<td>Measurement</td>
</tr>
<tr>
<td>convert_to(unit: Symbol</td>
<td>String)</td>
<td>Float</td>
</tr>
</tbody>
</table>

NumberFormatter Class

Chief Architect’s default format for Measurements uses up to 6 decimal places, a leading zero, and no trailing zeroes. It does not include a unit. The NumberFormatter class allows you to create formatting for Measurements to meet your needs.
NumberFormatter Methods

<table>
<thead>
<tr>
<th>NumberFormatter Method</th>
<th>Return</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply(value: Numeric</td>
<td>Measurement)</td>
<td>String</td>
</tr>
<tr>
<td>inspect()</td>
<td>String</td>
<td>Lists the current settings of the formatter.</td>
</tr>
<tr>
<td>unit()</td>
<td>String</td>
<td>The unit the formatter is currently using.</td>
</tr>
<tr>
<td>unit=(unit: Symbol</td>
<td>String)</td>
<td>String</td>
</tr>
<tr>
<td>show_unit()</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>show_unit=(True</td>
<td>False)</td>
<td>Sets whether the formatter will include the unit in the output.</td>
</tr>
<tr>
<td>show_leading_zero()</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>show_leading_zero=(True</td>
<td>False)</td>
<td>Sets whether the formatter will include trailing zeros.</td>
</tr>
<tr>
<td>show_trailing_zeros()</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>show_trailing_zeros=(True</td>
<td>False)</td>
<td>Sets whether the formatter will include trailing zeros.</td>
</tr>
<tr>
<td>use_fractions()</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>use_fractions=(True</td>
<td>False)</td>
<td>Sets whether the formatter will display fractions (True) or decimals (False).</td>
</tr>
<tr>
<td>decimal_places()</td>
<td>Fixnum</td>
<td>Reports the maximum number of decimal places the formatter will use when not displaying fractions.</td>
</tr>
<tr>
<td>decimal_places=(Fixnum)</td>
<td></td>
<td>Sets the maximum number of decimal places the formatter will use when not displaying fractions. Must be >= 0.</td>
</tr>
<tr>
<td>denominator()</td>
<td>Fixnum</td>
<td>Reports the denominator the formatter will use when displaying fractions.</td>
</tr>
<tr>
<td>denominator=(Fixnum)</td>
<td></td>
<td>Sets the denominator the formatter will use when displaying fractions. Must be >= 1.</td>
</tr>
<tr>
<td>thousands_separator()</td>
<td>String</td>
<td>The thousands separator displayed for numbers greater than 999. An empty String represents no thousands separator.</td>
</tr>
<tr>
<td>thousands_separator=(separator: String)</td>
<td></td>
<td>Sets the thousands separator displayed for numbers greater than 999. An empty String represents no thousands separator.</td>
</tr>
<tr>
<td>show_denominator()</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>show_denominator=(True</td>
<td>False)</td>
<td>Sets whether the denominator will be shown when displaying fractions. When the denominator is hidden, fractions are never reduced.</td>
</tr>
<tr>
<td>reduce_fractions()</td>
<td>String</td>
<td>False</td>
</tr>
<tr>
<td>reduce_fractions=(method: :gcd</td>
<td>:closest</td>
<td>:none</td>
</tr>
</tbody>
</table>
Text Macro Management Dialog

A list of all user-defined text macros present in the current plan or layout file can be accessed by selecting *CAD > Text > Text Macro Management*.

- If you wish to create a user defined macro for an object, or find out whether an existing macro is valid for an object, open this dialog while the object is selected.
- To create a user-defined macro to be inserted into a text object that describes another object, or to find out whether such a macro is valid, select a text object with an arrow pointing to the object in question and then open this dialog. See “Macros and Context” on page 1004.

An object-specific version of this dialog is also available for objects saved in an unlocked library.

Right-click on a single object of a type able to display labels and select *Text Macro Management* from the contextual menu. See “Using the Contextual Menus” on page 693.

- Any Owner Object macros assigned to the object’s label when it is added to the library are listed here. Note that objects in some manufacturer catalogs may include macros. See “Manufacturer Catalogs” on page 697.
- Custom macros can be imported to and exported from a library object, and additional macros can be added to the object, but you cannot specify them as part of a label while it is in the library.
- When the object is added to a plan, any macros associated with it are added to the plan, as well.

An alphabetical list of all User-Defined Macros present in the current file displays here.

- Click on the Name of a macro to select it.
- If a macro is Valid in the current context, a check mark will display to the right of its Name. See “Macros and Context” on page 1004.
- In legacy files, macros using deprecated behaviors may be present. When this is the case, an additional Info column will be present. See “Migrating Legacy Ruby Code” on page 1011.
- Information about a selected macro displays in the Macro Value and Expanded Macro Value fields to the right of the list. The Macro Value field shows the defined Value of the selected macro. The Expanded Macro Value shows the output of the macro in the current context.

Edit or delete the selected text macro, create a new one, or import or export macros to and from other files. See “Importing and Exporting Macros” on page 1010, below.

- Click the *Edit* button to make changes to the selected macro in the *Edit Text Macro* dialog. Only available when an existing macro is selected.
- Click the *New* button to open the *Edit Text Macro* dialog and create a new macro.
- Click the *Copy* button to create a copy of the currently selected macro and open the *Edit Text Macro* dialog. Only available when an existing macro is selected.
- Click the *Delete* button to remove the selected macro from the list. Only available when an existing macro is selected.
- Click the *Import* button to open the *Import Text Macros* dialog and import macros exported from
another file into the current file. See “Importing Files” on page 48.

- Click the Export button to open the Export Text Macros dialog and make the user-defined macros in this file available to be imported into another file. See “Exporting Files” on page 44.
- Click the Migrate button to migrate a legacy macro to the latest version. Only available when a legacy macro is selected. See “Migrating Legacy Ruby Code” on page 1011.

The Macro Value field displays the content, or text used to define the selected macro.

The Expanded Macro Value field displays the information that the macro reports. If the selected macro is not Valid in the current context, “#Evaluation Error!” will display here,

If the selected macro is not Valid, click the Show Evaluation Error button to open an Information box with a description of the problem. See “Macros and Context” on page 1004.

Edit Text Macro Dialog

The Edit Text Macro dialog can be accessed by clicking the Edit, New, or Copy button in the Text Macro Management dialog.

1 Type a short, descriptive Name for the macro. Macro names must be unique within a given file, or library object.

To avoid unexpected results, a macro should not have the same name as an NVP Name, NVPublisher, or Collection.

2 Type a macro using the Ruby 2.4.0 programming language in the Value field. NVPs, existing macros, and references to Ruby .rb files can be included.

- You can also copy an NVP out of the Ruby Console or a definition from an .rb file and paste it here. See “To Copy, Cut and Paste text” on page 386.
- Click the Insert button above the Value field to insert an already existing macro into the selected macro. See “To insert a macro” on page 400.

3 To create a Ruby macro with a context, check the Evaluate box, then select a Context from the drop-down list. When unchecked, a text macro will be created. See “Non-Evaluated Text Macros” on page 1004.

- Choose None if the macro performs a function but doesn’t refer to an object or if the macro’s context - or contexts - are stated in its Value.
- Choose Owner Object to create a macro for use in an object label.
- Choose Referenced Object to create a macro for use in a Text object with an arrow that points at an object that the macro describes.
- Choose Materials List Line Item to create a macro for use in the Materials List.

If the selected macro is a legacy macro using deprecated behavior, additional options will be available. See “Migrating Legacy Ruby Code” on page 1011.

- Click the Migrate Formula button to open the Migrate Ruby dialog.
- After migrating the macro but before clicking OK in this dialog, you can click the Revert to Legacy button. This button is only available until you exit out of the dialog.

4 The Original Result and New Result fields report Data Type and Value information when the selected macro is valid, or Evaluation Error information when it is not, for comparison purposes.

- The Original Result field reports information about the macro as it was when the dialog was first opened. This field will be blank for a newly created macro.
• The New Result field reports information based on changes made since the dialog was opened.

Click OK to return to the Text Macro Management dialog.

Importing and Exporting Macros

User-defined text macros can be exported out of one plan file, layout file, or library object and imported into another file or object using the Text Macro Management dialog.

If the program encounters macros with duplicate names when importing into a plan or layout file, the Text Macro Name Conflict dialog will display, allowing you to choose how to handle the name conflict.

- To keep both the existing macro and the one being imported, select **Rename the imported macro**. Then, type a short, descriptive, unique **New Macro Name**. By default, the new name is simply the original name appended by a number.
- Select **Discard the imported macro** to use the existing macro already present in the destination file or library object rather than import the new one.
- Select **Replace the existing macro with the imported macro** to delete the existing macro and replace it with the one being imported.
- Check **Do this for all remaining macro conflicts** to apply the same choice for any other macros with conflicting names in the current import operation.

If the program encounters a macro name conflict when importing into a library object or when placing a library object in a plan, a **Question** message box will ask if you wish to replace the existing macros. Click **Yes** to replace any existing macros with imported macros of the same name or click **No** to keep the existing macros and not import those of the same name.

The Ruby Console

The Ruby Console can be used to access information about a variety of objects in Chief Architect: information which can then be used to create custom Ruby macros. It can also be used to evaluate custom Ruby macros to confirm that they are valid. See “Creating User Defined Macros” on page 1001.

Select **Tools> Ruby Console** to open the Ruby Console window. The Ruby Console can be open while you work using other tools in the program.

The Ruby Console interface is simple: at the bottom of the window is an Input field where you can type commands, and the results of your commands display in the Output field above.

- Type expressions, or commands, in the Input field at the bottom of the window.
- Press Enter on your keyboard to enter your expressions and see the results.
- The results of your expressions display in the larger Output field, above.
- > at the beginning of a line indicates that what follows is your expression.
- => at the beginning of a line indicates that what follows is a result.
• As you type multiple expressions, they and the new results are added below the previous ones.
• Use the scroll bar on the right to scroll up and down the results field.

3 Click the Tutorial button to view an interactive written tutorial presented in the Ruby Console. See “Viewing the Interactive Tutorial” on page 1011.

4 Click the size grip and drag to resize the Ruby Console window.

Note: Chief Architect uses Ruby 2.4.0.

Useful Expressions
The following are a few commonly used expressions that you can use to obtain the attributes of one or more selected objects.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner</td>
<td>Returns the selected publisher</td>
</tr>
<tr>
<td>selected</td>
<td>Returns an array of multiple selected publishers</td>
</tr>
<tr>
<td>referenced</td>
<td>Returns the publishers</td>
</tr>
<tr>
<td>.names</td>
<td>Preceded by owner, selected, or referenced, this returns an array of NVPs for the selected publisher(s).</td>
</tr>
<tr>
<td>.<variable _name></td>
<td>Preceded by owner, selected, or referenced, this returns the value of the NVPs bounded by the brackets for the selected publisher(s).</td>
</tr>
<tr>
<td>puts</td>
<td>Returns a list instead of an array.</td>
</tr>
<tr>
<td>$</td>
<td>Indicates a global variable rather than a local variable.</td>
</tr>
</tbody>
</table>

Viewing the Interactive Tutorial
An introductory tutorial is included with Chief Architect and can be run in the Ruby Console. To run it, select Tools > Ruby Console ☑️, then click the Tutorial button at the bottom of the dialog or simply type show in the Input field.

Migrating Legacy Ruby Code
In Chief Architect X11 and prior, Name-Value Pairs returned length, area, and volume measurements as Floats (or Integers, if rounded) instead of Measurements. When legacy Ruby macros or materials list formulas are evaluated in Version X12, the program will automatically check their version and provide an opportunity to migrate any instances of legacy Ruby code that it finds.

Materials List Formulas
A cell with a legacy formula is identified by an Information icon. When the cell is moused over, its tool tip indicates the presence of a legacy formula, as well. See “Materials List Formulas” on page 952.

• Select the cell and click the Migrate Formula ☑️ button to migrate the formula to use updated formatting.
• After migrating the formula but before deselecting the cell, you can also click the Revert to Legacy ☑️ button to restore the original legacy formula. This button is only available until you click out of the cell.

Text Macros
Legacy Ruby macros are also identified by an Information icon in the Text Macro Management dialog. When the icon is moused over, its tool tip indicates the presence of a legacy macro, as well. Select the macro and click the Edit button for further options. See “Text Macro Management Dialog” on page 1008.

• In the Edit Text Macro dialog for a legacy macro, click the Migrate Formula ☑️ button to migrate the macro to use updated formatting.
• After migrating the macro but before clicking OK in the Edit Text Macro dialog, you can click the Revert to Legacy ☑️ button. This button is only available until you exit out of the dialog.

Backwards migration for formulas and macros is not supported.
The **Migrate Formula** button is available in the Materials List when a cell with a legacy formula is selected. In the **Edit Text Macro** and **Text Macro Management** dialogs, it is available when a legacy macro is selected. Click this button to open the **Ruby Migration** dialog.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | The **Macro Name** displays here for reference. | 2 | The **Issue** that needs to be addressed by migration is described here for reference. | 3 | The **Original Result** and **New Result** fields report Data Type and Value information when the selected macro is valid, or Evaluation Error information when it is not, for comparison purposes.
 | | |
| | The macro can be edited in the text field using the Ruby 2.4.0 programming language. NVP’s, existing macros, and references to Ruby .rb files can be included. | | If you make changes to the macro above and do not like the New Result below, click the **Revert Changes** button to restore the original value. | | The **Original Result** field reports information about the macro as it was when the dialog was first opened.
 | | |
| | Click the **Insert** button above the text field to insert an already existing macro into the selected macro. See “To insert a macro” on page 400. | | The **New Result** field reports information based on changes made since the dialog was opened.
 | | |
| | The **Original Result** field reports information based on changes made since the dialog was opened.
 | | | Click **OK** to return to the **Text Macro Management** dialog. | | |
Chief Architect technical support, training, and other resources to help you be successful using our software.

Learning and Inspiration

Chief Architect offers a variety of resources that help you learn how to use the software, discover new drawing techniques, and connect with other Chief Architect users.

Chief Architect Web Site
The Chief Architect web site has an array of resources, including downloadable library content, program updates, news and events, and more. Select Help> Visit Chief Architect Web Site from the program menu to launch your default internet browser to chiefarchitect.com.

Reference Manual

Tutorial Guide
Written for new Chief Architect users, but a helpful reference for users of all experience levels as well, the Tutorial Guide walks you through the process of creating a complete model, from the first wall to the interior design and landscaping.

This guide is available online by selecting Help> View Tutorial Guide.

Online Help Videos
Another resource that illustrates Chief Architect’s tools is the collection of tutorial videos available on our web site. To view the online videos, select Help> View Online Help Videos from the program menu or visit www.chiefarchitect.com/videos.

Online Knowledge Base
The Chief Architect Knowledge Base is a collection of online articles that address common technical issues as well as a range of how-to questions with illustrations and step-by-step instructions. To access these resources, visit chiefarchitect.com.
Chief Architect X12 Reference Manual

ChiefTalk Online Forum

The ChiefTalk Professional Forum hosts ongoing discussion on a variety of topics related to the use of Chief Architect. It is rich with useful tips and available free of charge to all registered Chief Architect users.

• Discussions are initiated and carried out by users in a professional and friendly tone.
• Experienced users share knowledge with each other and beginners.

To visit ChiefTalk, select Help> ChiefTalk or go to chieftalk.chiefarchitect.com.

Online Gallery

A collection of plan sets, detail drawings, and renderings is available for viewing and download on our web site. Select File> Download Sample Plans to launch your internet browser to chiefarchitect.com.

Training Services

Chief Architect offers a variety of online and in-person training opportunities. For details, schedules of upcoming events, and more, visit chiefarchitect.com.

Online Webinars

Chief Architect regularly conducts live, online training seminars designed for different skill levels, and on a variety of topics. Learn the basics of using Chief Architect the right way by joining an Introductory series, then progress through topics of interest, such as Kitchens and Baths, Construction Documents, and Terrain.

On-Site Seminars

Throughout the year, Chief Architect also conducts training seminars in various locations around the United States.

Personal Online Training

Conducted via telephone and high-speed internet, Personal Online Training lets you focus on your specific design challenges. With a Personal Trainer, it's fast and easy to meet your personal training needs from the comfort of your own computer.

Contacting Technical Support

Chief Architect’s world class technical support services can be accessed both online and by telephone. Select Help> Technical Support from the program menu to visit chiefarchitect.com.

Before contacting Technical Support, take a moment to see if the answer to your question is found in the program’s Help, Training Videos, or other online resources. When you contact us, you will be referred to these resources if the answer can be found there.

There are a number of things you can do to ensure a speedy answer to your question when you contact Technical Support.

• Select Help> About Chief Architect (PC) or Chief Architect> About Chief Architect (Mac) and make a note of the first characters of your Product Key and the program’s Build number.
• We periodically release updates to the current program version. Before contacting Technical Support, select Help> Download Program Updates and make sure you are running the most current update for your program version.
• When you encounter an error message, click the Send Report button if possible and copy the message’s exact wording. See “Error Messages” on page 1015.
• When calling Technical Support, have Chief Architect running on the computer where the problem occurs. This is necessary in order to troubleshoot the issue and verify that a solution is found.
• Be prepared to reproduce and describe the problem in detail. If we cannot reproduce the problem, there is a reduced chance that we will be able to resolve it.

Telephone Support

Our Technical Support team is committed to answering your questions as quickly as possible and in the order received. We can resolve most issues in
just a few minutes and are happy to help you find the best resource to answer your questions. So that we can quickly answer all calls, though, we may ask that you limit your inquiry to one question.

Chief Architect X12 users who participate in the Support and Software Assurance program should use the Priority Support telephone number provided in their SSA documentation.

Error Messages

Most common error messages have a known cause and simple resolution. When you encounter an error or warning message in Chief Architect, you can click the Check Knowledge Base button in the message box to launch your default internet browser to the Chief Architect Knowledge Base on our Web site, chiefarchitect.com.

If the message is discussed in an article it will display, providing information about the message and how best to avoid it.

It is important that abnormal errors be reported to Chief Architect Technical Support so that we can identify and resolve any problems.

The content of an error message is useful in diagnosing its cause. If you encounter an error message, make a note of the error number and the full text of the message. You can also click the Details button and copy the text into a text document or Online Support Center ticket.

If you encounter the error more than once, make a note of your steps prior to receiving the message.

Finally, check to see if there are program updates available. Program updates contain enhancements and other changes that allow the software to perform at an optimum level. Select Help> Download Program Updates from the Chief Architect menu and follow the instructions on our Web site, chiefarchitect.com.

Error Reporting

When an error occurs, you may have the option in the message box to send the report to Chief Architect by clicking the Send Report button in the error message box. A report containing technical details about the error, but no personal information, is sent to our Testing team for evaluation.

After clicking the Send Report button, please contact Technical Support with any additional information that you may have about the circumstances of the error: for example, the type of view that was open and the tool that was active.

Program Paths Dialog

Some technical issues can be caused by problems with support files used by Chief Architect. In the event of such an issue, Chief Architect Technical Support may direct you to the Program Paths dialog. This dialog displays a list of files utilized by the software along with the pathname of each.

To avoid unintended problems that could prevent you from using the software, it is strongly recommended that you make no changes to any of the files in this list except with the direct assistance of Technical Support.
Welcome to Chief Architect X12. This appendix has been written to help our upgrading customers make a smooth transition from earlier versions of Chief Architect to Chief Architect X12.

Chapter Contents

- Getting Started Checklist
- Considerations for Migrating Legacy Content
- Considerations for Migrating Legacy Settings
- Considerations for Migrating Legacy Templates
- Considerations for Legacy Files
- New and Improved Features by Chapter

Getting Started Checklist

There are many new features in Chief Architect X12, and many existing features have changed. The following checklist suggests steps you should take before migrating your files to Chief Architect X12. More information about each of these steps can be found after the checklist.

☐ 1. Review the List of New and Improved Features by Chapter

There are a number of important reasons why you should familiarize yourself with the new and improved features in Chief Architect X12:

- New and improved features allow you to produce drawings more efficiently, so it is to your advantage to use them.
- Some changes to existing functionality may affect your accustomed drawing style and thus your productivity if you are not aware of them.
- New features may affect your choice of settings in your template files, as well as your preferred Preferences settings.

See “New and Improved Features by Chapter” on page 1026.

☐ 2. Review the Considerations for Migrating Legacy Content

Legacy users of Chief Architect often have library catalogs and other custom content that they want to continue using. See “Considerations for Migrating Legacy Content” on page 1018.

☐ 3. Review the Considerations for Migrating Legacy Settings
Before migrating Preferences, Toolbars, or Hotkeys, bear in mind that legacy settings may not be best suited for using the new program version. See “Considerations for Migrating Legacy Settings” on page 1019.

4. Review the Considerations for Migrating Legacy Templates

Before migrating Templates, bear in mind that they may not be set up to take advantage of new tools in the new program version. See “Considerations for Migrating Legacy Templates” on page 1019.

5. Review the Considerations for Legacy Files

Before opening a plan or layout file created in a previous version of Chief Architect, be aware of potential changes to the file that could occur in the new program version. See “Considerations for Legacy Files” on page 1020.

Once you have learned about the new features in Version X12 and decided whether to migrate any custom settings from a legacy program version, launch Chief Architect X12. The first time you launch, the Migrate Settings dialog will give you the opportunity to bring legacy settings and content forward into Version X12. See “Starting Home Designer Pro” on page 185.

Considerations for Migrating Legacy Content

Legacy users of Chief Architect often have a wealth of library catalogs and other custom content that they have built over time and want to continue using.

Legacy Library Content

There are several ways that legacy library catalogs can be brought into Chief Architect X12. See “Library Content” on page 696.

If you have Chief Architect version X5 through X11 installed on your computer, the Migrate Settings dialog will display after you activate the license, allowing you to migrate library content as well as a selection of other settings for use in Chief Architect X12. If multiple legacy versions are present on the system, only the data associated with the most recent will be migrated. See “Migrating Content and Settings” on page 186.

You can import library files from versions X1 through X5 at any time by selecting Library> Import Library (.calib, .calibz) from the program menu.

In addition, library files from versions 10 and prior can be imported by selecting Library> Convert Legacy (.alb) Library Files from the program menu. Bear in mind, though, that older content may not be of the same quality as currently offered catalogs and that legacy Manufacturer catalogs may be out of date. See “Importing Library Catalogs” on page 699.

Custom Graphics Files

Chief Architect can use graphics files regardless of where they are stored on your system; however, it is a good idea to keep your data organized in one location. If you have custom graphics files, including textures, images or backdrops that you used in a previous program version, you can copy them manually using your operating system for use in Chief Architect X12. See “Chief Architect Data” on page 40.

• Copy custom texture files to the Chief Architect X12 Textures folder located in the Chief Architect X12 Data folder.
• Copy custom image files to your Chief Architect X12 Images folder located in the Chief Architect X12 Data folder.
• Copy custom backdrop files to your Chief Architect X12 Backdrops folder located in the Chief Architect X12 Data folder.
In Chief Architect X11 through X1, custom graphics were saved in the Chief Architect Data folder, as they are in version X12. In version 10, they were located in the program’s installation directory, in folders that began with “My”. Custom backdrops, for example, were saved in “My Backdrops”.

Texture and image files are not listed in the Library Browser. These files can be assigned to material and image objects, however, which are stored in the library so it is important to retain them. There are several tools available for adding materials and images to the library. For more information, see “Images” on page 854 and “Creating Materials” on page 764.

Considerations for Migrating Legacy Settings

The Migrate Settings dialog lets you migrate settings from the most recent legacy installation of Chief Architect into Version X12. If you have extensively customized your Preferences, Toolbars, or Hotkeys, you may want to continue using those settings. Before doing so, though, it is important to consider that you may make it harder to take advantage of new tools and functionality in Version X12.

Preferences Settings

Although you can migrate your Preferences settings from Versions X5 through X11 into Version X12, the settings that are available in Version X12 may differ from previous program versions. You should review all the settings in the Preferences dialog to make sure that they are set to suit your drawing needs. For more information, see “Preferences Dialog” on page 79.

Custom Toolbar Configurations

It is possible to migrate toolbar configuration files from previous versions to Chief Architect X12; however, it is also possible that your migrated toolbars will be missing new tools available in Version X12.

We recommend that you set up your custom toolbars the way you would like them in Chief Architect X12. You may find it most effective to customize your toolbars as you get used to working in the new program version, rather than beforehand. See “Toolbar Configurations” on page 108.

Custom Hotkeys

Like toolbar configurations, legacy hotkeys can be migrated into Chief Architect X12. Bear in mind, though, that occasionally the default hotkeys are modified to accommodate new features or changes in default system hotkeys.

Considerations for Migrating Legacy Templates

Chief Architect X12 installs a selection of template plan and layout files that have been set up to take advantage of the program’s updated tools and features. See “Template Files” on page 73. Although you can migrate your template files for use in Version X12, for best results it is recommended that you either:

- Use the installed templates when creating new plans and layout files in Chief Architect X12
- Use the installed templates as the basis for creating new custom templates.

If you choose to continue using custom template files that you created in a previous program version, it is very important that you take the time to carefully review all the default settings in the file, making sure that they will continue to suit your needs in X12. First, make copies of your custom templates in the Chief Architect X12 Templates directory. The Templates directory is located in the Chief Architect X12 Data folder. Next, open each template as you would a regular plan or layout file, by selecting File> Open, and then save any changes you make by selecting File> Save.

If you do choose to continue using a legacy template plan, it is best to also use a legacy layout template from the same program version, as well. As with a template plan, take the time to go through the layout template’s defaults and make sure they are suited for use in X12 and that their line weight scales do not conflict with those in your template plans. See “Line Weights and Scaling” on page 992.
Considerations for Legacy Files

As in all software, every new program version introduces changes to its functionality as well as to the user interface. If you choose to bring a project forward, be sure to take a few moments to look it over in the new version and confirm that the new functionality does not require you to make any modifications. Particularly if you have an approaching deadline, you may find it best to finish the current project in the version of the software in which you began it.

Chief Architect X12 can open the .plan and .layout files from prior versions. Files with the older .pl and .la file extensions are no longer supported, however, and cannot be opened by Chief Architect X12. Before opening any files created in earlier versions of Chief Architect, it is important to be aware of changes made in the newest version and the effect they may have on your legacy plan and layout files.

Please note that files saved in the latest program version cannot be read by older versions of the software. When a legacy file is saved in the version X12, an unaltered copy of the original file is created in the Chief Architect X12 Data folder, under Archives, which can still be opened in the original version. See “Legacy Archive Files” on page 46.

• “For Files Created in Version X10 and Prior” on page 1021
• “For Files Created in Version X8 and Prior” on page 1022
• “For Files Created in Version X7 and Prior” on page 1022
• “For Files Created in Version X6 and Prior” on page 1022
• “For Files Created in Version X5 and Prior” on page 1023
• “For Files Created in Version X4 and Prior” on page 1023
• “For Files Created in Version X3 and Prior” on page 1024
• “For Files Created in Version X2 and Prior” on page 1024

For Files Created in Version X11 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X11 or prior, bear in mind the following:

1. Perspective Crop Mode

In Chief Architect X8 through X11, Perspective Crop Mode allowed older functionality governing zooming in cameras from Version X7 and prior to be preserved in saved cameras in legacy plans migrated forward. This deprecated tool has been removed from the program’s menu and toolbars in Version X12, although it can be migrated with legacy toolbars and hotkeys. Saved cameras in legacy plans with this behavior enabled may become distorted if you pan or zoom in the view. To permanently disable this behavior in a camera view and resolve the resulting distortion, select Window> Fill Window or press the F6 key. See “Zooming” on page 799.

2. Layout Layer Sets

In Chief Architect X11 and prior, the Send to Layout dialog had a sticky Make Copy of Active Layer Set option that created a new layer set for the layout view to help preserve layer settings in that view. This option was removed in Version X12 to encourage use of the multiple saved plan views. Saved plan views did not exist in Version X9 and prior, however, so if you open a plan originally created in Version X9 or prior, extra care must be taken to make sure layout views do not use the same layer set. See “Layout View Layer Sets” on page 969.

3. Materials List Formulas and Ruby Macros
Name-Value Pairs returned length, area, and volume measurements as Floats. In Version X12, these values are reported using the Measurement class that includes both a numeric value and a unit. Older Ruby code may change behavior when migrated into Version X12. When a legacy Ruby macro or materials list formula is evaluated, the program will automatically check its version and prompt you to migrate it to the newest version. See “Migrating Legacy Ruby Code” on page 1011.

For Files Created in Version X10 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X10 or prior, bear in mind the following:

1. Marker and Elevation Point Heights

In Chief Architect X10 and prior, the # sign could be added to the label of a Marker or Elevation Point and the label would report the height of the Marker or the Elevation Point’s elevation. In Version X12, text macros are used to report this information instead. In legacy plans, any # signs in Marker or Elevation Point labels will be replaced by the %heightf% or %elevationf% macro. See “Elevation Point Specification Dialog” on page 914.

2. Glass Shower Walls

In Chief Architect X10 and prior, the “Glass Shower” wall type was included in installed template files and like other wall types, built to the structural layer of floors and ceilings and to the Main Layer of adjacent walls. In Version X12, this wall type has the new Partition Wall attribute and instead builds to floor, ceiling, and wall surfaces. When a legacy file is opened in Version X12, this wall type will be modified to have Partition Wall checked automatically and existing walls will be affected by this change. See “Partition Walls” on page 276.

3. Fixture Schedules

In Chief Architect X10 and prior, 3D Elevations and Perspectives in Fixture Schedules showed cabinet fixtures inserted into a cabinet. In Version X12, fixtures are shown on their own, even when they are inserted into an object in the plan. When a legacy file is opened in Version X12, any fixture schedules showing 3D views of objects may be affected by this change. See “Fixture and Furnishing Schedules” on page 711.

For Files Created in Version X9 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X9 or prior, bear in mind the following:

1. Parallel Lights

In Chief Architect X9 and prior, Parallel Light sources could be specified for electrical light fixtures and Added Lights. In Version X12, Parallel Lights are no longer supported. In legacy plans opened in Version X12, any Parallel Light sources will be converted to Spot Lights. See “Lighting” on page 817.

2. Brick Ledges

In Chief Architect X9 and prior, brick ledges were not represented in floor plan view. In Version X12, brick ledges are drawn in plan view on the “Slabs” layer in stem wall and grade beam foundations, and on the “Walls, Foundation” layer in monolithic slab foundations. When a legacy file is opened in Version X12, brick ledges, if present, will be drawn. See “Brick Ledges” on page 269.

3. Window Types

In Chief Architect X9 and prior, the %type% text macro for windows reported some Window Types using abbreviations. In Version X12, the abbreviations were replaced with full words. When a legacy file is opened in Version X12, the width of Window Schedules may be affected, as may the width of columns in saved Materials Lists. See “Text Macros” on page 400, “Schedules and Object Labels” on page 505, and “Materials Lists” on page 943.

4. Joist Direction Lines

In Chief Architect X9 and prior, Joist Direction Lines described all platform framing as “joists” and used nominal lumber sizes in whole inches in US Unit plans. In Version X12, the platform’s framing Structure Type
is reported and in US Unit plans, the size is described in fractional inches. When a legacy file is opened in Version X12, Joist Direction Lines will use the new, more accurate labeling. See “Joist Direction Lines” on page 644.

5. Custom Schedule Columns

In Chief Architect X9 and prior, custom schedule columns could be created by adding a Sub Category to a type of object on the Categories panel of the Preferences dialog. In Version X12, Sub Categories can no longer be created in this manner. When a legacy file is opened in Version X12, any Sub Categories shown as custom schedule columns will be converted to Custom Fields. See “Custom Object Fields” on page 510.

6. Registered User Text Macros

In Chief Architect X9 and prior, a selection of Registered User Text Macros could be inserted into Texts, Callouts, and Markers. These macros no longer displayed any data and in Version X12, they are no longer recognized. When a legacy file is opened in Version X12, any Registered User macros inserted into text objects are treated as regular text. See “Text Macros” on page 400.

For Files Created in Version X8 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X8 or prior, bear in mind the following:

1. Layer Names

In Chief Architect X8 and prior, turning off the Modify Name in all Layer Sets option made it possible to assign different names to the same layer in different layer sets. In Version X9, this option was no longer supported. When a legacy file is opened in X12, the layer names used in the currently active layer set will be retained and any other layer names in other layer sets will be discarded. See “Layer Sets” on page 147.

For Files Created in Version X7 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X7 or prior, bear in mind the following:

1. Boxed Eaves

In Chief Architect X8, improvements to the generation of Boxed Eaves ensure that they extend into exterior rooms with “Use Soffit Surface for Ceiling” specified when located between the roof baseline and an interior room. In some legacy plans opened in Version X12, the Length value for Boxed Eaves may need to be modified in the Roof Plane Specification dialog. See “Options Panel” on page 589.

2. Uppercase Text

The Uppercase option was added to Text Styles in Version X8, whereas in Version X7 and prior, it was an option for Room Labels and Schedules only. In legacy plans opened in Version X8, any Schedules present in the drawing will be assigned a Custom Text Style, as will their associated Schedule Defaults. If any Schedule Default is set to Use Layer for Text Style and no objects are present on that layer, a new Schedule Text Style will be created and assigned to that layer. Room Labels are treated similarly: if any are present, they and their defaults will use a Custom Text Style. If a given Room Label or Schedule has been sent to layout more than once and was set to use different Text Styles in each layout view, it is possible that its appearance may be affected in some views. See “Text Styles” on page 398.

For Files Created in Version X6 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X6 or prior, bear in mind the following:

1. Built-in Appliances

In Chief Architect X6 and prior, some appliance symbols designed to be inserted into base cabinets had incorrect sizing data. In legacy plans opened in Version X12, these appliances will not fit into the cabinet
Considerations for Legacy Files

correctly and will need to be replaced. Built-in dishwashers are particularly affected. See “Built-In Sinks and Appliances” on page 462.

2. Formatting of Bulleted and Numbered Lists

In Version X7, various improvements were made to the way lines of Rich Text are spaced. In legacy plans opened in Version X7, Rich Text objects with bulleted and numbered lists may require adjustments. See “Paragraph Options Dialog” on page 378.

3. Chief Blueprint Font

The Chief Blueprint font was improved for Version X6, with decreased top and bottom spacing. The change in spacing may increase the overall height of text objects using this font in X6 files opened in Version X12. X5 and prior legacy files will not be affected by this change. See “Chief Blueprint Font” on page 373.

For Files Created in Version X5 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X5 or prior, bear in mind the following:

1. Name-Value Pairs for Doors and Windows

In Version X6, the NVPs door_style_name, door_type_name, and window_type_name were shortened to style_name and type_name. Any object labels or text macros using these NVPs in legacy plans opened in Version X12 will need to be replaced. See “Working with Name-Value Pairs” on page 1003.

For Files Created in Version X4 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X4 or prior, bear in mind the following:

1. Roof Overhangs and Framing

In Chief Architect X4 and prior, roof overhangs were measured to the outside of the subfascia, whereas in Version X5 and later, they are measured to the outside of the fascia or shadow boards, if present. In legacy plans opened in Version X12, this will not affect the appearance of roof planes in floor plan view because in X4 and prior, roof plane polylines represented the projected framing area whereas in Version X12 they represent the total projected area. But, the position of the fascia and subfascia will shift, as will the length of the rafters. See “Eave and Gable Overhangs” on page 593.

2. Door Swing Direction and Materials

In Chief Architect X4 and prior, exterior doors that swing outward display interior material on exterior side of door. This was corrected in Version X12. Doors modified to work around the old behavior could be affected in legacy plans opened in Version X5. See “Changing Door Swings” on page 409.

3. Door Swing Direction and Louvers

Improvements to door louver direction may affect louvers in all doors with the exception of bifold doors. See “Changing Door Swings” on page 409.

4. Wrapped Door/Window Lintels and Window Sills

In Chief Architect X4 and prior, wrapped lintels and sills extended out further than those that were not wrapped. In legacy plans opened in Version X12, the extents of wrapped lintels and sills will be adjusted so that they equal their Extend setting. See “Door Casing” on page 409 and “Window Casing, Sills, and Millwork” on page 437.

5. Cabinet Feet

The offsets for cabinet foot millwork symbols in Version X4 and prior were set per millwork symbol to insert into cabinets effectively. In Version X12, the offset is set in the Cabinet Specification dialogs. When legacy plans are opened in Version X5, cabinet foot offsets are set to 0 and transferred to their containing cabinet, if one exists. Any customized or independently placed cabinet feet will be affected. See “Pilasters, Feet, and
6. Object Labels in Cross Section/Elevation Views

If a “Label” layer is turned on in a cross section/elevation view and objects of that type are visible in the view, then those objects’ labels will display in that view when the plan is opened in Version X12. See “Object Labels” on page 515.

7. Transparent Materials

In Chief Architect X4, materials assigned to the Transparent Material Class for ray tracing were visible in rendered views even when their Index of Refraction was set to 1.0. When legacy plans are opened in Version X12, Transparent materials with an Index of Refraction of 1.0 are transferred to the General Material class and assigned a Transparency value of 100%. This will not affect these materials’ appearance in ray trace views, but will make them completely invisible in rendered views. See “Properties Panel” on page 774.

8. Registered User Text Macros

In Chief Architect X4 and prior, a selection of Registered User Text Macros could be inserted into Texts, Callouts, and Markers. These macros reported information that was provided when the program was installed and registered on the computer. In Version X5 and later, the program no longer collects registered user information. When a legacy file is opened in Version X12, any Registered User macros inserted into text objects are treated as regular text. See “Text Macros” on page 400.

9. Invisible Beams

The legacy Invisible Beam check box was removed from the Wall Specification dialog. When legacy plans are opened in Version X12, any Invisible Beam walls will be converted to Invisible Walls. See “General Panel” on page 297.

For Files Created in Version X3 and Prior

In addition to the above recommendations, if you wish to open files created in Chief Architect Version X3 or prior, bear in mind the following:

1. Text Styles

The appearance of a number of objects that include text - including object labels, the North Pointer, Sun Angles, Joist Direction Lines, the Up/Down arrows for stairs and ramps - can now be controlled using Text Style. Their appearance may be altered somewhat in legacy plans opened in Chief Architect X12. See “Text Styles” on page 398.

2. Light Sources

The illumination created by light fixtures and Added Lights was improved in Chief Architect X12. Lighting in legacy plans may appear noticeably brighter when viewed in version X12. See “Light Data Panel” on page 499.

For Files Created in Version X2 and Prior

If you wish to open files created in Chief Architect Version X2 or prior, bear in mind the following file management changes and structural enhancements:

1. Legacy file formats

Chief Architect 9.5 and prior files were saved in .pl and .la the file formats. These file formats files are no longer supported and cannot be opened in version X12. See “Compatibility with Previous Versions” on page 39.

2. Material textures, images, and backdrops

Chief Architect X2 and prior installed with a catalog of library content, including a selection of material textures, images, and backdrops. This library catalog is no longer installed with the program because it is now available for download on-demand, so it will be possible to open a legacy plan in version X12 and encounter numerous missing file warnings. To avoid this, we recommend using the Export Entire Plan feature in the
Considerations for Legacy Files

original program version to create a folder that includes the plan and all associated textures, images, and backdrops before opening this file in X12. This tool is renamed Backup Entire Plan in version X12. See “Backup Entire Plan or Project” on page 53.

3. Floor and ceiling finish thicknesses

In Chief Architect X2 and prior, floor and ceiling finish layers were not modeled in 3D, and objects such as railings, stairs, landings, cabinets, fixtures, and furnishings measured their Floor to Bottom height from the subfloor. These objects now measure their Floor to Bottom height from the floor finish surface by default, so it is possible that you may notice height changes for these objects - particularly in saved, annotated cross section/elevation views. See “Floor and Ceiling Platform Definitions” on page 325.

4. Riser heights and landing thicknesses

The default Best Fit Riser Height for stairs that do not reach the next level has been updated from 9” (225 mm) in version X2 and prior to 6 3/4” (169 mm) in Chief Architect X12. This may affect the riser heights of stairs, as well as the thicknesses of landings attached to those stairs. See “Staircase Specification Dialog” on page 565.

5. Auto Adjust Height

The Follow Terrain option in some specification dialogs was replaced by the Auto Adjust Height check box. If a cabinet, fireplace, fixture, furniture, or other library symbol had Follow Terrain unchecked in version X2 or prior and was located in a room with a floor height other than the default for the current floor, then the object’s Floor to Bottom Height will change to equal that room’s floor height. The object’s position in the model will not change, however. See “Terrain Height vs Floor Height” on page 900 of the Reference Manual.

6. Adjustable Thickness Walls

In Chief Architect X2 and prior, generic, single-layer wall types were available for use. When a legacy plan file is opened in version X12 and these wall types are detected, they are replaced by an updated, non-generic wall type. Framed walls and Railings will also acquire 1/2” (13 mm) thick layers of sheetrock on each side. Railings that define a Deck room with Advanced Deck Framing Built will not acquire sheetrock layers. See “Legacy Wall Types” on page 294.

7. Stairwells defined by railings

Interior railings that used a generic, single-layer wall type drawn in older program versions will acquire layers of sheetrock when the plan is opened in version X12. This can affect the appearance of staircases where they join to a floor platform. To address this issue, select the railing and move it 1/2” (13 mm) away from the top edge of the staircase. See “Creating a Stairwell Manually” on page 564.

8. Deck rooms

In legacy plans opened in Chief Architect X12, Deck rooms with Advanced Deck Framing built retain the framing but have Automatic Deck Framing turned off by default. Decks with no Advanced Deck Framing built are converted to Balcony rooms. See “Decks” on page 323.

9. Material definitions and light sources

Settings in the Define Material dialog that affect materials’ appearance of brightness have been modified. The Ambient setting was removed, and the Diffuse setting for materials in legacy plans will be set to 100% when opened in version X12.

The Quality setting for light sources set to use Soft Shadows in ray tracing was also modified. Lights using Soft Shadows in legacy plans will be set to use Medium quality. The Light Diameter of light sources in legacy plans is capped at 4” (100 mm). See “Texture Panel” on page 771 and “Light Data Panel” on page 499.

10. Structural Member Reporting

When a plan created in Chief Architect X2 or prior is opened in Chief Architect X12, Materials Lists are set to calculate Total Lineal Length. For a combination of lineal length and piece count, select Mixed Reporting in the Structural Member Reporting dialog. See “Structural Member Reporting” on page 945.
11. Fill New Framing Members

In Chief Architect X2 and prior, Fill New Framing Members was view-specific; in Chief Architect X12 it applies to the entire plan. As a result, it is turned off by default in legacy plans opened in version X12. See “CAD Defaults Dialog” on page 226.

New and Improved Features by Chapter

The following is a list of new and improved features in Chief Architect Version X12. Where possible, cross-references to additional information has been provided.

Installation

• City Blueprint and Country Blueprint fonts are no longer installed with Chief Architect. See “Chief Blueprint Font” on page 373.

Program Overview

• New Crosshairs toggle button. See “Crosshairs” on page 27.
• The Status Bar now displays a description of a tool both when the mouse pointer is highlighting it and when it is active. See “The Status Bar” on page 33.

Project Management

• Schedules are now listed in the Project Browser. See “Project Browser” on page 56.
• Files and views can now be saved using the contextual menu in the Project Browser. See “Project Browser” on page 56.

Preferences and Default Settings

• Annotation Sets have been renamed Default Sets. See “Default Sets” on page 71.
• Revision Clouds are now included in Default Sets. See “Default Sets” on page 71.
• The Save as Template tool now has options for purging data from a file. See “Save as Template” on page 74.
• The Active Defaults dialog now states the name of the currently active view in its title bar and has a Rename option for saved defaults. See “Active Defaults Dialog” on page 69.
• The Reset Side Windows option now resets the panes in the Library Browser. See “Reset Options Panel” on page 104.
• New Reset Migration option allows you to be reprompted to migrate contents and settings from an older program version. See “Reset Options Panel” on page 104.
• New “Force Light” and “Force Dark” options to use Light or Dark Mode in the Mac version of Chief Architect regardless of the system settings. See “Colors Panel” on page 82.

Window and View Tools

• New Active View Tools. See “Active View Tools” on page 120.
• The reorganized Saved Plan View Specification dialog has three panels. See “Saved Plan View Specification Dialog” on page 122.
• New Save options in the Saved Plan View Specification dialog let you control if and when changes to the view are saved. See “General Panel” on page 122.
• New Link to Layout option in the Saved Plan View Specification dialog. See “General Panel” on page 122.
• Pony Wall display settings are now available in the Saved Plan View Specification dialog. See “General Panel” on page 122.
• The Aerial View side window has been removed from the program. See “Window and View Tools” on page 119.

Creating Objects

• The Copy and Paste in Place edit tool is now located in the Edit menu, and can be added to the toolbars and/or assigned a custom hotkey. See “Copying and Pasting Objects” on page 136.
• New Paste Hold Position edit tool. See “Copying and Pasting Objects” on page 136.

Displaying Objects

• The background color and transparency for fill patterns can now be specified. See “Fill Styles” on page 155.
New and Improved Features by Chapter

1027

Editing Objects

- New **Style Palette** tool lets you apply whole sets of attributes to multiple objects to quickly change the look of a room. See “Style Palettes” on page 217.
- New **Point to Point Center** tool lets you quickly center an object between two points. See “Using Point to Point Center” on page 198.
- The Break Line edit tool has been renamed **Break**. See “Break” on page 200.
- Improved feedback using the **Point to Point Move** edit tool. See “Using Point to Point Move” on page 193.
- The **Trim Object(s)** and **Extend Object(s)** edit tools are now available for elevation lines and polylines. See “Trim and Extend” on page 212.
- New **Layer Options for Converted Polyline** in the Convert Polyline dialog. See “Break” on page 200.
- Improved granularity of object categories in the **Delete Objects** dialog. Walls, cameras, Added Lights, Slab Surfaces, and additional framing objects can now be deleted, as well. See “Delete Objects Dialog” on page 221.
- The new **Marquee Mode** for the Style Palette Painter, Fill Style Painter, and Object Painter lets you apply attributes to objects by drawing a marquee around them instead of clicking on them. See “Painter Modes” on page 216.
- Undo now works in the Materials and Master Lists. See “Undo and Redo” on page 223.

CAD Objects

- An existing CAD Detail can now be copied. See “CAD Detail Management Dialog” on page 255.

Walls, Railings, and Fencing

- New **Delete All Unused** option lets you remove all unused wall types from the current plan. See “Wall Type Definitions Dialog” on page 294.
- The Wall Break tool has been removed from the menus in favor of the **Break** edit tool. See “Wall Length” on page 283.
- Enhanced control over the **Start/End Posts** on railings. See “Rail Style Panel” on page 309.
- New **Use Wall Width** check box for railing newels. See “Newels/Balusters Panel” on page 310.
- A Wall Cap can now be specified for any wall: not just Pony Walls. See “Wall Cap Panel” on page 306.
- New setting in the **General Wall Defaults** dialog lets you turn off the **Auto Reverse Wall Layers** behavior. See “General Wall Defaults” on page 262.

Rooms

- New tools for creating Trey Ceilings. See “Trey and Coffered Ceilings” on page 237.
- New **Calculate Structural Materials for Deck** edit button for Deck rooms. See “Room Moldings” on page 331.
- **COMPONENTS** and **SCHEDULE** panels have been added to the **Room Specification** dialog. See “Room Specification Dialog” on page 332.
- Moldings can now be specified in the **Room Type Defaults** dialogs. See “Room Moldings” on page 331.
- Crown moldings are now offset from the ceiling rather than the floor. See “Room Moldings” on page 331.

Dimensions

- New **Add Segments** edit handles allow you to increase the length of a dimension line and locate additional objects at the same time. See “Editing Dimension Lines” on page 361.
- New **Suppress Dimension Value** option lets you completely replace the information in a dimension line label. See “Add Additional Text” on page 365.
• New Mark as Centerline and Remove Centerline Mark edit tools are available for a selected extension line. See “Mark as Centerline” on page 365.

Text, Callouts, and Markers
• Improved interface in the Find/Replace Text and Check Spelling dialogs. See “Find/Replace Text and Spell Check” on page 387.
• New “Selected Objects” scope in the Find/Replace Text dialog. See “Find/Replace Text and Spell Check” on page 387.
• Referenced Object macros can now be inserted into text objects with arrows snapped to other objects. See “Text Macros” on page 400.
• Ruby macro code can now be typed into text objects and object labels. See “Text Macros” on page 400.
• The Note Specification dialog now has a New Note Type button. See “Note Panel” on page 397.
• The Note Type Management dialog is now available in 3D views. See “Note Type Management Dialog” on page 396.
• New Export and Import Note Types tools. See “Text Macros” on page 400.
• Improved ability to search for % character using the Find/Replace Text tool. See “Find/Replace Text and Spell Check” on page 387.
• The deprecated Special Use option for lines with arrows has been removed from the program. See “Text Arrows” on page 389.

Doors and Windows
• New “Match Interior” option for exterior door handles and locks. See “Hardware Panel” on page 421.
• New Box Header option produces horizontal top and bottom header rails. See “Framing Panel” on page 422.
• Panel door top rail and side stiles can now be specified separately to produce offset lites. See “General Panel” on page 413.
• The Automatic behavior governing door and window Header Type is both improved and now optional, allowing you to specify any header type, regardless of the wall’s Main Layer material. See “Framing Panel” on page 422.

Cabinets
• New Add Waterfall to Selected Edge edit tool for Custom Countertops. See “Waterfall Countertops” on page 466.
• The Reverse Appliance option now applies to individual appliances inserted into a cabinet instead of all appliances in that cabinet. See “Accessories Panel” on page 482.
• Top-mounted appliances and fixtures can now be selected, offset, and reversed in the Cabinet Specification dialog. See “Accessories Panel” on page 482.
• The interior material for cabinet boxes can now be specified independent of the exterior box material. See “Front/Sides/Back Panel” on page 478.
• Countertops, backsplashes, and toe kicks can each be suppressed on an individual cabinet by unchecking a box. See “General Panel” on page 475.

Schedules and Object Labels
• New Custom Schedule Categories. See “Schedule Categories” on page 507.
• Schedules can now be set to include multiple objects types. See “Labels Panel” on page 515.
• Objects can now be assigned to categories other than their initial system category, as well as assigned to multiple categories. See “Label Panel” on page 516.
• The Additional Text settings for Automatic labels were moved from the Schedule Specification dialog to the LABEL panel of applicable objects’ specification dialogs. See “Label Panel” on page 516.
New and Improved Features by Chapter

- The **Object Information** and **Schedule** panels have been added to the specification dialogs for a variety of objects. See “Object Information Panel” on page 519 and “Schedule Panel” on page 519.

- Rope Lights can now display thumbnail images in schedules. See “Object Previews” on page 510.

- New **Include Leading Zeros** option for schedule callout labels. See “Labels Panel” on page 515.

- The deprecated **Show Labels** check box was removed from the **Schedule Specification** dialog. See “Labels Panel” on page 515.

Stairs, Ramps, and Landings
- New Stringer options for Stairs. See “Stringers Panel” on page 569.

- The **Break** edit tool is now available for stairs and ramps. See “Creating Stair and Ramp Subsections” on page 552.

- The **Disconnect Edge** edit tool is now available for stairs and ramps. See “Creating Stair and Ramp Sections” on page 552.

- L and U Shaped Stairs can now be created with multiple landings. See “New Shaped Staircase Dialog” on page 549.

- Connected stair sections can now have different widths. See “Stair and Ramp Sections and Subsections” on page 552.

- Merged stair or ramp sections now move along with a selected landing when it is moved. To move landings and/or merged stair sections separately, hold down the Alt key. See “Using the Mouse” on page 551.

- Stairs now bump into landings and other stairs when moved. See “Using the Mouse” on page 551.

Roofs
- New structural diagram in the **Roof Plane Specification** dialog illustrates the location of the **Height/Pitch Lock** point as well as the selected setting. See “General Panel” on page 598.

- The **Components** panel has been added to the **Roof Plane**, **Ceiling Plane**, and **Roof Hole**/ **Skylight Specification** dialogs. See “Roofs” on page 581.

- The **Make Roof Baseline Polylines** check box is no longer active when **Build Roof Planes** is checked in the **Build Roof** dialog. See “Roof Baseline Polylines” on page 602.

- A preview of the Default Ridge Cap profile now displays on the **RIDGE CAPS** panel. See “Ridge Caps Panel” on page 600.

- The deprecated Change Roof Pitch or Height dialog has been removed from the program. See “Editing Roof and Ceiling Planes” on page 594.

Framing
- New **Framing Groups** produce separate floor and ceiling platforms for rooms in as-built and addition areas. See “Framing Groups” on page 626.

- New **Build Framing for Selected Object(s)** edit tool generates floor framing around a selected room. See “Build Framing for Selected Object(s)” on page 650.

- The Fill Style for a header can now be specified for plan view as well as Wall Details. See “Fill Style Panel” on page 653.

- The **Components**, **Object Information**, and **Schedule** panels were added to the **Framing Specification** dialog. See “Framing Specification Dialog” on page 651.

Trusses
- The **Components**, **Object Information**, and **Schedule** panels were added to the **Truss Specification** dialogs. See “Trusses” on page 655.

Trim and Moldings
- New **Auto Offset** option for moldings assigned to objects. See “Moldings Panel” on page 680.

- New **Rotate Profile** option for molding profiles assigned to objects. See “Moldings Panel” on page 680.

- New **Make Copy** option for moldings assigned to objects. See “Moldings Panel” on page 680.

- The **Molding Polyline** and **3D Molding Polyline Specification** dialogs now have the **Components** panel. See “Molding Polyline Specification Dialog” on page 686.
The Library

- New Find Original in Library edit tool lets you select an object in your plan and find it in the library. See “Find in Library” on page 696.
- The Select Library Object dialog now opens to the location of the selected object when the Replace from Library tool is used. See “Replace From Library” on page 706.
- When a custom location for the User Catalog is specified, Referenced Files are now moved there, as well. See “Library Content Location” on page 697.

Custom Symbols

- Symbols can no longer be assigned to a “Cabinet” category when imported into the program. See “Custom Symbols” on page 713.
- The Symbol Name can now be specified in the Convert to Symbol dialog. See “Convert to Symbol” on page 721.
- The Default Light Offset setting was removed from the Symbol Specification dialog for symbols as they were imported. See “Options Panel” on page 717.

Architectural Blocks

- The Add to Library As edit tool is now available for architectural blocks. See “Adding Architectural Blocks to the Library” on page 727.
- Rope Lights can now be included in Architectural Blocks. See “Adding Architectural Blocks to the Library” on page 727.

Other Objects

- The shapes of Polyline Solid and 3D Box edges are now editable in all views. See “Editing Primitives” on page 733.
- New Explode Shape and Solid Feature edit tools for primitives. See “Solid Tools” on page 734.

Materials

- The selected object preview shape in the Define Material dialog is now retained. See “Define Material Dialog” on page 769.

3D Views

- New Display Openings Independent of Walls and Roofs option lets you display doors, windows, and skylights in 3D views when their containing wall or roof is not shown: for example, in Framing Overviews. See “3D View Defaults Dialog” on page 782.
- New Hide Camera-Facing Exterior Walls option allows you to view the interior rooms of a structure while rotating around the exterior. See “Camera Panel” on page 806 and “Walkthrough Options Dialog” on page 872.
- Views can now be navigated using a gamepad. See “Gamepads” on page 794.
- Camera and cross section/elevation views now have Selected Defaults settings in their specification dialogs. See “Selected Defaults Panel” on page 808.
- The Camera Bumps Off Walls setting is now off by default in installed template files. See “3D View Defaults Dialog” on page 782.
- The deprecated Perspective Crop Mode has been removed from the program’s menu and toolbars. See “Zooming” on page 799.
- New options for updating lighting both automatically and on demand. See “Virtual Reality” on page 802.

3D Rendering and Ray Tracing

- New Light Sources options let you specify a Light Set for use in ray tracing. See “Lighting Panel” on page 843.

Pictures, Images, and Walkthroughs

- The Point to Point Resize edit tool now has a Retain Aspect Ratio option. See “Using Point to Point Move” on page 193.
- Improved feedback using the Point to Point Resize edit tool. See “Using Point to Point Move” on page 193.

Importing and Exporting

- Exported COLLADA files now include light sources. See “DAE Format” on page 895.
- Exported 3D Viewer files now include light sources and information about light fixture glass emissive effects. See “Export Chief Architect 3D Viewer File” on page 880.
New and Improved Features by Chapter

- DXF/DWG files can now be imported into layout. See “Import Drawing Assistant” on page 883.

Roads and Sidewalks
- The Default Curb Profile button now in the Road Specification dialog now loads the curb profile from the Road Defaults dialog. See “Curb Panel” on page 932.

Plants and Sprinklers
- The COMPONENTS panel is now available in the specification dialog for Sprinkler Lines and Sprinkler Splines. See “Sprinkler Specification Dialogs” on page 941.

Materials List
- Improved Materials List Polylines can now calculate materials for multiple floors and have labels. See “Materials List Polylines” on page 953.
- Materials List Polylines and Calculate from Area marquees now have a defaults dialog. See “Materials List Polyline Specification Dialog” on page 953.
- A saved Materials List can now be copied. See “Materials List Management” on page 944.
- **Undo** can now be used in the Materials List. See “Materials Lists” on page 943.

Layout
- Multiple Layout files can now be open simultaneously. See “Layout” on page 961.
- The Make Copy of Active Layer Set option in the Send to Layout dialog has been replaced by the new Link Saved Plan View check box. See “Send To Layout Dialog” on page 965.
- Layout pages can now be duplicated. See “Adding and Deleting Pages” on page 978.
- The obsolete Show Layout tool was removed from the program. See “Layout” on page 961.
- The deprecated Merge Generated Lines setting was removed from the Send to Layout dialog. See “Send To Layout Dialog” on page 965.

Ruby in Chief Architect
- The Text Macro Management dialog is now available in 3D views. See “Text Macro Management Dialog” on page 1008.
- New Ruby Measurements and NumberFormatter classes. See “Measurement and NumberFormatter Classes” on page 1005.
- New Name-Value Pairs for cabinets, doors, windows, and stairs. See “Working with Name-Value Pairs” on page 1003.
- Multiple text macro .json files can now be imported at once. See “Text Macro Management Dialog” on page 1008.
Index

Numerics
360 Panorama Export .. 896
3D
Backdrops ... 809
Box .. 732
Data Import ... 892
Delete Surface ... 792
Face .. 732
Mice .. 27
Molding Polyline ... 684
Origin .. 714
Symbols, Importing ... 892
3D Box
Specification Dialog ... 738
3D Molding Polyline
Specification Dialog ... 687
3D Roof Designer ... 594
3D View Defaults Dialog 782
3D Views
Display .. 790
Editing .. 800
Floor Overview ... 786
Framing Overview ... 786
Full Overview ... 786
Line Weights .. 992
Overviews .. 784
Save .. 805
Working in .. 800
3D Wall Designer .. 273
3DS Files
Export .. 895

A
Absolute Location
New point .. 229
Active Layer Display Options 149
Active Layer Set Control 147
Add to Style Palette ... 217
Added Lights ... 818
Adding
Floor Between Existing Floors 539
to the Library .. 700
Toolbar Buttons .. 112
Adjust
Effects ... 849
Image Properties .. 849
Material Definition ... 763
Wall Angle .. 93
Adjust Lights Dialog ... 820
Advanced
Splines ... 188
Alcove Roofs ... 611
Align
Curved Stairs Between Floors 199
Curved Walls Between Floors 286
Objects ... 194
Pony Walls Between Floors 286
Roof Edges ... 595
Stem Walls and Footings 528
Text .. 386
Walls ... 285
Align/Distribute Along Line 195
Align/Distribute Objects 194
Allowed
Angles Dialog .. 211
Alpha Channel .. 772
Alphabets
International ... 373
Unicode ... 373
Ambient Light
Daytime ... 818
Interior ... 818
Nighttime ... 818
Angle Snap Grid ... 133
Angle Snaps ... 132
Angled Front Cabinets ... 474
Angles
Entered as bearings ... 233
Angular Dimensions ... 203, 356, 366
Appearance Preferences 80
Appliances
Built into cabinets .. 462
Apply Properties .. 219
Arc
Creation Modes .. 237
Panel ... 241
Specification Dialog .. 240
Tools ... 239
with Arrow .. 240
Architectural Block
Specification Dialog .. 727
Architectural Blocks ... 725
Components ... 729
Displaying .. 726
Edit Sub-Objects .. 727
Chief Architect X12 Reference Manual

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explode</td>
<td>727</td>
</tr>
<tr>
<td>Sub-objects</td>
<td>728</td>
</tr>
<tr>
<td>Architectural Preferences</td>
<td>93</td>
</tr>
<tr>
<td>Archive Files</td>
<td>45</td>
</tr>
<tr>
<td>Manage Auto Archives</td>
<td>46</td>
</tr>
<tr>
<td>Arrows</td>
<td></td>
</tr>
<tr>
<td>Aligning Centers</td>
<td>198</td>
</tr>
<tr>
<td>Arc About Center</td>
<td>238</td>
</tr>
<tr>
<td>Arc Creation Modes</td>
<td>237</td>
</tr>
<tr>
<td>Lock Center</td>
<td>176</td>
</tr>
<tr>
<td>Make Arc Tangent</td>
<td>198</td>
</tr>
<tr>
<td>Show Arc Centers</td>
<td>176</td>
</tr>
<tr>
<td>Start and End Points</td>
<td>95</td>
</tr>
<tr>
<td>Tangent, make</td>
<td>285, 287</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Living Area calculation</td>
<td>316</td>
</tr>
<tr>
<td>of a Polyline</td>
<td>244</td>
</tr>
<tr>
<td>of Roof Planes</td>
<td>601</td>
</tr>
<tr>
<td>of Rooms</td>
<td>321</td>
</tr>
<tr>
<td>Arrow</td>
<td></td>
</tr>
<tr>
<td>Auto Positioning</td>
<td>390</td>
</tr>
<tr>
<td>Panel</td>
<td>236</td>
</tr>
<tr>
<td>Text Line With</td>
<td>390</td>
</tr>
<tr>
<td>Artwork</td>
<td></td>
</tr>
<tr>
<td>Creating textures</td>
<td>766</td>
</tr>
<tr>
<td>Attic</td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>543</td>
</tr>
<tr>
<td>Rooms</td>
<td>316</td>
</tr>
<tr>
<td>Trusses</td>
<td>665</td>
</tr>
<tr>
<td>Walls</td>
<td>289</td>
</tr>
<tr>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Archive</td>
<td>45, 87</td>
</tr>
<tr>
<td>Check for Program Updates</td>
<td>86</td>
</tr>
<tr>
<td>Connect Island Rooms</td>
<td>263</td>
</tr>
<tr>
<td>Detail</td>
<td>789</td>
</tr>
<tr>
<td>Dormer Tool</td>
<td>616</td>
</tr>
<tr>
<td>Dormers, Editing</td>
<td>616</td>
</tr>
<tr>
<td>Elevation Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>Elevation Views</td>
<td>788</td>
</tr>
<tr>
<td>Exterior Elevations</td>
<td>788</td>
</tr>
<tr>
<td>Floating Dormer</td>
<td>615</td>
</tr>
<tr>
<td>Floating Dormer Tool</td>
<td>615</td>
</tr>
<tr>
<td>Interior Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>NKBA® Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>NKBA® Elevation Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>Place Corner Boards</td>
<td>674</td>
</tr>
<tr>
<td>Place Outlets</td>
<td>495</td>
</tr>
<tr>
<td>Place Quoins</td>
<td>675</td>
</tr>
<tr>
<td>Roof Returns</td>
<td>620</td>
</tr>
<tr>
<td>Save Files</td>
<td>46, 87</td>
</tr>
<tr>
<td>Stairwell</td>
<td>564</td>
</tr>
<tr>
<td>Auto Dimension</td>
<td></td>
</tr>
<tr>
<td>Defaults</td>
<td>350</td>
</tr>
<tr>
<td>Auto Generate Sidewalks</td>
<td>929</td>
</tr>
<tr>
<td>Auto Rebuild</td>
<td></td>
</tr>
<tr>
<td>Attic Walls</td>
<td>263</td>
</tr>
<tr>
<td>Framing</td>
<td>628</td>
</tr>
<tr>
<td>Roofs</td>
<td>585</td>
</tr>
<tr>
<td>Terrain</td>
<td>910</td>
</tr>
<tr>
<td>Walls/Floors/Ceilings</td>
<td>541</td>
</tr>
<tr>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>Framing</td>
<td>627</td>
</tr>
<tr>
<td>Roofs</td>
<td>581</td>
</tr>
<tr>
<td>Roofs vs. Manual Roofs</td>
<td>581</td>
</tr>
<tr>
<td>Walls</td>
<td>263</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backclipped Cross Section</td>
<td>787</td>
</tr>
<tr>
<td>Backdrops</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>809</td>
</tr>
<tr>
<td>Definition</td>
<td>868</td>
</tr>
<tr>
<td>Generated Sky</td>
<td>810</td>
</tr>
<tr>
<td>Panoramic</td>
<td>868</td>
</tr>
<tr>
<td>Background Color</td>
<td>82</td>
</tr>
<tr>
<td>Backup</td>
<td></td>
</tr>
<tr>
<td>Entire Plan or Project</td>
<td>53</td>
</tr>
<tr>
<td>Files</td>
<td>45</td>
</tr>
<tr>
<td>Balloon Through Ceiling</td>
<td>300</td>
</tr>
<tr>
<td>Balusters</td>
<td>309</td>
</tr>
<tr>
<td>Definition</td>
<td>547</td>
</tr>
<tr>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>Cabinets</td>
<td>461</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>357</td>
</tr>
<tr>
<td>Polylines (Roofs)</td>
<td>602</td>
</tr>
<tr>
<td>Roofs</td>
<td>592</td>
</tr>
<tr>
<td>Basements</td>
<td></td>
</tr>
<tr>
<td>Daylight</td>
<td>530</td>
</tr>
<tr>
<td>Walkout</td>
<td>530</td>
</tr>
<tr>
<td>Bay Windows</td>
<td>428</td>
</tr>
<tr>
<td>Bay/Box Window</td>
<td></td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>454</td>
</tr>
<tr>
<td>Beams</td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>652</td>
</tr>
<tr>
<td>Floor/Ceiling</td>
<td>631</td>
</tr>
<tr>
<td>Roof</td>
<td>630</td>
</tr>
<tr>
<td>Roof, exposed</td>
<td>744</td>
</tr>
<tr>
<td>Bearing</td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td>652</td>
</tr>
<tr>
<td>Line</td>
<td>645</td>
</tr>
<tr>
<td>Wall</td>
<td>301</td>
</tr>
<tr>
<td>Bearings</td>
<td>233</td>
</tr>
<tr>
<td>Behaviors Preferences</td>
<td>96</td>
</tr>
<tr>
<td>Birdsmouth</td>
<td></td>
</tr>
<tr>
<td>Cut</td>
<td>597</td>
</tr>
<tr>
<td>Blend Colors with Materials</td>
<td>760</td>
</tr>
<tr>
<td>Blind Cabinets</td>
<td>474</td>
</tr>
<tr>
<td>Automatic</td>
<td>461</td>
</tr>
<tr>
<td>Blocking</td>
<td></td>
</tr>
<tr>
<td>Joist</td>
<td>631</td>
</tr>
<tr>
<td>Roof</td>
<td>630</td>
</tr>
<tr>
<td>Wall</td>
<td>635</td>
</tr>
<tr>
<td>Blocks</td>
<td></td>
</tr>
</tbody>
</table>
Resize ... 96
Rotate around 96
Rotate items 96
Rotate Jump 96
Stretch .. 211
Temporary Points to Walls 205, 291
Trim Object(s) 212

CAD Block 251
Add to library 252
Explode .. 251
Insert .. 253
Insertion Point 255
Make CAD Block 251
Management 253
Nested .. 251
Purge unused 253
Select Insertion Point 251
Specification Dialog 254

CAD Box
 Specification Dialog 247

CAD Defaults 226

CAD Detail
 from View 256
 Management Dialog 255
 Truss Detail 659

CAD Objects
 Converting 205
 Dimensions to Displaying 348
 Displaying 250

Calculate
 From All Floors 943
 From Room 944
 Loan .. 63
 Materials on soffits 745

Callout
 Arrows ... 391
 Defaults 372
 Specification Dialog 392

Callouts 391

Camera
 Activating 805
 Change Settings 806
 Clip Surfaces Within 811
 Create Views 785
 Defaults .. 781
 Field of View 799
 Move Tools 795
 Move Up/Down One Floor 799
 Orbit Tools 796
 Plan Display Panel 808
 Specification Dialog 806
 Tilt Tools 796

Casing
 Door ... 409, 416
 Window .. 437

Cathedral Ceilings 330
Ceiling Framing 632

Heights .. 324
Plane ... 583, 606
Shelf ... 325
Trusses .. 656

Ceiling Plane
 Specification Dialog 607

Ceiling Structure Definition 750

Ceilings
 Automatic 632
 Basement .. 523
 Cathedral 330
 Coffer .. 330
 Dropped ... 324
 Hole in Platform 326
 Lowered ... 329
 Over this room 335
 Special .. 329
 Vaulted ... 330

Center
 Doors .. 408
 Object edit tool 197
 Sheet .. 990
 Snapping to 99
 Text ... 386

Centerline Dimensions 357

Chamfer
 Footings ... 304
 Two Lines 202

Change
 Door Swings 409
 Floor/Reference 542
 Line to arc 553
 Scale .. 971
 Wall Types for Pony Walls 271

Check
 Plots ... 984, 991
 Spelling ... 389

Chief Architect
 Premier vs Interiors 23
 Product Key 38
 Version Number 38
 Viewer .. 37

Chimneys 534

Circle
 Specification Dialog 243
 Tools .. 242

Circles
 Aligning Centers 198
 Circle about center 242
 Draw using center and radius 242
 Ovals ... 243

Clear Terrain 901
Clear the Terrain 901
Click Stairs 546
Client Information 57

Close
 Plans and Views 128
Program .. 54
Views .. 128

Color
Off/On .. 154

Color Chooser
Create Material Using 161
Eyedropper 161

Color Chooser Dialog 160

Colors
Selecting 160

Compatibility
with other programs 39

Components 709

Compound Raked Walls 290

Concentric
Resizing 165

Concrete
Pour Numbers 526

Cone ... 732
 Specification Dialog 740

Configurations Panel 113

Connect
Electrical 495
Walls ... 275

Contextual Menus 80
 In Render views 798

Contour Lines 909

Convert
Arc/Circle to Polyline 202
CAD Lines to Terrain Data 926
CAD Objects 205
Polyline 205
Polyline Solid to Solid 734
Polyline to Spline 208
Room Molding 685
Special Polylines into Polylines 207
Spline to Polyline 208
Textures to Materials 765
To Polyline Object 930
to Solid 207
to Symbol 721

Coordinates 135

Copy
Floors 540
Folders and Library Objects 702
Library List 697
Multiple Copy 139
Trusses 657
Views 970

Copy/Paste
Main Edit Mode 138
Sticky Mode 138

Corner
Boards 674
Windows 429

Corner Board
Specification Dialog 674

Countertops
Custom 462, 465
Edge Profiles 465
Edit Custom 465
Holes in 462

Create
Plan Database File 48
Plan Materials Library 765
Plant Image 937
Schedule from Room 506

Create Hole 184

Cross Section Lines
Callouts .. 392
In Camera Views 801

Cross Section Slider 799

Cross Section Views
Stepped Cutting Plane 788

Cross Section/Elevation 787

Cross Section/Elevation Camera
Specification Dialog 810

Cross Section/Elevation Views 787

Cross Section/Elevations 784
Detailing 789
Sent to Layout 967

Crosshairs 27
Aligning with 196

Crown Molding
Cabinets 472

Curbs ... 932

Current
CAD Layer 250
CAD Point 230
Floor ... 542
Floor, Delete 541
Layout Page 978

Curved
Deck Edge 267
Deck Railing 266
Roof Planes 604
Stairs ... 546
Walls, Draw 275

Custom
Counterholes 462
Countertops 462
Countertops, Editing 465

Custom Backsplash
Specification Dialog 749

Custom Countertop
Specification Dialog 487

Custom Fields 510

Customize
Hotkeys Dialog 115
Sheet Sizes Dialog 988
Toolbars 111

Cylinder 732
Specification Dialog 740
D

Decks .. 323
Default
Lights .. 817
Set as .. 67
Wall Heights ... 300
Default Sets .. 71
Default Sun Light
Specification Dialog 827
Defaults
Auto Dimensions 350
Cabinet .. 459
Camera .. 781
Deck Railing ... 264
Defined .. 65
Dimension ... 342
Door .. 403
Dormer .. 583
Dynamic .. 67
Electrical ... 491
Fencing .. 264
Floor .. 314, 537
Foundation .. 521
Framing .. 625, 632
General Plan ... 77
Importing ... 75
Layer Set .. 148
Layout ... 961
Material ... 758
Object Labels ... 505
Railing .. 264
Reset ... 76
Road and Sidewalk 927
Roofs .. 582
Room ... 314
Schedule .. 505
Settings .. 65
Structural Member Reporting 945
Wall .. 263
Window .. 427
Define Material Dialog 769
Delete
3D Surface ... 792
Built-in Fixtures and Appliances 709
Current Floor ... 541
Current Point ... 230
Floors .. 541
Foundation ... 528
Framing .. 649
Gable Over Opening 611
Library Content 702
Objects ... 221
Objects, warning before 78
Roof Plan .. 584, 597
Temporary Points 230
Tools from Toolbars 109
Wall Hatching .. 272
Designer Information 57
Details
Auto Detailing ... 789
CAD ... 255
Cross section/elevations 789
Truss ... 659
Dialog Number/Angle Style 105
Dimension
Defaults .. 343
Tools ... 356
Dimension Defaults 342
Dialog .. 343
Dimension Line
Specification Dialog 367
Dimensions
Add Text ... 365
Angular ... 203, 356, 366
Auto Elevation .. 359
Auto Interior ... 359
Auto NKBA® .. 359
Auto NKBA® Elevation 359
Centerline .. 357
Display size .. 81
Editing .. 361
To electrical items 348
End to end .. 356
Interior ... 357
Interior, minimum area 351
Locate Objects ... 346
Locating railings 299
Minimum Interior Area 351
Move Objects Using 365
Moving Labels ... 362
Number Height .. 367
Overall .. 351
Point to point ... 357
Printing .. 991
Rounding Method 344
Running .. 357
Story Pole ... 359
Tape Measure ... 358
Temporary ... 358
Wall Layers .. 293
Wall Widths .. 367
Zeroes in .. 345
Disconnect Edges 168
Display
3D Views .. 790
Arc Centers and Ends 227
CAD Objects ... 250
Drawing Groups 153
Drawing Sheet 989
<table>
<thead>
<tr>
<th>Dynamic</th>
<th>Lights</th>
<th>493</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>Outlets</td>
<td>493</td>
</tr>
<tr>
<td>Print Preview</td>
<td>Switches</td>
<td>493</td>
</tr>
<tr>
<td>Views</td>
<td>Tools</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Wiring</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Electrical Service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specification Dialog</td>
<td>498</td>
</tr>
<tr>
<td>Edit</td>
<td>Elevations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>Earth Data Panel</td>
<td>Data Tools</td>
<td>901</td>
</tr>
<tr>
<td>Eaves</td>
<td>Points</td>
<td>902</td>
</tr>
<tr>
<td>Boxed</td>
<td>Regions</td>
<td>903</td>
</tr>
<tr>
<td>Fascia</td>
<td>Squares</td>
<td>903</td>
</tr>
<tr>
<td>Framing</td>
<td>Tab</td>
<td>915</td>
</tr>
<tr>
<td>Plumb Cut</td>
<td>Edit Eaves</td>
<td>825</td>
</tr>
<tr>
<td>Square cut</td>
<td>Eaves</td>
<td>120</td>
</tr>
<tr>
<td>Edit</td>
<td>Edit Area</td>
<td>120</td>
</tr>
<tr>
<td>All Roof Planes</td>
<td>(All Floors)</td>
<td>583</td>
</tr>
<tr>
<td>Handles</td>
<td>(All Floors) Visible</td>
<td>210</td>
</tr>
<tr>
<td>Layout Lines</td>
<td>Polyline as marquee</td>
<td>210</td>
</tr>
<tr>
<td>Layout Lines Dialog</td>
<td>Tools</td>
<td>209</td>
</tr>
<tr>
<td>Paper Size Dialog</td>
<td>Visible</td>
<td>210</td>
</tr>
<tr>
<td>Preferences</td>
<td>Edit Behaviors</td>
<td>163</td>
</tr>
<tr>
<td>Text in Place</td>
<td>Alternate</td>
<td>164</td>
</tr>
<tr>
<td>Toolbar</td>
<td>Concentric</td>
<td>165</td>
</tr>
<tr>
<td>Edit Active View</td>
<td>Default</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Edit Indicators</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Fillet</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Resize</td>
<td>165</td>
</tr>
<tr>
<td>Edit Handles</td>
<td>Edit Text Macro Dialog</td>
<td>1009</td>
</tr>
<tr>
<td>Same Line Type</td>
<td>Edit Wall Cutout Polyline</td>
<td>724</td>
</tr>
<tr>
<td>Size</td>
<td>Egress Windows</td>
<td>440</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto Place Outlets</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Connections</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Defaults</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Deleting</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>Dimension to</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Dimensions to</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Displaying</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Editing Objects</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Labels</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Export</td>
<td></td>
</tr>
<tr>
<td>2D Drawings</td>
<td>889</td>
<td></td>
</tr>
<tr>
<td>360 Panorama</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>3D DXF/DWG Model</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>3D Files</td>
<td>895</td>
<td></td>
</tr>
</tbody>
</table>
G

Gable
Gable/Roof Line Tool.................. 610
Over Door/Window.................. 610

Gamepad
Enable 116

Gamepad Settings 116

Gamepads 794

Garage
Door panels.......................... 415
Door Tool............................. 405

Garages
Foundation............................ 529

Garden Bed
Kidney Shaped.......................... 907
Polyline.......................... 907
Round.......................... 907
Tools.......................... 907

General
Cabinet Defaults.................. 460
Framing Tool.......................... 630
Preferences.......................... 85
Wall Defaults.......................... 262

Get Last Symbol.................. 720

Getting Help 37

GFCI Outlet 493

Girder Trusses 666

Glass, Stained 431

GPS
Importing.......................... 924

Grade beams.......................... 522

Grayscale
On Screen.......................... 81
Printed.......................... 997

Grid
Materials list reports 100
Snaps.......................... 133

Ground Fault Circuit Interrupt 493

H

Half
Walls.......................... 309

Half-Walls.......................... 265

Hardiness Zone Maps 937

Hardware
for Doors.......................... 421

Hatch
Fill Patterns.......................... 155
Wall.......................... 272

Height
Basement ceiling.................. 523
Railings.......................... 310

Help
Tool Tips.......................... 37

Hill / Valley
Specification Dialog.................. 916

Hill/Valley 905

Hip
Truss.......................... 664

Holes
Creating.......................... 184
In ceiling platforms.................. 326
In floor platform.................. 326
In Slabs.......................... 531
In terrain.......................... 906

Home Designer
Allow editing in.................. 78
Software Compatibility.................. 39

Hotkeys.......................... 30, 114
Create List.......................... 114
Customize.......................... 115
Snap Behaviors.......................... 131

House Wizard
Editing Rooms.......................... 59
Multiple Floors.......................... 60
Placing Rooms.......................... 59

I

Image
Specification Dialog.................. 856

Images.......................... 816
Adding to Library.................. 854
Convert Folder.......................... 855
Creating.......................... 854
Displaying.......................... 855
Editing.......................... 855
In Schedules.......................... 513
Place.......................... 854
Printing.......................... 998
Transparency Color.................. 858

Import
2D DXF/DWG Files.................. 883
3D Data.......................... 892
3D Symbols.......................... 892
Defaults.......................... 75
Drawing Wizard.................. 883
DXF/DWG Elevation Data.................. 925
GPS Data.......................... 924
Layer Sets.......................... 152
Line Styles.......................... 157
Materials Folder.................. 765
PDF.......................... 863
Terrain Assistant.................. 921
Terrain Data.......................... 921
Text Macros.......................... 1010
Textures Folder.................. 765
Wall Definitions.................. 297

Information
Client.......................... 57
<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designer</td>
<td>57</td>
</tr>
<tr>
<td>Project</td>
<td>57</td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>239</td>
</tr>
<tr>
<td>Line</td>
<td>232</td>
</tr>
<tr>
<td>Point</td>
<td>229</td>
</tr>
<tr>
<td>Insert</td>
<td></td>
</tr>
<tr>
<td>Floor Dialog</td>
<td>539</td>
</tr>
<tr>
<td>Layout Page</td>
<td>978</td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
</tr>
<tr>
<td>Auto Detailing</td>
<td>789</td>
</tr>
<tr>
<td>Show in Elevation</td>
<td>789</td>
</tr>
<tr>
<td>Interior</td>
<td></td>
</tr>
<tr>
<td>Dimension Tool</td>
<td>357</td>
</tr>
<tr>
<td>Dimensions, Auto</td>
<td>359</td>
</tr>
<tr>
<td>Room types</td>
<td>316</td>
</tr>
<tr>
<td>Invisible Walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271</td>
</tr>
<tr>
<td>Isometric Overviews</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Join Roof Planes</td>
<td>595</td>
</tr>
<tr>
<td>Joist</td>
<td></td>
</tr>
<tr>
<td>Direction Line</td>
<td>644</td>
</tr>
<tr>
<td>Joist Direction</td>
<td></td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>644</td>
</tr>
<tr>
<td>Joists</td>
<td>631</td>
</tr>
<tr>
<td>Bearing Line</td>
<td>645</td>
</tr>
<tr>
<td>Blocking</td>
<td>631</td>
</tr>
<tr>
<td>Spacing</td>
<td>633</td>
</tr>
<tr>
<td>Use Framing Reference</td>
<td>633</td>
</tr>
<tr>
<td>see also Framing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Key Frames</td>
<td>871</td>
</tr>
<tr>
<td>Keyboard</td>
<td></td>
</tr>
<tr>
<td>Commands</td>
<td>30, 114, 694</td>
</tr>
<tr>
<td>Commands, customize</td>
<td>115</td>
</tr>
<tr>
<td>Kidney Shaped</td>
<td></td>
</tr>
<tr>
<td>Garden Bed</td>
<td>907</td>
</tr>
<tr>
<td>Pond</td>
<td>907</td>
</tr>
<tr>
<td>Terrain Features</td>
<td>906</td>
</tr>
<tr>
<td>Kingpost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>667</td>
</tr>
<tr>
<td>Kitchen Island</td>
<td></td>
</tr>
<tr>
<td></td>
<td>474</td>
</tr>
<tr>
<td>Knee Walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>289, 302</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Label Panel</td>
<td>516</td>
</tr>
<tr>
<td>Labels</td>
<td></td>
</tr>
<tr>
<td>Cabinet</td>
<td>468</td>
</tr>
<tr>
<td>Display size</td>
<td>81</td>
</tr>
<tr>
<td>Displaying</td>
<td>516</td>
</tr>
<tr>
<td>Door</td>
<td>407</td>
</tr>
<tr>
<td>Electrical</td>
<td>496</td>
</tr>
<tr>
<td>Plant</td>
<td>946</td>
</tr>
<tr>
<td>Roof Plane</td>
<td>593</td>
</tr>
<tr>
<td>Room</td>
<td>320</td>
</tr>
<tr>
<td>Trusses</td>
<td>660</td>
</tr>
<tr>
<td>Window</td>
<td>435</td>
</tr>
<tr>
<td>Landing</td>
<td></td>
</tr>
<tr>
<td>Landings</td>
<td>554</td>
</tr>
<tr>
<td>Height</td>
<td>555</td>
</tr>
<tr>
<td>Layer</td>
<td></td>
</tr>
<tr>
<td>Display Options Dialog</td>
<td>144</td>
</tr>
<tr>
<td>Eyedropper Tool</td>
<td>151</td>
</tr>
<tr>
<td>Hider</td>
<td>152</td>
</tr>
<tr>
<td>Layer Sets</td>
<td>147</td>
</tr>
<tr>
<td>Painter Tool</td>
<td>151</td>
</tr>
<tr>
<td>Panel</td>
<td>149</td>
</tr>
<tr>
<td>Layer Set</td>
<td></td>
</tr>
<tr>
<td>Control, Active</td>
<td>147</td>
</tr>
<tr>
<td>Defaults Dialog</td>
<td>148</td>
</tr>
<tr>
<td>Management Dialog</td>
<td>148</td>
</tr>
<tr>
<td>Layer Sets</td>
<td></td>
</tr>
<tr>
<td>Exporting</td>
<td>152, 297</td>
</tr>
<tr>
<td>Importing</td>
<td>152</td>
</tr>
<tr>
<td>Layout Views</td>
<td>152</td>
</tr>
<tr>
<td>Missing in Layout</td>
<td>977</td>
</tr>
<tr>
<td>Modify all</td>
<td>147</td>
</tr>
<tr>
<td>Layers</td>
<td></td>
</tr>
<tr>
<td>3D DWG/DXF Models</td>
<td>896</td>
</tr>
<tr>
<td>Adding new layers</td>
<td>146</td>
</tr>
<tr>
<td>Colors</td>
<td>146</td>
</tr>
<tr>
<td>DXF/DWG files</td>
<td>886</td>
</tr>
<tr>
<td>Locking</td>
<td>143</td>
</tr>
<tr>
<td>Mapping</td>
<td>886</td>
</tr>
<tr>
<td>Materials Lists</td>
<td>143</td>
</tr>
<tr>
<td>Primary and Secondary</td>
<td>142</td>
</tr>
<tr>
<td>Rename</td>
<td>145</td>
</tr>
<tr>
<td>Reset Names</td>
<td>145</td>
</tr>
<tr>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td>Adding Lines</td>
<td>972</td>
</tr>
<tr>
<td>Borders</td>
<td>979</td>
</tr>
<tr>
<td>CAD</td>
<td>963</td>
</tr>
<tr>
<td>Change Pages</td>
<td>978</td>
</tr>
<tr>
<td>Change Scale</td>
<td>971</td>
</tr>
<tr>
<td>Create</td>
<td>963</td>
</tr>
<tr>
<td>Create Template</td>
<td>75</td>
</tr>
<tr>
<td>Cross Section/Elevations</td>
<td>967</td>
</tr>
<tr>
<td>Current Page</td>
<td>978</td>
</tr>
<tr>
<td>Defaults</td>
<td>961</td>
</tr>
<tr>
<td>Edit Layout Lines</td>
<td>971</td>
</tr>
<tr>
<td>Edit Vector Views</td>
<td>971</td>
</tr>
<tr>
<td>Editing Views</td>
<td>970</td>
</tr>
<tr>
<td>Exchange Page</td>
<td>979</td>
</tr>
<tr>
<td>Exporting</td>
<td>982</td>
</tr>
<tr>
<td>Files, Opening</td>
<td>47</td>
</tr>
<tr>
<td>Floor plan view</td>
<td>967</td>
</tr>
<tr>
<td>Insert Page</td>
<td>978</td>
</tr>
<tr>
<td>Layer Sets</td>
<td>152</td>
</tr>
<tr>
<td>Layout Box Layers</td>
<td>969</td>
</tr>
<tr>
<td>Links, Managing</td>
<td>975</td>
</tr>
<tr>
<td>Library Objects</td>
<td>706</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>and the Materials List...</td>
<td>708</td>
</tr>
<tr>
<td>Editing...</td>
<td>708</td>
</tr>
<tr>
<td>Placing...</td>
<td>704</td>
</tr>
<tr>
<td>Light</td>
<td>817</td>
</tr>
<tr>
<td>Ambient...</td>
<td>818</td>
</tr>
<tr>
<td>Rope...</td>
<td>493</td>
</tr>
<tr>
<td>Specification Dialog...</td>
<td>822</td>
</tr>
<tr>
<td>Light Data Panel...</td>
<td>499</td>
</tr>
<tr>
<td>Light Sources...</td>
<td>817</td>
</tr>
<tr>
<td>Added Lights...</td>
<td>818</td>
</tr>
<tr>
<td>Default Lights...</td>
<td>817</td>
</tr>
<tr>
<td>Default Sun Light...</td>
<td>818</td>
</tr>
<tr>
<td>Fixtures...</td>
<td>818</td>
</tr>
<tr>
<td>Point Lights...</td>
<td>819</td>
</tr>
<tr>
<td>Spot Lights...</td>
<td>819</td>
</tr>
<tr>
<td>Sun Angles...</td>
<td>823</td>
</tr>
<tr>
<td>Lights...</td>
<td>819</td>
</tr>
<tr>
<td>Added...</td>
<td>818</td>
</tr>
<tr>
<td>Adjust...</td>
<td>820</td>
</tr>
<tr>
<td>Casts Shadows...</td>
<td>501</td>
</tr>
<tr>
<td>Color...</td>
<td>500</td>
</tr>
<tr>
<td>Cut Off Angle...</td>
<td>501</td>
</tr>
<tr>
<td>Direction...</td>
<td>500</td>
</tr>
<tr>
<td>Drop Off Rate...</td>
<td>501</td>
</tr>
<tr>
<td>Fixtures...</td>
<td>493, 818</td>
</tr>
<tr>
<td>Floor Number...</td>
<td>822</td>
</tr>
<tr>
<td>Height...</td>
<td>822</td>
</tr>
<tr>
<td>Intensity...</td>
<td>500</td>
</tr>
<tr>
<td>Setting Position in 3D...</td>
<td>501</td>
</tr>
<tr>
<td>Turn On/Off...</td>
<td>820</td>
</tr>
<tr>
<td>Types of sources...</td>
<td>819</td>
</tr>
<tr>
<td>Line</td>
<td>226</td>
</tr>
<tr>
<td>Angle Format...</td>
<td>231</td>
</tr>
<tr>
<td>CAD Drawing Tools...</td>
<td>94</td>
</tr>
<tr>
<td>Endcaps...</td>
<td>226</td>
</tr>
<tr>
<td>Length Format...</td>
<td>234</td>
</tr>
<tr>
<td>Panel...</td>
<td>234</td>
</tr>
<tr>
<td>Specification Dialog...</td>
<td>234</td>
</tr>
<tr>
<td>Start and End Points...</td>
<td>95</td>
</tr>
<tr>
<td>Styles, Importing...</td>
<td>157</td>
</tr>
<tr>
<td>Styles, Library...</td>
<td>157</td>
</tr>
<tr>
<td>Weight...</td>
<td>984, 992</td>
</tr>
<tr>
<td>Weight Scaling...</td>
<td>992</td>
</tr>
<tr>
<td>Weights, Show...</td>
<td>80, 989</td>
</tr>
<tr>
<td>with Arrow...</td>
<td>233</td>
</tr>
<tr>
<td>Line Style</td>
<td>235</td>
</tr>
<tr>
<td>Panel...</td>
<td>235</td>
</tr>
<tr>
<td>Reverse direction...</td>
<td>205</td>
</tr>
<tr>
<td>Lines</td>
<td>205</td>
</tr>
<tr>
<td>Reverse direction...</td>
<td>205</td>
</tr>
<tr>
<td>Lites</td>
<td>446</td>
</tr>
<tr>
<td>Craftsman...</td>
<td>446</td>
</tr>
<tr>
<td>Diamond...</td>
<td>446</td>
</tr>
<tr>
<td>Doors...</td>
<td>419</td>
</tr>
<tr>
<td>Normal...</td>
<td>446</td>
</tr>
<tr>
<td>Prairie...</td>
<td>446</td>
</tr>
<tr>
<td>Living Area...</td>
<td>321</td>
</tr>
<tr>
<td>and Room Types...</td>
<td>316</td>
</tr>
</tbody>
</table>
Calculation .. 322
Delete label 321
Label ... 321
Make Polyline 322
Restore label 321
Show .. 79
vs. Footprint 322
Load
 Custom Muntins 437
Loan Calculator 63
Locate
 Roof Plane Intersections 595
Lock
 Arc Center 176
 Center .. 176
 Control Handle Angle 189
 Layers .. 143
 Roof planes 597
 Tread Depth 556
Lock Toolbars 110
Lookouts ... 639
Lumber Reporting Method Ctrl 945

Macros ... 400
Main
 Edit Mode 138
 Layer .. 293
Make
 Arc Tangent 198, 285, 287
 CAD Block 251
 Living Area Polyline 322
 Mulled Unit 431
 Parallel Dialog 204
 Parallel/Perpendicular 197, 204
 Room Molding Polyline Dialog 332
Manage
 Auto Archives 46
 CAD Blocks 253
 CAD Details 255
 Custom Fields 510
 Layout Links 975
 Library Filters 703
 Materials Lists 955
Manual
 Dimensions 356
 Roofs ... 581, 591
Manufacturer Libraries 697
Marker
 Defaults .. 393
 Editing .. 395
 Framing Reference 642
 Specification Dialog 394
 Types .. 394
Marquee Select 169
Marquee Select Similar 170
Marriage Walls 291
Masonry
 Stairs ... 563
Master List .. 957
 Columns to display 102
 File Location 102
 Materials List 102
 Name of file 102
 see also Materials List 958
 Update to Master 958
Match Properties 219
Material
 Defaults .. 758
 Eyedropper 760
Material Painter 759
 and Walls 760
 Blending 760
 Modes .. 760
 Using .. 759
Material Region
 Specification Dialog 749
Materials
 Add to Library 701
 Artwork .. 766
 Blending .. 764
 Calculating amounts 745
 Classes .. 774
 Creating 764
 Define Material Dialog 769
 Editing ... 763
 Mapping .. 765
 On Soffits 745
 Panel .. 761
 Patterns .. 769
 Plan Materials Dialog 768
 Polyline .. 953
 Render properties 774
 Stained glass 431
 Textures .. 771, 816
 Types .. 766
 Walls .. 278
Materials List 943
 Calculate from All Floors 943
 Calculate from Room 944
 Categories 100
 Conditioned Areas 957
 Display Options Dialog 949
 Editing .. 950
 Estimating software 956
 Export .. 955
 Export to BuilderTREND 956
 Font ... 83
 Framing ... 650
 Grid display on reports 100
 Library Objects 708
 Manage ... 955
 Master List Preferences 102
 Preferences 100
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>612</td>
<td>Mulled Unit</td>
<td>230</td>
</tr>
<tr>
<td>612</td>
<td>Move Point Dialog</td>
<td>977</td>
</tr>
<tr>
<td>612</td>
<td>Mitre Ends of Angle Walls</td>
<td>635</td>
</tr>
<tr>
<td>612</td>
<td>Modify</td>
<td>147</td>
</tr>
<tr>
<td>612</td>
<td>Plan Database File</td>
<td>49</td>
</tr>
<tr>
<td>612</td>
<td>Molding</td>
<td>684</td>
</tr>
<tr>
<td>612</td>
<td>3D Molding Line tool</td>
<td>684</td>
</tr>
<tr>
<td>612</td>
<td>3D Molding Polyline</td>
<td>684</td>
</tr>
<tr>
<td>612</td>
<td>Frieze</td>
<td>689</td>
</tr>
<tr>
<td>612</td>
<td>Molding Line tool</td>
<td>684</td>
</tr>
<tr>
<td>612</td>
<td>Molding Polyline tool</td>
<td>684</td>
</tr>
<tr>
<td>612</td>
<td>Place Molding Profile</td>
<td>678</td>
</tr>
<tr>
<td>612</td>
<td>Polylines</td>
<td>677</td>
</tr>
<tr>
<td>612</td>
<td>Profiles</td>
<td>677</td>
</tr>
<tr>
<td>612</td>
<td>Profiles, changing</td>
<td>680</td>
</tr>
<tr>
<td>612</td>
<td>Profiles, custom</td>
<td>678</td>
</tr>
<tr>
<td>612</td>
<td>Symbol</td>
<td>679</td>
</tr>
<tr>
<td>612</td>
<td>Molding Polyline</td>
<td>686</td>
</tr>
<tr>
<td>612</td>
<td>Specification Dialog</td>
<td>686</td>
</tr>
<tr>
<td>612</td>
<td>Moldings</td>
<td>679</td>
</tr>
<tr>
<td>612</td>
<td>Built Up</td>
<td>679</td>
</tr>
<tr>
<td>612</td>
<td>Library</td>
<td>685</td>
</tr>
<tr>
<td>612</td>
<td>Moldings Panel</td>
<td>680</td>
</tr>
<tr>
<td>612</td>
<td>Mouse</td>
<td>680</td>
</tr>
<tr>
<td>612</td>
<td>3D</td>
<td>27</td>
</tr>
<tr>
<td>612</td>
<td>Pointer Icons</td>
<td>27</td>
</tr>
<tr>
<td>612</td>
<td>Mouse Buttons</td>
<td>26</td>
</tr>
<tr>
<td>612</td>
<td>Move</td>
<td>282</td>
</tr>
<tr>
<td>612</td>
<td>Along Rails</td>
<td>282</td>
</tr>
<tr>
<td>612</td>
<td>CAD Points</td>
<td>230</td>
</tr>
<tr>
<td>612</td>
<td>Camera with Mouse</td>
<td>794</td>
</tr>
<tr>
<td>612</td>
<td>Folders and Library Objects</td>
<td>701</td>
</tr>
<tr>
<td>612</td>
<td>Nudging</td>
<td>193</td>
</tr>
<tr>
<td>612</td>
<td>Object Using Dimensions</td>
<td>365</td>
</tr>
<tr>
<td>612</td>
<td>Objects</td>
<td>192</td>
</tr>
<tr>
<td>612</td>
<td>Restrictions</td>
<td>193</td>
</tr>
<tr>
<td>612</td>
<td>to be Coplanar</td>
<td>596</td>
</tr>
<tr>
<td>612</td>
<td>to Framing Reference</td>
<td>194</td>
</tr>
<tr>
<td>612</td>
<td>Views to a Different Page</td>
<td>970</td>
</tr>
<tr>
<td>612</td>
<td>Walls with Cabinets Attached</td>
<td>470</td>
</tr>
<tr>
<td>612</td>
<td>Move Point Dialog</td>
<td>230</td>
</tr>
<tr>
<td>612</td>
<td>Mulled Unit</td>
<td>230</td>
</tr>
<tr>
<td>612</td>
<td>Specification Dialog</td>
<td>438</td>
</tr>
<tr>
<td>612</td>
<td>Mulled Units</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Framing</td>
<td>440</td>
</tr>
<tr>
<td>612</td>
<td>Labels</td>
<td>440</td>
</tr>
<tr>
<td>612</td>
<td>Mullion Depth</td>
<td>440</td>
</tr>
<tr>
<td>612</td>
<td>Treat as Door</td>
<td>440</td>
</tr>
<tr>
<td>612</td>
<td>Mullions</td>
<td>445</td>
</tr>
<tr>
<td>612</td>
<td>Window</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Multiple</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Copy</td>
<td>139</td>
</tr>
<tr>
<td>612</td>
<td>Select</td>
<td>169</td>
</tr>
<tr>
<td>612</td>
<td>Multiple Copy Dialog</td>
<td>139</td>
</tr>
<tr>
<td>612</td>
<td>Muntins</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Custom</td>
<td>437</td>
</tr>
<tr>
<td>612</td>
<td>Load Custom</td>
<td>437</td>
</tr>
<tr>
<td>612</td>
<td>Window</td>
<td>445</td>
</tr>
<tr>
<td>612</td>
<td>Named Values</td>
<td>1003</td>
</tr>
<tr>
<td>612</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Newels</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>CAD Arc Dialog</td>
<td>239</td>
</tr>
<tr>
<td>612</td>
<td>CAD Line Dialog</td>
<td>232</td>
</tr>
<tr>
<td>612</td>
<td>CAD Point Dialog</td>
<td>229</td>
</tr>
<tr>
<td>612</td>
<td>Layer Name Dialog</td>
<td>146</td>
</tr>
<tr>
<td>612</td>
<td>Plans Preferences</td>
<td>90</td>
</tr>
<tr>
<td>612</td>
<td>Polygon Shaped Room</td>
<td>272</td>
</tr>
<tr>
<td>612</td>
<td>No Locate Wall</td>
<td>299</td>
</tr>
<tr>
<td>612</td>
<td>Normal Maps</td>
<td>758</td>
</tr>
<tr>
<td>612</td>
<td>North Pointer</td>
<td>823</td>
</tr>
<tr>
<td>612</td>
<td>Nudging</td>
<td>193</td>
</tr>
<tr>
<td>612</td>
<td>Number Style/Angle Style</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Dialog</td>
<td>105</td>
</tr>
<tr>
<td>612</td>
<td>NKBA®</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Auto Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>612</td>
<td>Auto Elevation Dimensions</td>
<td>359</td>
</tr>
<tr>
<td>612</td>
<td>No Locate Wall</td>
<td>299</td>
</tr>
<tr>
<td>612</td>
<td>Normal Maps</td>
<td>758</td>
</tr>
<tr>
<td>612</td>
<td>North Pointer</td>
<td>823</td>
</tr>
<tr>
<td>612</td>
<td>Nudging</td>
<td>193</td>
</tr>
<tr>
<td>612</td>
<td>Number Style/Angle Style</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Dialog</td>
<td>105</td>
</tr>
<tr>
<td>612</td>
<td>Object</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Based Design</td>
<td>25</td>
</tr>
<tr>
<td>612</td>
<td>Layer Properties</td>
<td>150</td>
</tr>
<tr>
<td>612</td>
<td>Object Snaps</td>
<td>131</td>
</tr>
<tr>
<td>612</td>
<td>Extension Snaps</td>
<td>99, 131</td>
</tr>
<tr>
<td>612</td>
<td>Object locations</td>
<td>131</td>
</tr>
<tr>
<td>612</td>
<td>Preferences</td>
<td>97</td>
</tr>
<tr>
<td>612</td>
<td>Distributed</td>
<td>752</td>
</tr>
<tr>
<td>612</td>
<td>Off Angle Walls</td>
<td>273</td>
</tr>
<tr>
<td>612</td>
<td>One-Click Stairs</td>
<td>546</td>
</tr>
</tbody>
</table>
Open
- Below .. 316
- Layout .. 47
- Object ... 32
- Plan Files 709, 713
- Symbol .. 47
- Template Files 74
- View ... 805

Open Row Object edit button 508
OpenGL .. 779

Openings
- Dimensions to 348

Organizing
- your Files 40

Orthogonal Views 990

Outlets .. 493
- Above cabinet 493
- Automatic 495
- Dishwasher 493
- GFCI .. 493
- Manually placed 493
- Place ... 495
- Sink ... 493
- WP ... 493

Oval ... 243
- Specification Dialog 243

Overall Dimension 351

Overhang 592

Overview 23
- Floor ... 786
- Full ... 786
- Isometric 786

Page
- Down ... 978
- Up ... 978

Page Setup Dialog 986

Painting
- Over Materials 764

Pan
- Pan Window Tool 127
- the Display 127
- Using the Keyboard 127
- Using the Mouse 127
- Using the Scroll Bars 127

Panels
- Cabinets 478

Panorama Export 896

Paragraph Options Dialog 378

Partition Tool 462

Pass-Through 429

Paste .. 137
- Hold Position 138

Special .. 138

Paste Image 137

Pattern Panel 769

Patterns
- Mapping 765

Patterns and Textures 765

PDF ... 863
- Import 863
- Print to 991

Peninsula Radius Cabinets 474

Personal Tutor 1014

Picture File Box
- Specification Dialog 860

Picture Files
- Export 859
- Import 859
- Scale .. 866

Pier/Pad
- Specification Dialog 533

Piers
- and Pads 531
- Foundation 523

Piers and Pads
- Editing 533

Pitch
- Above Wall 288
- Show as degrees 78

Place
- Gable Over Window(s) 430
- Images 854
- Library Object Button 706
- Library Objects 704
- Outlets 495

Plan
- Create New 41
- Database File 48
- Drawing 35
- Files, Opening 47
- Find Plan Wizard 50
- Footprint 257
- General Defaults 77
- Materials Dialog 768
- Saving 43
- Templates 73
- Trace ... 867
- View .. 36

Plan Check 62
- and room labels 317

Dialog ... 62
- Hold .. 63
- Restart 63

Plan Footprint
- Specification Dialog 258

Plant
- 2D Symbols 938

Chooser Dialog 936

Encyclopedia 936
Labels ... 940
Specification Dialog 941
Tools .. 935
Plant Image
Create ... 937
Specification Dialog 937
Plant Shelf 325
Plinth Blocks 416
Plot Plan
North pointer 823
Plotters ... 984
Point
Light ... 819
Markers .. 230
Point to Point
Dimensions 357
Move ... 193
Resize ... 357
Pointer
Coordinates 33, 80
Crosshairs 27
Polygon
Shaped Deck 267
Polyline
3D Molding Polyline 684
Area .. 244
Definition 243
Edit Area .. 210
Garden Bed 907
Molding Polylines 684
Panel ... 245
Rectangular Polyline Tool 246
Room Polyline 331
Specification Dialog 244
Polyline Intersection 214
Polyline Solid
Convert to Solid 734
Create .. 732
Specification Dialog 736
Polyline Subtraction 215
Polyline Union 213
Ponds .. 907
Round .. 907
Pony Walls 270
Change wall types 271
Dimensioning 282
Display ... 270
Post .. 630
With Footing 630
Preferences
Appearance Panel 80
Architectural Panel 93
Behaviors Panel 96
CAD Panel 93
Colors Panel 82
Definition of 66
Dialog .. 79
Edit Panel 95
File Management Panel 86
Folders Panel 88
Font Panel 83
General Panel 85
Global settings 79
Library Browser Panel 84
Master List Panel 102
Materials List Panel 100
New Plans Panel 90
Render Panel 102
Report Style Panel 100
Reset preferences 104
Ruby Panel 89
Snap Properties Panel 97
Text Panel 84
Time Tracker Panel 92
Unit Conversion Panel 90
Primitive Tools 731
Box ... 732
Cone .. 732
Pyramid ... 732
Sphere .. 732
Primitives
Convert to Solid 734
Editing .. 733
Face ... 732
PrimitiveTools
Cylinder ... 732
Print .. 983
3D Views 990
Across Multiple Pages 991
Center Sheet 990
Check Plots 984, 991
Clear Printer Info 984, 986
Color or Black and White 997
Custom Sheet Size 989
Dialog .. 995
Dimensions 991
Drawing Scale 984
Drivers .. 984
Layout .. 982
Line Weights 992
Line Weights and Scaling 992
Options .. 985
Paper Size 984
Perspective Views 990
Plotters .. 984
Preview ... 989
Printable Area 990
Scale to Fit 990
Services ... 982
Sheet Size 984, 988
Terminology 984
Text .. 991
Tiled .. 991
To File .. 984
to PDF File 991
To Scale ... 990
Print Image 805
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafter Tails</td>
<td>622</td>
</tr>
<tr>
<td>Pyramid</td>
<td>732</td>
</tr>
<tr>
<td>Printer</td>
<td>984</td>
</tr>
<tr>
<td>Priority Support</td>
<td>1015</td>
</tr>
<tr>
<td>Program Updates</td>
<td>73</td>
</tr>
<tr>
<td>Project Information</td>
<td>57</td>
</tr>
<tr>
<td>Project Browser</td>
<td>56</td>
</tr>
<tr>
<td>Property lines</td>
<td>232</td>
</tr>
<tr>
<td>North pointer</td>
<td>823</td>
</tr>
<tr>
<td>Quoin</td>
<td>675</td>
</tr>
<tr>
<td>Quoins</td>
<td>675</td>
</tr>
<tr>
<td>Radius</td>
<td>473</td>
</tr>
<tr>
<td>End Cabinsans</td>
<td>285</td>
</tr>
<tr>
<td>of Tangent Curved Wall Dialog</td>
<td></td>
</tr>
<tr>
<td>Rafter Tails</td>
<td>622</td>
</tr>
<tr>
<td>Decorative Profiles</td>
<td>591</td>
</tr>
<tr>
<td>Rafters</td>
<td>630</td>
</tr>
<tr>
<td>Barge</td>
<td>641</td>
</tr>
<tr>
<td>Bearing Line</td>
<td>645</td>
</tr>
<tr>
<td>Blocking</td>
<td>630</td>
</tr>
<tr>
<td>Mixing with Trusses</td>
<td>660</td>
</tr>
<tr>
<td>Use Framing Reference</td>
<td>640</td>
</tr>
<tr>
<td>Rail Style Panel</td>
<td>309</td>
</tr>
<tr>
<td>Railing</td>
<td></td>
</tr>
<tr>
<td>Defaults</td>
<td>264</td>
</tr>
<tr>
<td>Railings</td>
<td>266</td>
</tr>
<tr>
<td>Balusters</td>
<td>309</td>
</tr>
<tr>
<td>Cable</td>
<td>267</td>
</tr>
<tr>
<td>Decks</td>
<td>266</td>
</tr>
<tr>
<td>for Stairs</td>
<td>572</td>
</tr>
<tr>
<td>Glass</td>
<td>267</td>
</tr>
<tr>
<td>Half Walls</td>
<td>265</td>
</tr>
<tr>
<td>in a Doorway</td>
<td>412</td>
</tr>
<tr>
<td>Locate with dimensions</td>
<td>299</td>
</tr>
<tr>
<td>Middle Rail</td>
<td>309</td>
</tr>
<tr>
<td>Newels</td>
<td>311</td>
</tr>
<tr>
<td>Open</td>
<td>309</td>
</tr>
<tr>
<td>Openings</td>
<td>411</td>
</tr>
<tr>
<td>Solid</td>
<td>309</td>
</tr>
<tr>
<td>Stairs</td>
<td>561, 575</td>
</tr>
<tr>
<td>Type</td>
<td>309</td>
</tr>
<tr>
<td>Raised / Lowered Region</td>
<td></td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>741</td>
</tr>
<tr>
<td>Radii</td>
<td></td>
</tr>
<tr>
<td>for Cabensans</td>
<td></td>
</tr>
<tr>
<td>of Tangent Curved Wall Dialog</td>
<td></td>
</tr>
<tr>
<td>Rafter Tails</td>
<td>622</td>
</tr>
<tr>
<td>Decorative Profiles</td>
<td>591</td>
</tr>
<tr>
<td>Rafters</td>
<td>630</td>
</tr>
<tr>
<td>Barge</td>
<td>641</td>
</tr>
<tr>
<td>Bearing Line</td>
<td>645</td>
</tr>
<tr>
<td>Blocking</td>
<td>630</td>
</tr>
<tr>
<td>Mixing with Trusses</td>
<td>660</td>
</tr>
<tr>
<td>Use Framing Reference</td>
<td>640</td>
</tr>
<tr>
<td>Rail Style Panel</td>
<td>309</td>
</tr>
<tr>
<td>Railing</td>
<td></td>
</tr>
<tr>
<td>Defaults</td>
<td>264</td>
</tr>
<tr>
<td>Railings</td>
<td>266</td>
</tr>
<tr>
<td>Balusters</td>
<td>309</td>
</tr>
<tr>
<td>Cable</td>
<td>267</td>
</tr>
<tr>
<td>Decks</td>
<td>266</td>
</tr>
<tr>
<td>for Stairs</td>
<td>572</td>
</tr>
<tr>
<td>Glass</td>
<td>267</td>
</tr>
<tr>
<td>Half Walls</td>
<td>265</td>
</tr>
<tr>
<td>in a Doorway</td>
<td>412</td>
</tr>
<tr>
<td>Locate with dimensions</td>
<td>299</td>
</tr>
<tr>
<td>Middle Rail</td>
<td>309</td>
</tr>
<tr>
<td>Newels</td>
<td>311</td>
</tr>
<tr>
<td>Open</td>
<td>309</td>
</tr>
<tr>
<td>Openings</td>
<td>411</td>
</tr>
<tr>
<td>Solid</td>
<td>309</td>
</tr>
<tr>
<td>Stairs</td>
<td>561, 575</td>
</tr>
<tr>
<td>Type</td>
<td>309</td>
</tr>
<tr>
<td>Raised / Lowered Region</td>
<td></td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>741</td>
</tr>
<tr>
<td>Radius</td>
<td>473</td>
</tr>
<tr>
<td>End Cabinsans</td>
<td>285</td>
</tr>
<tr>
<td>of Tangent Curved Wall Dialog</td>
<td></td>
</tr>
<tr>
<td>Rafter Tails</td>
<td>622</td>
</tr>
<tr>
<td>Decorative Profiles</td>
<td>591</td>
</tr>
<tr>
<td>Rafters</td>
<td>630</td>
</tr>
<tr>
<td>Barge</td>
<td>641</td>
</tr>
<tr>
<td>Bearing Line</td>
<td>645</td>
</tr>
<tr>
<td>Blocking</td>
<td>630</td>
</tr>
<tr>
<td>Mixing with Trusses</td>
<td>660</td>
</tr>
<tr>
<td>Use Framing Reference</td>
<td>640</td>
</tr>
<tr>
<td>Rail Style Panel</td>
<td>309</td>
</tr>
<tr>
<td>Railing</td>
<td></td>
</tr>
<tr>
<td>Defaults</td>
<td>264</td>
</tr>
<tr>
<td>Railings</td>
<td>266</td>
</tr>
<tr>
<td>Balusters</td>
<td>309</td>
</tr>
<tr>
<td>Cable</td>
<td>267</td>
</tr>
<tr>
<td>Decks</td>
<td>266</td>
</tr>
<tr>
<td>for Stairs</td>
<td>572</td>
</tr>
<tr>
<td>Glass</td>
<td>267</td>
</tr>
<tr>
<td>Half Walls</td>
<td>265</td>
</tr>
<tr>
<td>in a Doorway</td>
<td>412</td>
</tr>
<tr>
<td>Locate with dimensions</td>
<td>299</td>
</tr>
<tr>
<td>Middle Rail</td>
<td>309</td>
</tr>
<tr>
<td>Newels</td>
<td>311</td>
</tr>
<tr>
<td>Open</td>
<td>309</td>
</tr>
<tr>
<td>Openings</td>
<td>411</td>
</tr>
<tr>
<td>Solid</td>
<td>309</td>
</tr>
<tr>
<td>Stairs</td>
<td>561, 575</td>
</tr>
<tr>
<td>Type</td>
<td>309</td>
</tr>
<tr>
<td>Raised / Lowered Region</td>
<td></td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>741</td>
</tr>
<tr>
<td>Ramp</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>576</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>575</td>
</tr>
<tr>
<td>Ray Trace</td>
<td></td>
</tr>
<tr>
<td>Adjust Effects</td>
<td>849</td>
</tr>
<tr>
<td>Adjust Image Properties</td>
<td>849</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>842</td>
</tr>
<tr>
<td>Assistant</td>
<td>846</td>
</tr>
<tr>
<td>Configurations</td>
<td>840</td>
</tr>
<tr>
<td>CPU Usage</td>
<td>103</td>
</tr>
<tr>
<td>Create</td>
<td>839</td>
</tr>
<tr>
<td>Multiple Views</td>
<td>851</td>
</tr>
<tr>
<td>Options Dialog</td>
<td>841</td>
</tr>
<tr>
<td>Saving Images</td>
<td>840</td>
</tr>
<tr>
<td>Speed, increasing</td>
<td>851</td>
</tr>
<tr>
<td>Window</td>
<td>840</td>
</tr>
<tr>
<td>Rebar</td>
<td></td>
</tr>
<tr>
<td>In Foundations</td>
<td>523</td>
</tr>
<tr>
<td>Rebuild</td>
<td>585</td>
</tr>
<tr>
<td>3D</td>
<td>801</td>
</tr>
<tr>
<td>Roof Framing</td>
<td>604</td>
</tr>
<tr>
<td>Roofs</td>
<td>585</td>
</tr>
<tr>
<td>Walls/Floors/Ceilings</td>
<td>541</td>
</tr>
<tr>
<td>Recent File List</td>
<td>87</td>
</tr>
<tr>
<td>Recessed</td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>411, 416</td>
</tr>
<tr>
<td>Windows</td>
<td>430, 440</td>
</tr>
<tr>
<td>Rectangular Polyline</td>
<td>246</td>
</tr>
<tr>
<td>Redo</td>
<td>223</td>
</tr>
<tr>
<td>Reduced Gable</td>
<td>668</td>
</tr>
<tr>
<td>Referenced Plan Files Dialog</td>
<td>976</td>
</tr>
<tr>
<td>Reflect</td>
<td></td>
</tr>
<tr>
<td>About Object</td>
<td>204</td>
</tr>
<tr>
<td>Objects</td>
<td>204</td>
</tr>
<tr>
<td>Regular Polygon</td>
<td>246</td>
</tr>
<tr>
<td>Relative</td>
<td></td>
</tr>
<tr>
<td>to Current Point, new point</td>
<td>229</td>
</tr>
<tr>
<td>Remove</td>
<td></td>
</tr>
<tr>
<td>Backdrop</td>
<td>809</td>
</tr>
<tr>
<td>Manufacturer Lock</td>
<td>708</td>
</tr>
<tr>
<td>Render</td>
<td></td>
</tr>
<tr>
<td>Added Lights</td>
<td>818</td>
</tr>
<tr>
<td>Daytime Ambient</td>
<td>818</td>
</tr>
<tr>
<td>Graphics card</td>
<td>779</td>
</tr>
<tr>
<td>Interior Ambient</td>
<td>818</td>
</tr>
<tr>
<td>Light Fixtures</td>
<td>818</td>
</tr>
<tr>
<td>Light Sources</td>
<td>817</td>
</tr>
<tr>
<td>Nighttime Ambient</td>
<td>818</td>
</tr>
<tr>
<td>Preferences</td>
<td>102</td>
</tr>
<tr>
<td>Status</td>
<td>104</td>
</tr>
<tr>
<td>Tips</td>
<td>815</td>
</tr>
<tr>
<td>Rendering Techniques</td>
<td>828</td>
</tr>
<tr>
<td>Defaults</td>
<td>831</td>
</tr>
<tr>
<td>Options</td>
<td>831</td>
</tr>
<tr>
<td>Painting Styles</td>
<td>834</td>
</tr>
<tr>
<td>Replace from Library</td>
<td></td>
</tr>
</tbody>
</table>
Button ... 707
Dialog ... 707
Report Style Preferences 100
REScheck
Export ... 897
Reset
Defaults ... 76
Message Boxes 33
Preferences 104
Reshape objects 199
Resize
Factor .. 867
House using Dimensions 366
Objects ... 199
Point to Point 866
Restore
Toolbars .. 110
Restrictions
Moving objects 193
Retain
Wall Framing 301
Retaining Wall 908
Reverse
Plan .. 205
Reverse Direction 205
Revision Cloud
Specification Dialog 248
Revision Clouds 247
Revision Specification Dialog 981
Revolve Object 735
Rich Text
Border Color 379
Defaults .. 372
Specification Dialog 376
Text Color ... 377
Right Button Definition 26
Rim Joist .. 632
Road
Defaults .. 927
Specification Dialog 931
Road Marking
Specification Dialog 933
Road Objects
Different Types 928
Road Tools ... 928
Roads ... 928
Convert to Polyline Object 930
Curbs .. 932
Displaying ... 930
Roof
Automatic .. 581
Baseline Polyline 581
Baseline Polyline, Example Using 602
Baseline, Angled 600
Baselines .. 592
Beams .. 630
Birdsmouth Cut 597
Birdsmouth Depth 599
Extend Slope Downward 302
Full Gable Wall 302
Groups ... 584
Over this room 335
Panel ... 301
Second pitch 302
Styles, Automatic 584
Tools ... 583
Truss ... 656
Truss Details 659
Truss Specification Dialog 667
Roof Baseline
Specification Dialog 603
Roof Beams .. 744
Roof Designer 583
Roof Hole/Skylight
Specification Dialog 613
Roof Plane
Labels .. 593
Specification Dialog 598
Roof Planes ... 583, 592
Aligning .. 595
Area ... 601
Curved ... 604
Delete ... 597
Display ... 593
Edit ... 594
Intersections, Locate 595
Join ... 595
Low roof planes 588
Move to be Coplanar 596
Raising/Lowering 596
Roof Truss
Specification Dialog 667
Roofs ... 581, 585
Auto Rebuild 585, 587
Auto Roof Return 303
Automatic vs. Manual 581
Boxed Eaves 619
Build Roof Dialog 586
Crickets .. 616
Defaults .. 582
Dormers .. 615
Eaves, aligning 596
Edit All Roof Planes 583
Energy Heel .. 665
Fascia .. 621
Fix Roofs Tool 584
Framing .. 639
Gutters .. 621
Heights ... 598
Hip Trusses ... 664
Hole for skylights 612
Ignore Top Floor 588
Knee walls .. 289
Lock roof planes 588, 597
Manual .. 591
Minimum Alcove Size 589
Over Alcoves .. 611
Over curved walls 584
Overhang ... 588, 592
Pitch ... 288, 598
Plumb Cut Eaves 589
Rafter Tails .. 622
Raise off plate 589
Retain edits ... 599
Returns .. 620
Roof Group .. 334
Roof Plan ... 583
Shadow Boards 621
Show pitch as degrees 78, 599
Skylights ... 612
Soffits .. 640
Square Cut Eaves 589
Step Down Hip 664
Story-and-a-half 289
Subgirders .. 665
Trusses .. 588
Upslope Mark .. 592
Vertical Rafter Depth 599
Room .. 315
Defaults ... 314
Molding Polylines 331
Polylines ... 331
Specification Dialog 332
Room Elevation Views 788
Room Labels ... 320
Custom .. 320
Defaults ... 315
Dimension Format 383
Display ... 321
Edit ... 321
Interior room area 321
Interior room dimensions 321
Room area .. 321
Standard room area 321
Rooms
Area ... 321
Attic ... 316
Below Stairs .. 564
Editing .. 318
Exterior types 316
Flat Ceiling over 335
Interior .. 316
Interior area 321
Interior dimensions 321
Living Area ... 316
Name for PlanCheck 63
Open Below ... 316
Polygon Shaped 272
Roof over .. 335
Room Definition 313
Room Types ... 316
Selecting .. 317
Standard area 321
The Exterior Room 318
Types .. 315
Rope Lights .. 493
Rotate
CAD items .. 96
Jump ... 96
Plan View .. 121
Rotate objects 203
Rough Openings 635
Round
Garden bed ... 907
Pond ... 907
Ruby
Console ... 1010
Named Values 1003
Ruby Preferences 89
Running Dimensions 357
S
Same
Height Eaves 588
Roof Height at External Wall 588
Same Line Type edit handles 234
Sample Plans
Download .. 1014
Save
3D Views .. 805
and Save As .. 43
Layout ... 43
Materials Lists 955
Plan ... 43
Plan as Template 74
Thumbnail Image 45
Save Active View 120
Saved Defaults Dialog 68
Saved Plan View Specification Dialog 122
Scale
Picture Files .. 866
Printing to .. 990
Terrain Data .. 923
Text Size .. 385
to Fit .. 990
Schedule
Defaults .. 505
Specification Dialog 512
Schedules
Creating ... 506
Images in ... 513
Schematics, Wiring 495
Scissors Trusses 666
Screen Capture Setup Dialog 867
Scroll Bars .. 127
Seat
in Bay Window 452
Section Views 787
Segment Angle at Curved Wall 589
Select
- All .. 170
- Backdrop 809
- Components of Blocked Units 432
- Ctrl+Click 170
- Fence Select 170
- Insertion Point 251
- Library Object Dialog 705
- Marquee 169
- Material Dialog 762
- Multiple Objects 169–170
- Next Object 169
- Objects button 167
- Objects in 3D Views 800
- Room .. 317
- Same Type 219
- Selected Edge 168
- Shift+Click 170
- Similar Objects 168
- Similar Objects Dialog 219
Select Color Dialog 160
Select Drawing Group 154
Select Layer Dialog 149
Selection Fill Color 82
Send to Layout Dialog 965
Views to layout 965
Set as Default 67
Set Baseline Height Dialog 597
Set Chamfer Distance 201
Set Fillet Radius 201
Set as Default 67
Shadows 621
- Ray Casted 815
- Sun .. 824
Shelf .. 462
Shelf Ceiling 325
Shelf Tool 462
Shelf/Partition
 Specification Dialog 486
Shelves in Cabinets 485
Shift Key
 Marquee selection 169
 Select multiple objects 170
Shortcut Keys 30, 114
Show
 Arc Centers 176
 Line Weights 80, 989
 Living Area 79
 Pitch as degrees 78
 Sheet .. 989
Shutters 449
Side Windows 28
Sidewalk 929
 Defaults 927
SidewalkTools 928
Sill Plates 627
Skylights 583, 612
Slab
 At top of stem wall 523
 Foundation 523
 Monolithic, Footings 304
 Pour Numbers 526
 Specification Dialog 531
Slabs
 and the Materials List 531
 Holes .. 531
 Interior Footings 528
 Slab Tool 531
 Tools .. 531
Sliding Doors 405
Sloped Soffits 748
Snap Behaviors 130
 Angle Snaps 132
 Extension Snaps 99, 131
 Grid Snaps 133
 Hotkeys 131
 Object locations 131
 Object Snaps 131
 Wall Intersections 132
Snap Properties
 Preferences 97
Soffit
 Defaults 744
 Specification Dialog 746
Soffits 461, 744
 Calculating Materials 745
 Corner 744
 Roof .. 640
 Sloped 748
 Special applications 744
Solid
 Definition 736
 Specification Dialog 743
 Tools .. 731
Space Planner
 Toolbar Configuration 109
Space Planning 59
Spacing
 Joists 633
 Wall Framing 635, 777
Special
 Shaped Cabinets 472
Specification Dialogs
 3D Box 738
 3D Molding Polyline 687
 Arc .. 240
 Architectural Block 727
 Bay/Box Window 454
 Board .. 947
<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bow Window</td>
<td>454</td>
</tr>
<tr>
<td>Cabinet</td>
<td>475</td>
</tr>
<tr>
<td>Cabinet Shelf</td>
<td>485</td>
</tr>
<tr>
<td>CAD Block</td>
<td>254</td>
</tr>
<tr>
<td>CAD Box</td>
<td>247</td>
</tr>
<tr>
<td>CAD Circle</td>
<td>243</td>
</tr>
<tr>
<td>CAD Ellipse</td>
<td>243</td>
</tr>
<tr>
<td>CAD Oval</td>
<td>243</td>
</tr>
<tr>
<td>Callout</td>
<td>392</td>
</tr>
<tr>
<td>Camera</td>
<td>806</td>
</tr>
<tr>
<td>Ceiling Plane</td>
<td>607</td>
</tr>
<tr>
<td>Cone</td>
<td>740</td>
</tr>
<tr>
<td>Corner Boards</td>
<td>674</td>
</tr>
<tr>
<td>Cross Section/Elevation Camera</td>
<td>810</td>
</tr>
<tr>
<td>Custom Backsplash</td>
<td>749</td>
</tr>
<tr>
<td>Custom Countertop</td>
<td>487</td>
</tr>
<tr>
<td>Cylinder</td>
<td>740</td>
</tr>
<tr>
<td>Default Sun Light</td>
<td>827</td>
</tr>
<tr>
<td>Dimension Line</td>
<td>367</td>
</tr>
<tr>
<td>Distribution Path</td>
<td>752</td>
</tr>
<tr>
<td>Distribution Region</td>
<td>752</td>
</tr>
<tr>
<td>Door</td>
<td>412</td>
</tr>
<tr>
<td>Dormer</td>
<td>617</td>
</tr>
<tr>
<td>Driveway</td>
<td>933</td>
</tr>
<tr>
<td>Electrical Service</td>
<td>498</td>
</tr>
<tr>
<td>Elevation Line</td>
<td>914</td>
</tr>
<tr>
<td>Elevation Point</td>
<td>914</td>
</tr>
<tr>
<td>Elevation Region</td>
<td>914</td>
</tr>
<tr>
<td>Flat Region</td>
<td>915</td>
</tr>
<tr>
<td>Framing</td>
<td>651</td>
</tr>
<tr>
<td>Hill / Valley</td>
<td>916</td>
</tr>
<tr>
<td>Image</td>
<td>856</td>
</tr>
<tr>
<td>Joist Direction</td>
<td>644</td>
</tr>
<tr>
<td>Layout Box</td>
<td>973</td>
</tr>
<tr>
<td>Library Object</td>
<td>710</td>
</tr>
<tr>
<td>Library Object Button</td>
<td>706</td>
</tr>
<tr>
<td>Light</td>
<td>822</td>
</tr>
<tr>
<td>Line</td>
<td>234</td>
</tr>
<tr>
<td>Marker</td>
<td>394</td>
</tr>
<tr>
<td>Material Region</td>
<td>749</td>
</tr>
<tr>
<td>Molding Polyline</td>
<td>686</td>
</tr>
<tr>
<td>Pier/Pad</td>
<td>533</td>
</tr>
<tr>
<td>Plan Footprint</td>
<td>258</td>
</tr>
<tr>
<td>Plant</td>
<td>941</td>
</tr>
<tr>
<td>Plant Image</td>
<td>937</td>
</tr>
<tr>
<td>Polyline</td>
<td>244</td>
</tr>
<tr>
<td>Polyline Solid</td>
<td>736</td>
</tr>
<tr>
<td>Pyramid</td>
<td>741</td>
</tr>
<tr>
<td>Quoins</td>
<td>675</td>
</tr>
<tr>
<td>Raised/Lowered Region</td>
<td>917</td>
</tr>
<tr>
<td>Ramp</td>
<td>575</td>
</tr>
<tr>
<td>Revision</td>
<td>981</td>
</tr>
<tr>
<td>Revision Cloud</td>
<td>248</td>
</tr>
<tr>
<td>Rich Text</td>
<td>376</td>
</tr>
<tr>
<td>Road</td>
<td>931</td>
</tr>
<tr>
<td>Road Marking</td>
<td>933</td>
</tr>
<tr>
<td>Roof Baseline</td>
<td>603</td>
</tr>
<tr>
<td>Roof Hole/Skylight</td>
<td>613</td>
</tr>
<tr>
<td>Roof Plane</td>
<td>598</td>
</tr>
<tr>
<td>Room</td>
<td>332</td>
</tr>
<tr>
<td>Schedule</td>
<td>512</td>
</tr>
<tr>
<td>Shelf/Partition</td>
<td>486</td>
</tr>
<tr>
<td>Slab</td>
<td>531</td>
</tr>
<tr>
<td>Soffit</td>
<td>746</td>
</tr>
<tr>
<td>Solid</td>
<td>743</td>
</tr>
<tr>
<td>Sphere</td>
<td>739</td>
</tr>
<tr>
<td>Sprinkler</td>
<td>941</td>
</tr>
<tr>
<td>Stair Landing</td>
<td>577</td>
</tr>
<tr>
<td>Staircase</td>
<td>941</td>
</tr>
<tr>
<td>Sun Angle</td>
<td>825</td>
</tr>
<tr>
<td>Symbol</td>
<td>713</td>
</tr>
<tr>
<td>Terrain</td>
<td>911</td>
</tr>
<tr>
<td>Terrain Break</td>
<td>919</td>
</tr>
<tr>
<td>Terrain Feature</td>
<td>917</td>
</tr>
<tr>
<td>Terrain Path</td>
<td>919</td>
</tr>
<tr>
<td>Text</td>
<td>381</td>
</tr>
<tr>
<td>Truss Base</td>
<td>663</td>
</tr>
<tr>
<td>Wall</td>
<td>297</td>
</tr>
<tr>
<td>Wall Hatch</td>
<td>311</td>
</tr>
<tr>
<td>Window</td>
<td>438</td>
</tr>
<tr>
<td>Spell Check</td>
<td>388</td>
</tr>
<tr>
<td>Sphere</td>
<td>732</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>739</td>
</tr>
<tr>
<td>Splines</td>
<td>249</td>
</tr>
<tr>
<td>Advanced Splines</td>
<td>188</td>
</tr>
<tr>
<td>Control Handles</td>
<td>188</td>
</tr>
<tr>
<td>Lock Control Handle Angle</td>
<td>189</td>
</tr>
<tr>
<td>Split</td>
<td>542</td>
</tr>
<tr>
<td>Level Entries</td>
<td>541</td>
</tr>
<tr>
<td>Level Floor Plans</td>
<td>541</td>
</tr>
<tr>
<td>Spot Light</td>
<td>819</td>
</tr>
<tr>
<td>Sprinkler</td>
<td>941</td>
</tr>
<tr>
<td>Designer</td>
<td>941</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>941</td>
</tr>
<tr>
<td>Tools</td>
<td>941</td>
</tr>
<tr>
<td>Stacked Windows</td>
<td>431</td>
</tr>
<tr>
<td>Stair</td>
<td>577</td>
</tr>
<tr>
<td>Landing Specification Dialog</td>
<td>577</td>
</tr>
<tr>
<td>Sections Move Independently</td>
<td>93</td>
</tr>
<tr>
<td>Tools</td>
<td>546</td>
</tr>
<tr>
<td>Stair Designer</td>
<td>546</td>
</tr>
<tr>
<td>Stair Landing</td>
<td>577</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>577</td>
</tr>
<tr>
<td>Stair Landings</td>
<td>555</td>
</tr>
<tr>
<td>Height</td>
<td>555</td>
</tr>
<tr>
<td>Stair Railing</td>
<td>562</td>
</tr>
<tr>
<td>Middle Rail</td>
<td>562</td>
</tr>
<tr>
<td>Panels</td>
<td>562</td>
</tr>
<tr>
<td>Partial</td>
<td>562</td>
</tr>
<tr>
<td>Solid</td>
<td>561</td>
</tr>
<tr>
<td>Stair Treads</td>
<td>566</td>
</tr>
<tr>
<td>Automatic</td>
<td>566</td>
</tr>
<tr>
<td>Depth</td>
<td>567</td>
</tr>
<tr>
<td>Lock Number</td>
<td>566</td>
</tr>
<tr>
<td>Lock Tread Depth</td>
<td>566</td>
</tr>
<tr>
<td>Number</td>
<td>567</td>
</tr>
<tr>
<td>Overhang</td>
<td>568</td>
</tr>
<tr>
<td>Thickness</td>
<td>568</td>
</tr>
<tr>
<td>Staircase</td>
<td>568</td>
</tr>
</tbody>
</table>
Stem Walls ... 523
Steel33 , 80
Status Bar 967
Static Views 23
Story Pole 359
Stick Framing
Mixing with Trusses 660
Sticky Mode 138
Stairwell
Automatic .. 564
Startup Options 23
Static Views 967
Status Bar33 , 80
Steel Framing 649
Steel Framing
Framing .. 649
Stem Walls .. 523
Align ... 528
and Footings, Align 528
Stepped Foundations 530
Stepping Stones 907
Story-And-a-Half 289
Straight
Deck Edge .. 267
Stairs ... 546
Streams .. 907
Stretch CAD 211
Structural Member Reporting 945
Stud
Spacing ... 635, 777
Thickness ... 635
Style Palettes 217
Subgirders .. 665
Sun
Shadows ... 909
Sun Angle ... 823
Create ... 824
Render Data 827
Specification Dialog 825
Sun Shadows 824
Swap
Views .. 124
Switch
Three way ... 495
Symbol
Bounding Box 722
Bounding box size 718
Categories .. 894
Convert to .. 721
Custom 2D ... 252
Editing Custom 721
Faces ... 714
Get Last Symbol 720
Insertion point 714
Moldings ... 679
Open Symbol 713
Options ... 717
Origin ... 714
Reset origin 714
Resizing .. 718
Setback space 722
Smoothing Angle 715
Specification Dialog 713
Surface Normals 892
vs. Native Objects 708
Symbols
Inserts into .. 717
T
Tab Key .. 169
Tabs
Columns in Text 382
Text ... 382
Tangent
Curved walls 285, 287
Make arc, edit button 285, 287
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape Measure</td>
<td>358</td>
</tr>
<tr>
<td>Technical Support</td>
<td>1017</td>
</tr>
<tr>
<td>Error Messages</td>
<td>1015</td>
</tr>
<tr>
<td>Online</td>
<td>1015</td>
</tr>
<tr>
<td>Online Knowledge Base</td>
<td>1013</td>
</tr>
<tr>
<td>Priority</td>
<td>1015</td>
</tr>
<tr>
<td>Telephone</td>
<td>1014</td>
</tr>
<tr>
<td>Template Files</td>
<td>73</td>
</tr>
<tr>
<td>Template Layout</td>
<td>75</td>
</tr>
<tr>
<td>Template Plan</td>
<td>74</td>
</tr>
<tr>
<td>Templates</td>
<td>979</td>
</tr>
<tr>
<td>Temporary CAD Points</td>
<td>229</td>
</tr>
<tr>
<td>Dimension Defaults</td>
<td>354</td>
</tr>
<tr>
<td>Dimensions</td>
<td>358</td>
</tr>
<tr>
<td>File Directories</td>
<td>89</td>
</tr>
<tr>
<td>Temporary Dimensions</td>
<td>358</td>
</tr>
<tr>
<td>Terrain and 3D Draw Time</td>
<td>910</td>
</tr>
<tr>
<td>Auto Rebuild</td>
<td>910</td>
</tr>
<tr>
<td>Breaks</td>
<td>904</td>
</tr>
<tr>
<td>Build</td>
<td>910</td>
</tr>
<tr>
<td>Clear</td>
<td>901</td>
</tr>
<tr>
<td>Contour Lines</td>
<td>909</td>
</tr>
<tr>
<td>Contour Smoothing</td>
<td>913</td>
</tr>
<tr>
<td>Contours Panel</td>
<td>912</td>
</tr>
<tr>
<td>Displaying</td>
<td>909</td>
</tr>
<tr>
<td>Editing</td>
<td>910</td>
</tr>
<tr>
<td>Elevation Data Tools</td>
<td>901</td>
</tr>
<tr>
<td>Feature Tools</td>
<td>906</td>
</tr>
<tr>
<td>Flat Region</td>
<td>905</td>
</tr>
<tr>
<td>Grow All Plants Dialog</td>
<td>935</td>
</tr>
<tr>
<td>Hill</td>
<td>905</td>
</tr>
<tr>
<td>Holes</td>
<td>906</td>
</tr>
<tr>
<td>Modifier Tools</td>
<td>905</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>911</td>
</tr>
<tr>
<td>Sprinkler Tools</td>
<td>941</td>
</tr>
<tr>
<td>Sun Shadows</td>
<td>909</td>
</tr>
<tr>
<td>Toolbar Configuration</td>
<td>108, 899</td>
</tr>
<tr>
<td>Valley</td>
<td>905</td>
</tr>
<tr>
<td>Wall and Curb Tools</td>
<td>908</td>
</tr>
<tr>
<td>Terrain Break Specification Dialog</td>
<td>919</td>
</tr>
<tr>
<td>Terrain Data Convert CAD Lines to</td>
<td>926</td>
</tr>
<tr>
<td>Import</td>
<td>921</td>
</tr>
<tr>
<td>Terrain Feature Specification Dialog</td>
<td>917</td>
</tr>
<tr>
<td>Terrain Features Clip</td>
<td>917</td>
</tr>
<tr>
<td>Height</td>
<td>917</td>
</tr>
<tr>
<td>Terrain Modeler 3D Views</td>
<td>910</td>
</tr>
<tr>
<td>Clear Terrain</td>
<td>901</td>
</tr>
<tr>
<td>Terrain Path Specification Dialog</td>
<td>919</td>
</tr>
<tr>
<td>Terrain Perimeter</td>
<td>900</td>
</tr>
<tr>
<td>Text Add to Dimension Label</td>
<td>365</td>
</tr>
<tr>
<td>Aligning</td>
<td>386</td>
</tr>
<tr>
<td>Arrows</td>
<td>389</td>
</tr>
<tr>
<td>Bullets</td>
<td>378</td>
</tr>
<tr>
<td>Character Size</td>
<td>373</td>
</tr>
<tr>
<td>Convert Simple to Rich</td>
<td>385</td>
</tr>
<tr>
<td>Copy, Cut and Paste</td>
<td>386</td>
</tr>
<tr>
<td>Creating</td>
<td>374</td>
</tr>
<tr>
<td>Defaults</td>
<td>372</td>
</tr>
<tr>
<td>Displaying</td>
<td>375</td>
</tr>
<tr>
<td>Edit in Place</td>
<td>384</td>
</tr>
<tr>
<td>Editing</td>
<td>383</td>
</tr>
<tr>
<td>Layer</td>
<td>375</td>
</tr>
<tr>
<td>Layout</td>
<td>963</td>
</tr>
<tr>
<td>Leader Lines</td>
<td>390</td>
</tr>
<tr>
<td>Line Spacing</td>
<td>378</td>
</tr>
<tr>
<td>Lists</td>
<td>378</td>
</tr>
<tr>
<td>Macros</td>
<td>400</td>
</tr>
<tr>
<td>Maximum Characters</td>
<td>375</td>
</tr>
<tr>
<td>Move</td>
<td>384</td>
</tr>
<tr>
<td>Numbering</td>
<td>378</td>
</tr>
<tr>
<td>Paragraph Options</td>
<td>378</td>
</tr>
<tr>
<td>Printed Size</td>
<td>385</td>
</tr>
<tr>
<td>Printing</td>
<td>991</td>
</tr>
<tr>
<td>Reshape</td>
<td>384</td>
</tr>
<tr>
<td>Resize</td>
<td>385</td>
</tr>
<tr>
<td>Rotate</td>
<td>384</td>
</tr>
<tr>
<td>Scaling</td>
<td>385</td>
</tr>
<tr>
<td>Specification Dialog</td>
<td>381</td>
</tr>
<tr>
<td>Spell Check</td>
<td>388</td>
</tr>
<tr>
<td>Tab Spacing</td>
<td>382, 386</td>
</tr>
<tr>
<td>Tabbed Objects</td>
<td>386</td>
</tr>
<tr>
<td>Tables</td>
<td>386</td>
</tr>
<tr>
<td>Text Macro Management</td>
<td>1008</td>
</tr>
<tr>
<td>Text Macros Edit User Defined</td>
<td>1009</td>
</tr>
<tr>
<td>Exporting</td>
<td>1010</td>
</tr>
<tr>
<td>Importing</td>
<td>1010</td>
</tr>
<tr>
<td>User Defined</td>
<td>1001</td>
</tr>
<tr>
<td>Text Style Defaults Dialog</td>
<td>398</td>
</tr>
<tr>
<td>Text Styles</td>
<td>398</td>
</tr>
<tr>
<td>Texture Filename Conflict Dialog</td>
<td>895</td>
</tr>
<tr>
<td>Panel</td>
<td>771</td>
</tr>
<tr>
<td>Textures</td>
<td>816</td>
</tr>
<tr>
<td>Convert to Materials</td>
<td>765</td>
</tr>
<tr>
<td>Mapping</td>
<td>765</td>
</tr>
<tr>
<td>Thumbnails Creating</td>
<td>45</td>
</tr>
<tr>
<td>Create</td>
<td>45</td>
</tr>
<tr>
<td>Enable</td>
<td>87</td>
</tr>
<tr>
<td>Size</td>
<td>87</td>
</tr>
<tr>
<td>Tiling Views</td>
<td>124</td>
</tr>
<tr>
<td>Time Log Dialog</td>
<td>58</td>
</tr>
<tr>
<td>Time Tracker Preferences</td>
<td>57</td>
</tr>
<tr>
<td>Preferences</td>
<td>92</td>
</tr>
</tbody>
</table>
Load Muntins .. 437
Make Mulled Unit 431
Match roof ... 447
Minimum Separation 427
Mulled Units .. 431
Mullions .. 445
Muntins ... 445
Opening Indicators 435
Pass-Through 429
Recessed .. 430, 440
Shape .. 447
Shutters .. 449
Special Shapes 430
Stacked ... 431
Stained glass material 431
Standard ... 428
Transom .. 411
Trapezoid .. 447
Treatments .. 448
Types .. 428
Vents .. 431
Windows Metafiles 861
Wiring Schematics, Creating 495
Wrapped
 Openings .. 411
 Stairs ... 560

Z

Zero
in Dimensions 345

Zoom
 Fill Window 126
 Fill Window 126
 Mouse Wheel 27, 126
 Tools .. 126
 Undo Zoom 126